Submitted:
14 February 2025
Posted:
14 February 2025
You are already at the latest version
Abstract
The purpose of the study was to estimate the capabilities of the Gas Dis-charge Visualization (GDV) method for detection of effects of geophysical agents (GA) on the human body and to compare it's advantage with Galvanic Skin Response (GSR), usually applied for detection stress. The studies were conducted in 2017 and 2018 years on the Spitsbergen archipelago, and in 2023-2024 - in Apatity, Murmansk region, where daily the GDV and GSR indices were detected along of recruited participants of the study. For the first time, the daily covariations of GA and the GDV indices, mani-festing the physicochemical properties of the skin, were revealed in these studies. It was found, that correlations and their signs between the GA and GDV indices were determined by the intensity of the neutron flux at the Earth's surface, and the variabil-ity of the Solar Wind (SW). The correlations between the GDV and GA indices were reproduced in different years, in the case of comparability of the neutron level at the Earth's surface in the study period. The advantage of the GDV method, in comparing with the GSR was shown. The finding evident that GDV indices are indicators of ef-fects of GA on the human body.

Keywords:
1. Introduction
2. Materials and Methods
2.1. Participators of the Studies
2.2. Gas Discharge Visualization
2.3. Registration of the Galvanic Skin Response (GSR)
2.4. Geocosmic Agents (GA) Data
2.5. Statistical Analysis
3. Results
3.1. Preliminary Results, 2016, Apatity City, Murmansk Region
3.2. 2017 Year, Spitzbergen Archipelago, Barentsburg Settlement
3.3. 2018 Year, Spitzbergen Archipelago, Barentsburg Settlement
3.4. 2022-2023 Years, Apatity City, Murmansk Region
3.5. Co-Variations of GDV, GSR Indices and GA Revealed in Spitzbergen Archipelago
4. Discussion
5. Conclusion
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chizhevsky, A.L. Earth's Echo of Solar Storms. 2nd ed. Preface by O. G. Gazenko. Editorial Board: P. A. Korzhuev (Rev. Ed.) et al. M, ‘Mysl’. 1976, 367. https://fond-svetoslav.ru/upload/000/works/chizhevskiy/2.pdf.
- Mavromichalaki, H.; Papailiou, M.; Gerontidou, M.; Dimitrova, S.; Kudela, K. Human Physiological Parameters Related to Solar and Geomagnetic Disturbances: Data from Different Geographic Regions. Atmosphere 2021, 12, 1613.
- Papailiou, M.; Ioannidou, S.; Tezari, A.; Lingri, D.; Konstantaki, M.; Mavromichalaki, H.; Dimitrova, S. Space weather phenomena on heart rate: A study in the Greek region. Int. J. Biometeorol. 2023, 67, 37–45.
- Babayev, E.S.; Allahverdiyeva, A.A. Effects of geomagnetic activity variations on the physiological and psychological state of functionally healthy humans: Some results of Azerbaijani studies. Adv. Space. Res. 2007, 40, 1941–1951.
- Chernouss, S.; Vinogradov, A.; Vlassova, E. Geophysical hazard for human health in the circumpolar auroral belt: Evidence of a relationship between heart rate variation and electromagnetic disturbances. Natural Hazards. 2001, 23, 121-135.
- Belisheva, N. K.; Konradov A.A. Significance of the geomagnetic field variations for human organism functional state at high latitude // Geophysical processes and Biosphere. 2005, 4, 1/2, . 44-52. (in Russian).
- Oinuma, S.; Kubo, Y.; Otsuka, K.; Yamanaka, T.; Murakami, S.; Matsuoka, O.; Ohkawa, S.; Cornélissen, G.; Weydahl, A.; Holmeslet, B.; et al. Graded response of heart rate variability, associated with an alteration of geomagnetic activity in a subarctic area. Biomed. Pharmacother. 2002, 56, 284–288. 713. [CrossRef]
- Palmer, S.J.; Rycroft, M.J.; Cermack, M. Solar and Geomagnetic Activity, Extremely Low Frequency Magnetic and Electric Fields and Human Health at the Earth’s Surface. Surv. Geophys. 2006, 27, 557–595.
- Dimitrova, S. Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state. J. Atmos. Sol.-Terr. Phys. 2008, 70, 420–427.
- Mendoza, B.; de la Pena, S.S. Solar activity and human health at middle and low geomagnetic latitudes in Central America. Adv Space Res 2010, 46, 449–459. [CrossRef]
- Unger, S. The impact of space weather on human health. Biomed. J. Sci. Tech. Res. 2019, 22, 16442–16443.
- Mavromichalaki, H.; Papailiou, M.; Dimitrova, S.; Babayev, E.S.; Loucas, P. Space weather hazards and their impact on human cardio-health state parameters on Earth. Nat. Hazards 2012, 64, 1447–1459.
- Giannaropoulou, E.; Papailiou, M.; Mavromichalaki, H.; Gigolashvili, M.; Tvildiani, L.; Janashia, K.; Preka-Papadema, P.; Papadima, T. A study on the various types of arrhythmias in relation to the polarity reversal of the solar magnetic field. Nat. Hazards 2014, 70, 1575–1587.
- Mavromichalaki, H.; Preka-Papadema, P.; Theodoropoulou, A.; Paouris, E.; Apostolou, T. A study of the possible relation of the cardiac arrhythmias occurrence to the polarity reversal of the solar magnetic field. Adv. Space Res. 2017, 59, 366–378.
- Galata, E.; Ioannidou, S.; Papailiou, M.; Mavromichalaki, H.; Paravolidakis, K.; Kouremeti, M.; Rentifis, L.; Simantirakis, E.; Trachanas, K. Impact of space weather on human heart rate during the years 2011–2013. Astrophys. Space Sci. 2017, 362, 138.
- McCraty, R.; Atkinson, M.; Timofejeva, I.; Joffe, R.; Vainoras A.; Landauskas, M.; Alabdulgader, A.A. and Ragulskis M. The Influence of Heart Coherence on Synchronization Between Human Heart Rate Variability and Geomagnetic Activity. Journal of Complexity in Health Sciences. 2018, 1(2), 42-48. [CrossRef]
- Alabdulgader, A.; McCraty, R.; Atkinson, M.; Dobyns, Y.; Vainoras, A.; Ragulskis, M.; Stolc V. Long-Term Study of Heart Rate Variability Responses to Changes in the Solar and Geomagnetic Environment. Sci Rep. 2018, 8, 8(1), 2663. PMID: 29422633; PMCID: PMC5805718. [CrossRef]
- Mattoni, M.; Ahn, S.; Fröhlich, C.; Fröhlich F. Exploring the relationship between geomagnetic activity and human heart rate variability. Eur J Appl Physiol. 2020, 20(6), 1371-1381. Epub 2020 Apr 18. PMID: 32306151; PMCID: PMC11089572. [CrossRef]
- Timofejeva, I.; McCraty, R.; Atkinson, M.; Alabdulgader, A.A.; Vainoras, A.; Landauskas, M.; Šiaučiūnaitė, V. and Ragulskis, M. Global Study of Human Heart Rhythm Synchronization with the Earth’s Time Varying Magnetic Field. Applied Sciences. 2021, 11, Article No. 2935. [CrossRef]
- Janashia, K.; Tvildiani, L.; Tsibadze, T.; Invia, N. Effects of the geomagnetic field time varying components compensation as evidenced by heart rate variability of healthy males. Life Sciences in Space Research 2022, 32, 38-44. 718. [CrossRef]
- Stupishina, O.M.; Golovina, E.G.; Noskov, S.N.; Eremin, G.B.; Gorbanev, S.A. The Space and Terrestrial Weather Variations as Possible Factors for Ischemia Events in Saint Petersburg. Atmosphere 2022, 13, 8. [CrossRef]
- Vieira, C.L.Z.; Chen, K.; Garshick, E.; Liu, E.M.; Vokonas, P.; Ljungman, P.; Schwartz, J.; Koutrakis, P. Geomagnetic disturbances reduce heart rate variability in the normative aging study. Sci Total Environ. 2022, 839, 156235. 721. [CrossRef]
- Belisheva, N.K.; Popov, A.N.; Petukhova, N.V.; Pavlova, L.P.; Osipov, K.S.; Tkachenko, S.E.; Baranova, T.I. Qualitative and quantitative assessment of exposure to geomagnetic field variations on the functional status of the human brain]. Biofizika. 1995, 40(5), 1005-12. (In Russ). PMID: 8555283.
- Pobachenko, S.V.; Kolesnik, A.G.; Borodin, A.S.; Kalyuzhin, V.V. The contingency of parameters of human encephalograms and Schumann resonance electromagnetic fields revealed in monitoring studies. Biophysics 2006, 51, 480–483. [CrossRef]
- Mulligan, B.P.; Hunter, M.D.; Persinger, M.A. Effects of geomagnetic activity and atmospheric power variations on quantitative measures of brain activity: Replication of the Azerbaijani studies. Adv. Space Res. 2010, 45, 940–948.
- Persinger, M.A. Brain electromagnetic activity and lightning: Potentially congruent scale-invariant quantitative properties. Front. Integrat Neurosci. 2012, 6, 19.
- Soroko, S.I.; Bekshaev, S.S.; Belisheva, N.K.; Pryanichnikov, S.V. Amplitude-frequency and spatio-temporal reorganizations of the bioelectric activity of the human brain with strong disturbances of geomagnetic activity. Vestnik of the Far East Branch of the Russian Academy of Sciences. FEB RAS Publisher — Central Scientific Library. FEB RAS. 2013, 4, 111-122 https://elibrary.ru/download/elibrary_20798925_83288094.pdf.
- Saroka, K.S.; Caswell, J.C.; Lapointe, A.; Persinger, M.A. Greater electroencephalographic coherence between left and right temporal lobe structures during increased geomagnetic activity. Neurosci. Lett. 2013, 560, 126–130.
- Rozhkov, V.P.; Belisheva, N.K.; Martynova, A.A.; Soroko, S.I. Psychophysiological and cardiohemodynamic effects of solar, geomagnetic, and meteorological factors in humans under the conditions of the Arctic region. Human Physiology. 2014, 40(4), 397-409.
- Kanunikov, I.E.; Kiselev, B.V. Influence of the geomagnetic field on recurrence quantification EEG indexes // Ekologiya cheloveka (Human Ecology). 2014, 21(12), 47-54. [CrossRef]
- Wang, C.X.; Hilburn, I.A.; Wu, D.A.; Mizuhara, Y.; Cousté, C.P.; Abrahams, J.N.H.; Bernstein, S.E.; Matani, A.; Shimojo, S.; Kirschvink, J.L. Transduction of the Geomagnetic Field as Evidenced from alpha-Band Activity in the Human Brain. eNeur. 2019, 6, ENEURO.0483-18.2019.
- Podolská, K. Circulatory and Nervous Diseases Mortality Patterns—Comparison of Geomagnetic Storms and Quiet Periods. Atmosphere 2022, 13, 13.
- Krylov, V.V.; Osipova, E.A. Molecular Biological Effects of Weak Low-Frequency Magnetic Fields: Frequency–Amplitude Efficiency Windows and Possible Mechanisms. Int. J. Mol. Sci. 2023, 24, 10989. [CrossRef]
- Belisheva, N. K.; Semenov, V. S.; Tolstyh, Yu.V.; Biernat, H. K. Solar Flares, Generation of Solar Cosmic Rays and Their Influence on Biological Systems// Proc. of the Second European Workshop on Exo/Astrobiology Graz, Austria, 16-19 September 2002 (ESA SP-518, November 2002), 429-431.
- Belisheva, N.K.; Kuzhevskii, B.M.; Vashenyuk, E.V.; Zhirov, V.K. Correlation between the fusion dynamics of cells growing in vitro and variations of neutron intensity near the Earth's surface. Dokl Biochem Biophys. 2005, 402, 254-7. PMID: 16116763. [CrossRef]
- Belisheva, N.K.; Kuzhevskij, B.M.; Sigaeva, E.A.; Panasyuk, M.I.; Zhirov, V.K. Variations in the neutron intensity near the Earth's surface modulate the functional state of the blood. Dokl Biochem Biophys. 2006, 407, 83-7. PMID: 16776072. [CrossRef]
- Belisheva, N.K.; Lammer, H.; Biernat, H.K.; Vashenyuk, V.E. The effects of cosmic rays on biological systems – an investigation during GLE events // Astrophys. Space Sci. Trans. 2012, 8, 7–17 www.astrophys-space-sci-trans.net/8/7/2012/doi:10.5194/astra-8-7-2012.
- Diatroptova, M.A.; Diatroptov, M.E. Amplitude of One-Minute Fluctuations of Secondary Cosmic Rays as a Marker of Environmental Factor Determining Ultradian Rhythms in Body Temperature of Laboratory Rats. Bull Exp Biol Med. 2021, 172(1), 105-110. Epub 2021 Nov 17. PMID: 34787780. [CrossRef]
- Papailiou, M.; Mavromichalaki, H.; Vassilaki, A.; Kelesidis, K.M.; Mertzanos, G.A.; Petropoulos, B. Cosmic ray variations of solar origin in relation to human physiological state during December 2006 solar extreme events. Adv. Space Res. 2009, 43, 523–529.
- Papailiou, M.; Mavromichalaki, H.; Kudela, K.; Stetiarova, J.; Dimitrova, S. The effect of cosmic ray intensity variations and geomagnetic disturbances on the physiological state of aviators. ASTRA 2011, 7, 373–377.
- Papailiou, M.; Mavromichalaki, H.; Kudela, K.; Stetiarova, J.; Dimitrova, S. Cosmic radiation influence on the physiological state of aviators. Nat. Hazards 2012, 61, 719–727.
- Papailiou, M.-C.; Ioannidou, S.; Tezari, A.; Mavromichalaki, H. Geomagnetic and Cosmic Ray Activity Effect on Heart Rate uring the Solar Cycle 24. Atmosphere 2024, 15, 158. [CrossRef]
- Stoupel, E.; Babayev, E.; Abramson, E.; Sulkes, J. Days of “zero” level geomagnetic activity accompanied by the high neutron activity and dynamics of some medical events—Antipodes to geomagnetic storms. Health 2013, 5, 855–861. [CrossRef]
- Vieira, C.L.Z.; Janot-Pacheco, E.; Lage, C.; Pacini, A.; Koutrakis, P.; Cury, P.R.; Shaodan, H.; Pereira, L.A.; Saldiva, P.H.N. Long-term association between the intensity of cosmic rays and mortality rates in the city of Sao Paulo. Environ. Res. Lett. 2018, 13, 24009. [CrossRef]
- Vencloviene, J.; Beresnevaite, M.; Cerkauskaite, S.; Ragaisyte, N.; Pilviniene, R.; Benetis, R. Statistical Associations between Geomagnetic Activity, Solar Wind, Cosmic Ray Intensity, and Heart Rate Variability in Patients after Open-Heart Surgery.Atmosphere 2022, 13, 1330. [CrossRef]
- Singh, A.K.; Bhargawa, A.; Siingh, D.; Singh, R.P. Physics of Space Weather Phenomena: A Review. Geosciences. 2021, 11, 286. [CrossRef]
- Leamon, R.J., McIntosh, S.W. and Title, A.M. Deciphering Solar Magnetic Activity: The Solar Cycle Clock. Front. Astron. Space Sci. 2022, 9, 886670. [CrossRef]
- Nevoit, G.; Landauskas, M.; McCarty, R.; Bumblyte, I.A.; Potyazhenko, M.; Taletaviciene, G.; Jarusevicius, G.; Vainoras, A. Schumann Resonances and the Human Body: Questions About Interactions, Problems and Prospects. Appl. Sci. 2025, 15, 449. https:// doi.org/10.3390/app15010449.
- Breus, T.K.; Ozheredov, V.A.; Syutkina, E.V.; Rogoza, A.N. Some aspects of the biological effects of space weather. J. Atmos. Sol.-Terr. Phys. 2008, 70, 436–441.
- Messner, T.; Haggstrom, I.; Sandahl, I.; Lundberg, V. No covariation between the geomagnetic activity and the incidence of acute myocardial infraction in the polar area of northern Sweden. Int. J. Biometeorol. 2002, 46, 90–94.
- Tsyganenko, N.A.; Russell, C.T. Magnetic signatures of the distant polar cusps: Observations by Polar and quantitative modelling // JGR. 1999, 104, 24, 939.
- Baddeley, L.; Lorentzen, D.; Haaland, S. et al. Space and atmospheric physics on Svalbard: a case for continued incoherent scatter radar measurements under the cusp and in the polar cap boundary region. Prog Earth Planet Sci. 2023, 10, 53 . [CrossRef]
- Savin, S.P. Magnetic shield of the Earth: plasma gaps. URL: http://www.kosmofizika.ru/popular/savin.htm.
- Golikov, Yu.V.; et al. On the nature of low-frequency electromagnetic radiation in the polar cap. Letters in ZhETF. 1975, 22, 1, 3-7.
- Manninen, J.; et al. Quasi-periodic VLF emissions,VLF choruses and geomagnetic pulsations of Ps4 (event on 3 April 2011). Geomagnetism and Aeronomy. 2012, 52, 1, 82-92. 5.
- Le G.; et al. Electromagnetic Ion Cyclotron Waves in the High Altitude Cusp: Polar Observations. URL: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010028950.pdf.
- Bolshakova, O. V.; et al. Long-period geomagnetic pulsations in high-latitude magnetically conjugate regions. Geomagnetism and Aeronomy. 1986, 26, 1, 160-162.
- Kleimenova, N. G.; et al. Two types of long-period geomagnetic pulsations near the equatorial boundary of the daytime polar casp. Geomagnetism and Aeronomy. 1985, 25, 1, 163-165.
- Kozyreva, O. V.; et al. Long-period geomagnetic pulsations in the quasi-conjugate regions of the Arctic and Antarctic during the magnetic storm of 16-17 April 1999. Geomagnetism and Aeronomy. 2006, 46, 5, 657-670.
- Chugunova, O. M.; Pilipenko, V. A.; Engebretson M. Appearance of quasi-monochromatic РсЗ-4 pulsations in the polar cap. Geomagnetism and Aeronomy. 2004, 44, 1, 47-54.
- Belisheva, N.K.; Martynova, A.A.; Pryanichnikov, S.V.; Solovievskaya, N.L.; Zavadskaya T.S.; Megorsky V.V. Linkage of Parameters of the Interplanetary Magnetic Field and the Solar Wind in the Polar Cusp with Psychophysiological State of the Residents of Spitzbergen Archipelago. Herald of the Kola Science Centre of RAS. 2018, 4 (10), 5–24 (In Russ.). [CrossRef]
- Belisheva, N.K.; Martynova, A.A.; Pryanichnikov, S.V.; Solov'evskaya, N.L.;Zavadskaya, T.S., Dobrodeeva, L.K. and Megorsky, V.V. Bio effectiveness of the geo-space agents at the Spitsbergen archipelago. IOP Conf. Ser.: Earth Environ. Sci. 2019, 263, 012041. [CrossRef]
- Solovievskaya, N.L.; Yanovskaya, E.E.; Yusubov, R.R.; Belisheva N.K. Evaluation of psychophysiological effects of exposure to geoscosmic agents using the method of gas discharge visualization (GDV). Proceedings of the Kola Scientific Centre. Heliogeophysics. 2019, 10, 8, 125-137. [CrossRef]
- Belisheva, N.K.; Tsetlin, V.V.; Martynova, A.A.; Solovyevskaya, N.L.; Zavadskaya, T.S.; Pryanichnikov, S.V.; Megorsky, V.V. Water as an indicator of cosmophysical impacts on the human body in the conditions of the Svalbard archipelago. Aviakosmicheskaya i Ekologicheskaya Meditsina (Russia). 2020, 54, 2, 96-104. [CrossRef]
- Korotkov, K.G.; & Korotkin, D.A. Concentration dependence of gas discharge around drops of inorganic electrolytes. Journal of Applied Physics, 2001, 89, 4732-4736. [CrossRef]
- Korotkov, K.G.; Bundzen, P.V.; Bronnikov, V.M.; Lognikova, L.U. Bioelectrographic correlates of the direct vision phenomenon. J Altern Complement Med. 2005, 11, 5, 885-893. PMID: 16296923. [CrossRef]
- Korotkov, K.G.; Matravers, P; Orlov, D.V.; Williams, B.O. Application of electrophoton capture (EPC) analysis based on gas discharge visualization (GDV) technique in medicine: a systematic review. J Altern Complement Med. 2010, 16, 1, 13-25. PMID: 19954330. [CrossRef]
- Kostyuk, N.; Cole, P.; Meghanathan, N,; Isokpehi, R.D.; Cohly, H.H. Gas discharge visualization: an imaging and modeling tool for medical biometrics. Int J Biomed Imaging. 2011, 2011:196460. Epub 2011 May 19. PMID: 21747817; PMCID: PMC3124241. [CrossRef]
- Critchley HD. Electrodermal responses: what happens in the brain. Neuroscientist. 2002, 8(2), 132-42. PMID: 11954558. [CrossRef]
- Bari, D.S.; Aldosky, H.Y.Y.; Tronstad, C.; Kalvøy, H.; Martinsen, Ø.G. Electrodermal responses to discrete stimuli measured by skin conductance, skin potential, and skin susceptance. Skin Res Technol. 2018, 24(1),108-116. Epub 2017 Aug 4. PMID: 28776764. [CrossRef]
- Bari, D.S.; Aldosky, H.Y.Y.; Tronstad, C.; Martinsen, Ø.G. The correlations among the skin conductance features responding to physiological stress stimuli. Skin Res Technol. 2021, 27(4),582-588. Epub 2020 Dec 30. PMID: 33381876. [CrossRef]
- Bari, D.S.; Rammoo, M.N.S.; Aldosky, H.Y.Y.; Jaqsi, M.K.; Martinsen, Ø.G. The Five Basic Human Senses Evoke Electrodermal Activity. Sensors (Basel). 2023 Sep 29;23(19):8181. PMID: 37837011; PMCID: PMC10575214. [CrossRef]
- Polat, L. N. Ö.; and Özen, Ş. Evaluation of physiological effect of audiological test based on galvanic skin response. Meas. Sci. Rev. 2023, 23, 92–99. [CrossRef]
- Singaram, S.; Ramakrishnan, K.; and Periyasamy, S. Electrodermal signal analysis using continuous wavelet transform as a tool for quantification of sweat gland activity in diabetic kidney disease. Proc. Inst. Mech. Eng. 2023, H 237, 919–927. [CrossRef]
- Betzalel, N.; Ben Ishai, P.; Puzenko, A.; Feldman, Y. Emission from human skin in the sub THz frequency band. Sci Rep. 2022, 18, 12(1), 4720. PMID: 35304510; PMCID: P. [CrossRef]
- Fowles, D.C.; Christie, M.J.; Edelberg, R.; Grings, W.W.; Lykken, D.T.; Venables, P.H. Publication recommendations for electrodermal measurements. Psychophysiology. 1981, 18, 232–239.
- Dawson, M.E.; Schell, A.M.; Filion, D.L. The electrodermal system. In: Cacioppo JT, Tassinary LG, Berntson GC, editors. Handbook of psychophysiology. 2nd ed. Cambridge, MA: Cambridge University Press. 2000, 200–223.
- Gurina, E.Yu. Study of excretion of some metabolites of nitrogen metabolism by human skin. Abstract of PhD diss. 2007, Voronezh, 20. file:///C:/Users/Natalia/Downloads/autoref-issledovanie-ekskretsii-nekotorykh-metabolitov-azotistogo-obmena-kozhei-cheloveka.pdf.
- Baker, L.B.; Wolfe, A.S. Physiological mechanisms determining eccrine sweat composition. Eur J Appl Physiol. 2020, 120(4), 719-752. Epub 2020 Mar 2. PMID: 32124007; PMCID: PMC7125257.]. [CrossRef]
- Iaglov, V.V.; Iaglova, N.V. Novel concepts in biology of diffuse endocrine system: results and future investigations. Vestn Ross Akad Med Nauk. 2012, 4, 74-81. (In Russ.) PMID: 22834332;
- Rost, F.W.D.; Polak, J.M. & Pearse, A.G.E. The Melanocyte: Its cytochemical and immunological relationship to cells of the endocrine polypeptide (APUD) series. Virchows Arch. Abt. B Zellpath. 1969, 4, 93–101. [CrossRef]
- Ultra Low Frequency Waves in the Magnetosphere. In: Kamide, Y., Chian, A. (eds) Handbook of the Solar-Terrestrial Environment. 2007. Springer, Berlin, Heidelberg. [CrossRef]
- Krupatkin, A.I. Blood flow oscillations at a frequency of about 0.1 hz in skin microvessels do not reflect the sympathetic regulation of their tone. Human Physiology. 2009, 35, 2, 183-191. https://elibrary.ru/item.asp?id=13610070.
- Cifra, M.l; Van Wijk, E.; Koch, H.; Bosman, S.; and Van Wijk, R.. Spontaneous Ultra-Weak Photon Emission from Human Hands Is Time Dependent. Online. Radioengineering. 2007, 16, 2, 15-19.: http://hdl.handle.net/11012/57282. [cit. 2025-02-02];
- Wijk, R.V.; Wijk, E.P. An introduction to human biophoton emission. Forsch Komplementarmed Klass Naturheilkd. 2005, 12(2), 77-83. PMID: 15947465. [CrossRef]
- Ignatov, I.; Mosin, O.V.; Niggli, H.; Drossinakis, C.; & Stoyanov, C. Registration of Electromagnetic Waves Emitted from the Human Body. Journal of Medicine, Physiology and Biophysics. 2014, 5, 1-22.
- Van Wijk, R.; Schamhart, D.H. Regulatory aspects of low intensity photon emission. Experientia. 1988, 15, 44(7), 586-93. PMID: 3294034. [CrossRef]
- Yang, B.; Donnan, R.S.; Zhou, M.; Kingravi, A.A. Reassessment of the electromagnetic reflection response of human skin at W-band. Opt Lett. 2011, 1, 36(21), 4203-5. PMID: 22048365. [CrossRef]
- Mogensen, M.; Thrane, L.; Joergensen, T.M.; Andersen, P.E.; Jemec, G.B. Optical coherence tomography for imaging of skin and skin diseases. Semin Cutan Med Surg. 2009, 28(3), 196-202. PMID: 19782944. [CrossRef]
- Gabriel, S.; Lau, R.W.; and Gabriel, C. The Dielectric Properties of Biological Tissues: II. Measurements in the Frequency Range 10 Hz to 20 GHz. Physics in Medicine and Biology. 1996, 41, 2251-2269.
- Betzalel, N.; Ben Ishai, P.; Feldman, Y. The human skin as a sub-THz receiver - Does 5G pose a danger to it or not? Environ Res. 2018, 163, 208-216. Epub 2018 Feb 22. PMID: 29459303. [CrossRef]
- Feldman, Y.; Puzenko, A.; Ben Ishai, P.; Caduff, A.; Davidovich, I.; Sakran, F.; Agranat, A.J. The electromagnetic response of human skin in the millimetre and submillimetre wave range. Phys Med Biol. 2009, 7, 54(11), 3341-63. Epub 2009 May 8. PMID: 19430110. [CrossRef]
- Hayut, I.; Puzenko, A.; Ben Ishai, P.; Polsman, A.; Agranat, A.J.; Feldman, Y. The Helical Structure of Sweat Ducts: their Influence on the Electromagnetic Reflection Spectrum of the Skin. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 207–215. [CrossRef]
- Ellison, W.J.; Lamkaouchi, K.; Moreau, J.-M. Water: a dielectric reference. J. Mol. Liq. 1996, 68, 171–279. [CrossRef]
- Kim, J.; Lu, W.; Qiu, W.; Wang, L.; Caffrey, M.; Zhong, D. Ultrafast hydration dynamics in the lipidic cubic phase: discrete water structures in nanochannels. J. Phys. Chem. 2006, B 110, 21994–22000. [CrossRef]
- Brändén, M., Sandén, T., Brzezinski, P., Widengren, J., Localized proton microcircuitsat the biological membrane–water interface. Proc. Natl. Acad. Sci. 2006, 103, 19766–19770. [CrossRef]
- Safrai, E.; Ishai, P.B.; Caduff, A.; Puzenko, A.; Polsman, A.; Agranat, A.J.; Feldman, Y. The remote sensing of mental stress from the electromagnetic reflection coefficient of human skin in the sub-THz range. Bioelectromagnetics. 2012, 33(5),375-82. Epub 2011 Dec 14. PMID: 22170380. [CrossRef]
- Ohhashi, T.; Sakaguchi, M.; Tsuda, T. Human perspiration measurement. Physiol Meas. 1998, 19(4), 449-61. PMID: 9863672. [CrossRef]
- Furedy, J.J. Electrodermal Activity as a Tool for Differentiating Psychological Processes in Human Experimental Preparations: Focus on the Psyche of Psychophysiology. In: Roy, JC., Boucsein, W., Fowles, D.C., Gruzelier, J.H. (eds) Progress in Electrodermal Research. NATO ASI Series. 1993, 249. Springer, Boston, MA. [CrossRef]
- Owda, A.Y.; Salmon, N.; & Rezgui, N.D. Electromagnetic signatures of human skin in the millimeter wave band 80-100 GHZ. Progress in Electromagnetics Research B, 2018, 380, 79-99. [CrossRef]
- Hayut, I.; Ben Ishai, P.; Agranat, A.J.; Feldman, Y., Circular polarization induced by the three-dimensional chiral structure of human sweat ducts. Phys. Rev. 2014, E 89, 042715. [CrossRef]
- Shafirstein, G.; Moros, E.G.. Modelling millimetre wave propagation and absorption in a high resolution skin model: the effect of sweat glands. Phys Med Biol. 2011, 7, 56(5), 1329-39. Epub 2011 Feb 4. PMID: 21297244. [CrossRef]
- Usui, M.L.; Mansbridge, J.N.; Carter, W.G.; Fujita, M.; Olerud, J.E. Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds. J Histochem Cytochem. 2008, 56(7), 687-96. Epub 2008 Apr 14. PMID: 18413645; PMCID: PMC2430161. [CrossRef]
- Betzalel, N.; Ben Ishai, P.; Puzenko, A.; Feldman, Y. Emission from human skin in the sub THz frequency band. Sci Rep. 2022, 18;12(1), 4720. PMID: 35304510; PMCID: PMC8933490. [CrossRef]
- 108. Kochnev, A.; Betzalel, N.; Ben Ishai, P.; and Feldman, Yu. Human Sweat Ducts As Helical Antennas In The Sub-Thz Frequency Range-An Overview. Terahertz Science And Technology, 2018, 11, 3, 43-56.
- Baksheeva, K.; Ozhegov, R.V.; Goltsman, G.N.; Kinev, N.V.; Koshelets, V.P.; Kochnev, A.; Betzalel, N.; Puzenko, A.; Ishai, P.B.; & Feldman, Y. Do humans “shine” in the sub THz? 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2. [CrossRef]
- Liu, Xian Wei; Yang, Yunze; Wang, Wei; Wang, Shaopeng; Gao, Ming; Wu, Jie; and Tao, Nongjian, "Plasmonic-Based Electrochemical Impedance Imaging Of Electrical Activities In Single Cells" Translational Neuroscience. 2017, 461. https://scholar.barrowneuro.org/neurobiology/461.
- King, F.L.; Harrison, W.W. Glow Discharge Mass Spectrometry. In: Marcus, R.K. (eds) Glow Discharge Spectroscopies. Modern Analytical Chemistry. Springer, Boston, MA. 1993. [CrossRef]
- Betti, M.; de las Neras, L.A. Glow discharge mass spectrometry in nuclear research. Spectroscopy Europe/World. 2003, 15,3,15-24. https://www.spectroscopyeurope.com/article/glow-discharge-mass-spectrometry-nuclear-research.
- Voronov, M.; Hofmann, T.; & Venzago, C. Microsecond pulsed glow discharge source in “element gd” and “vg 9000” mass-spectrometers. Publ. Astron. Obs. Belgrade. 2008, 84, 359 – 360. https://publications.aob.rs/84/pdf/359-360.pdf https://publications.aob.rs/84/pdf/359-360.pdf.
- Korotkov, K. G. Human Energy Field: Study with GDV Bioelectrography, Backbone Publishing, Fair Lawn, NJ, USA, 2002.
- Olalde Rangel, J. A.; and del Castillo, O. Report on the first international congress on systemic medicine, gas discharge visualization (GDV) and electro-oncotherapy (ECT). Evidence-Based Complementary and Alternative Medicine. 2005, 2, 2, 255–256.
- Korotkov, K.G. Principles of GDV bioelectrography analysis. SPb.: "Renome", 2007, 286 p.; .
- Provotorov, V.M.; Lyubykh, E.N.; Ovsyannikov, E.S. The role of gas-discharge visualization in assessing the psycho-vegetative status of patients with ventral hernias. Bulletin of experimental and clinical surgery. 2012, 5, 2, 388-390.
- Ekhanin S.G. Study of galvanic skin response. Guidelines for laboratory classes on the subject "Biomedical devices and sensors". Tomsk State University of Automated Control Systems and Radioelectronics (TUSUR). 2019, 28 p. (in Russ.). https://edu.study.tusur.ru/publications/9127/download.
- Tranel, D.; Damasio, H. Neuroanatomical correlates of electrodermal skin conductance responses. Psychophysiology. 1994, 31, 427–38.
- Zahn, T.P.; Grafman, J.; Tranel, D. Frontal lobe lesions and electrodermal activity: effects of significance. Neuropsychologia. 1999, 37, 1227–1241.
- Tranel, D. Electrodermal activity in cognitive neuroscience: neuroanatomical and neuropsychological correlates. In: Lane RD, Nadel L, editors. Cognitive neuroscience of emotion. New York: Oxford University Press. 2000, 192–224.
- Bartolomé-Tomás, A.; Sánchez-Reolid, R.; Fernández-Sotos, A., Fernández-Caballero, A., Latorre, J.M. Arousal Detection in Elderly People from Electrodermal Activity Using Musical Stimuli. Sensors (Basel). 2020, 25, 20(17), 4788. PMID: 32854302; PMCID: PMC7506973. [CrossRef]
- Xu, X.; Zhang, H.; Yan, Y.; Wang, J.; Guo, L. Effects of electrical stimulation on skin surface. Acta Mech Sin. 2021, 37(12), 1843-1871. Epub 2021 Feb 6. PMID: 33584001; PMCID: PMC7866966. [CrossRef]
- Krizhanovskyy, E. V.; Korotkina, S. A.; and K. G. Korotkov, S. A. Role of the human central nervous system in the formation of the glow of the skin in high intensity electromagnetic field. in Proceedings of the IXth Annual International Congress “Science, Information, Spirit”, Saint Petersburg, Russia, July 2005.
- Cohly, H.; Kostyuk, N.; Isokpehi, R.; and Rajnarayanan, R. “Bio-electrographic method for preventive health care,” in Proceedings of the 1st IEEE Annual Bioscience and BiotechnologyConference, 2009.
- Sitko, S.P. Life in the fundamental notions of the physics of the alive. Physics of the Alive. 2011, 19, 2, 59-64. https://cyberleninka.ru/article/n/life-in-the-fundamental-notions-of-the-physics-of-the-alive.
- Fröhlich, H. Theoretical Physics and Biology. Biological Coherence and Response to External Stimuli // Ed. by Fröhlich H. – New York: Springer-Verlag, 1988.
- Adair, R.K. Vibrational resonances in biological systems at microwave frequencies. Biophys J. 2002, 82(3), 1147-52. PMID: 11867434; PMCID: PMC1301920. [CrossRef]
- Belisheva, N.K.; Prianichnikov S.V.; Solovyevskaya N.L.; Megorsky V.V. Svalbard is a Testing Area for Analog Aerospace Research of the Impact of Cosmophysical Agents on Human Organism. Herald of the Kola Science Centre of the RAS. 2017, 4 (9), 22–29. (In Russ.).
- Razinkin, S.M., Dvornikov M.V. Physiology and hygiene of a pilot in extreme conditions. Moscow. Publisher: "Scientific Book". 2019, 558. (In Russ.).
- Orlov, O.I., Belakovskiy, M.S., Kussmaul, A.R. and Tomilovskaya, E.S. Using the Possibilities of Russian Space Medicine for Terrestrial Healthcare. Front. Physiol. 2022, 13, 921487. [CrossRef]
- Gusev, V.G.; et al. Electrical properties of the human skin. Vestnik UGATU Ufa. 2008. 10, 1(26), 180-190.
- Drevin, V.E.; Savina, E.G.; Nadezhkina, E.Y.; Savin, G.A. Cutaneous excretion of nitrogenous substances: a monograph Volgograd: FGBOU VPO Volgograd GAU, 2014, 108.
- Strukov, E.Yu. Possibilities of the method of gas-discharge imaging in the assessment of the functional state of the organism in the perioperative period. Dissertation for the degree of Candidate of Medical Sciences.14.00.37 - Anaesthesiology and Reanimatology. Military Medical Academy named after S.M. Kirov. St. Petersburg. 2003.
- Boyers, D.G., Tiller W.A. Corona Discharge Photography // J. Applied Physics. 1973, 44, 3102-3112.






| Indices of GDV | M | SD | Uncor, counts/s | Pressure, mb, | DST Index | PR. Flux >10 MeV | PR. Flux >30 MeV | ap-index, nT, | f10.7index, (10-22W) | ||||||||
| Sr_1 | 26988 | 2226 | -0,44 | 0,50 | 0,58 | -0,84 | -0,65 | -0,01 | 0,48 | ||||||||
| Sf_1 | 25355 | 1905 | -0,56 | 0,61 | 0,53 | -0,79 | -0,57 | 0,03 | 0,45 | ||||||||
| Sl_1 | 26001 | 1946 | -0,43 | 0,49 | 0,62 | -0,80 | -0,55 | 0,05 | 0,46 | ||||||||
| S_1 | 26115 | 2003 | -0,48 | 0,54 | 0,59 | -0,82 | -0,60 | 0,02 | 0,47 | ||||||||
| Er_1 | 3,76 | 0,08 | 0,29 | -0,33 | 0,16 | -0,20 | -0,31 | -0,39 | 0,18 | ||||||||
| Ef_1 | 3,78 | 0,06 | 0,24 | -0,26 | 0,22 | -0,31 | -0,46 | -0,28 | 0,19 | ||||||||
| El_1 | 3,71 | 0,07 | 0,46 | -0,48 | 0,09 | -0,12 | -0,30 | -0,29 | 0,00 | ||||||||
| E_1 | 3,75 | 0,06 | 0,36 | -0,39 | 0,17 | -0,22 | -0,38 | -0,35 | 0,13 | ||||||||
| Kr_1 | 16,51 | 1,71 | 0,42 | -0,51 | -0,63 | 0,78 | 0,54 | -0,03 | -0,38 | ||||||||
| Kf_1 | 19,07 | 2,27 | 0,71 | -0,74 | -0,34 | 0,56 | 0,33 | -0,07 | -0,30 | ||||||||
| Kl_1 | 16,79 | 1,89 | 0,50 | -0,59 | -0,52 | 0,61 | 0,29 | -0,13 | -0,31 | ||||||||
| K_1 | 17,46 | 1,89 | 0,58 | -0,65 | -0,50 | 0,66 | 0,39 | -0,08 | -0,34 | ||||||||
| Sim_1 | 0,91 | 0,02 | -0,52 | 0,60 | -0,03 | -0,10 | 0,14 | 0,43 | 0,06 | ||||||||
| Indices of GDV | M | SD | Uncor counts/s |
Press, mb |
Bulk speed, km/s | DST Index | PROT Flux >10 MeV | PROT Flux >30 MeV | ap-index, nT, | f10.7_index, (10**-22) |
| Sr_2 | 31043 | 2117 | -0,20 | 0,25 | -0,43 | 0,69 | -0,85 | -0,73 | -0,16 | 0,49 |
| Sf_2 | 30071 | 1835 | -0,32 | 0,33 | -0,40 | 0,69 | -0,87 | -0,76 | -0,14 | 0,57 |
| Sl_2 | 30228 | 1787 | -0,38 | 0,39 | -0,36 | 0,68 | -0,87 | -0,74 | -0,13 | 0,55 |
| S_2 | 30447 | 1899 | -0,30 | 0,32 | -0,40 | 0,69 | -0,87 | -0,75 | -0,15 | 0,54 |
| Er_2 | 3,61 | 0,07 | 0,24 | -0,11 | -0,64 | 0,11 | -0,01 | -0,11 | -0,71 | -0,47 |
| E_2 | 3,58 | 0,04 | 0,03 | 0,05 | -0,58 | 0,24 | 0,03 | 0,01 | -0,74 | -0,28 |
| Kr_2 | 12,48 | 0,76 | 0,08 | -0,09 | 0,49 | -0,55 | 0,83 | 0,82 | 0,18 | -0,45 |
| Kf_2 | 14,52 | 0,83 | 0,13 | -0,15 | 0,44 | -0,51 | 0,81 | 0,79 | 0,15 | -0,45 |
| Kl_2 | 12,12 | 0,57 | 0,17 | -0,22 | 0,43 | -0,53 | 0,81 | 0,74 | 0,16 | -0,35 |
| K_2 | 13,04 | 0,71 | 0,13 | -0,15 | 0,46 | -0,54 | 0,83 | 0,80 | 0,17 | -0,43 |
| Sim_2 | 0,93 | 0,01 | -0,36 | 0,34 | -0,18 | 0,46 | -0,73 | -0,60 | 0,12 | 0,49 |
| M | SD | Uncorr. | Pressure | Field vector, |<B>| | By,GSE | By,GSM | Bz,GSM | PrT | DST Index | PROT Flux >60MeV | ap-index, nT, | f10.7_index, (10**-22) | |
| Sr_1 | 28094 | 1193 | 0,12 | -0,12 | -0,46 | -0,07 | -0,09 | 0,06 | -0,43 | 0,33 | -0,12 | -0,28 | 0,31 |
| Sf_1 | 27279a | 1165 | 0,27 | -0,27 | -0,52 | 0,01 | 0 | 0,01 | -0,32 | 0,23 | -0,2 | -0,15 | 0,12 |
| Sl_1 | 27409 | 956 | 0,06 | -0,06 | -0,30 | -0,06 | -0,06 | 0,12 | -0,41 | 0,39 | 0,2 | -0,24 | 0,42 |
| S_1 | 27594 | 1059 | 0,16 | -0,16 | -0,45 | -0,04 | -0,05 | 0,06 | -0,4 | 0,33 | -0,06 | -0,23 | 0,29 |
| Er_1 | 3,74 | 0,07 | 0,31 | -0,32 | -0,27 | 0,37 | 0,36 | -0,32 | 0,35 | -0,41 | -0,36 | 0,22 | -0,45 |
| Ef_1 | 3,75 | 0,06 | 0,39 | -0,39 | -0,39 | 0,44 | 0,43 | -0,42 | 0,48 | -0,37 | -0,37 | 0,46 | -0,55 |
| El_1 | 3,68 | 0,06 | 0,47 | -0,48 | -0,46 | 0,57 | 0,56 | -0,61 | 0,4 | -0,47 | -0,5 | 0,35 | -0,54 |
| E_1 | 3,73 | 0,06 | 0,43 | -0,43 | -0,41 | 0,51 | 0,5 | -0,49 | 0,45 | -0,46 | -0,45 | 0,38 | -0,57 |
| Kr_1 | 15,78 | 1,60 | 0,21 | -0,21 | 0,22 | 0,28 | 0,29 | -0,23 | 0,62 | -0,54 | -0,05 | 0,39 | -0,42 |
| Kf_1 | 18,42 | 2,11 | 0,36 | -0,35 | -0,05 | 0,61 | 0,59 | -0,67 | 0,72 | -0,74 | -0,54 | 0,61 | -0,53 |
| Kl_1 | 15,72 | 1,58 | 0,39 | -0,39 | 0,08 | 0,40 | 0,41 | -0,33 | 0,71 | -0,70 | -0,29 | 0,54 | -0,59 |
| K-1 | 16,94 | 1,67 | 0,34 | -0,34 | 0,11 | 0,35 | 0,36 | -0,33 | 0,70 | -0,67 | -0,21 | 0,50 | -0,55 |
| Sim_1 | 0,91 | 0,02 | -0,16 | 0,16 | 0,07 | -0,31 | -0,3 | 0,32 | -0,59 | 0,54 | -0,01 | -0,4 | 0,22 |
| M | SD. | Uncorr. | Pressure | Field Magnitude Avg, | Field vector, |<B>| | Bz,GSM | sigma-B | sigma-Bz | PR. Flux >10 MeV | PR. Flux >60MeV | ap-index, nT, | f10.7_index, (10**-22) | |
| Sr_2 | 31702 | 870 | 0,62 | -0,62 | -0,29 | -0,68 | -0,5 | 0,04 | -0,03 | -0,53 | -0,55 | 0,4 | -0,43 |
| Sf_2 | 31149 | 1392 | 0,65 | -0,65 | -0,28 | -0,67 | -0,55 | 0,03 | -0,02 | -0,60 | -0,58 | 0,41 | -0,35 |
| Sl_2 | 30614 | 949 | 0,56 | -0,57 | -0,31 | -0,63 | -0,32 | 0,01 | -0,09 | -0,50 | -0,43 | 0,28 | -0,17 |
| S_2 | 31155 | 1029 | 0,64 | -0,64 | -0,3 | -0,68 | -0,49 | 0,03 | -0,04 | -0,57 | -0,55 | 0,38 | -0,33 |
| Er_2 | 3,6 | 0,07 | 0,32 | -0,32 | -0,56 | -0,28 | -0,35 | -0,51 | -0,53 | 0,05 | 0,24 | -0,2 | 0,2 |
| Ef_2 | 3,62 | 0,05 | -0,12 | 0,12 | -0,21 | 0,06 | -0,32 | -0,34 | -0,32 | 0,07 | 0,24 | -0,19 | 0,01 |
| El_2 | 3,54 | 0,06 | 0,09 | -0,08 | -0,21 | 0,15 | -0,32 | -0,38 | -0,27 | 0,03 | 0,05 | -0,22 | 0,17 |
| E_2 | 3,59 | 0,05 | 0,15 | -0,14 | -0,42 | -0,06 | -0,4 | -0,51 | -0,47 | 0,05 | 0,22 | -0,25 | 0,16 |
| Kr_2 | 12,25 | 0,30 | -0,27 | 0,27 | 0,17 | 0,42 | 0,20 | -0,07 | -0,02 | 0,59 | 0,55 | -0,20 | 0,22 |
| Kf_2 | 14,45 | 0,56 | -0,25 | 0,26 | 0,11 | 0,34 | 0,11 | -0,09 | -0,02 | 0,46 | 0,49 | -0,23 | 0,01 |
| Kl_2 | 12,12 | 0,49 | -0,30 | 0,31 | 0,22 | 0,52 | 0,04 | -0,07 | 0,03 | 0,51 | 0,44 | -0,18 | 0,07 |
| K-2 | 12,94 | 0,43 | -0,29 | 0,30 | 0,17 | 0,45 | 0,11 | -0,08 | 0,00 | 0,54 | 0,51 | -0,22 | 0,08 |
| Sim_2 | 0,94 | 0,01 | 0,43 | -0,43 | 0,05 | -0,26 | -0,25 | 0,21 | 0,34 | -0,35 | -0,69 | 0,53 | -0,38 |
| Indices | M | SD | Uncor | FM | PrT | PrD | BS | R | DST | PR >10 MeV | PR >30 MeV | ap | f10.7 |
| 2017 | |||||||||||||
| counts/ | 162,84 | 3,79 | 1,00 | 0,31 | -0,04 | 0,25 | -0,21 | -0,38 | 0,02 | 0,17 | 0,06 | 0,04 | -0,14 |
| FM | 5,33 | 1,94 | 0,31 | 1,00 | 0,51 | 0,86 | 0,08 | 0,23 | 0,32 | -0,17 | -0,20 | 0,68 | 0,38 |
| PrT | 106454 | 60025 | -0,04 | 0,51 | 1,00 | 0,16 | 0,84 | 0,26 | -0,33 | 0,18 | 0,23 | 0,86 | 0,19 |
| PrD | 5,34 | 3,05 | 0,25 | 0,86 | 0,16 | 1,00 | -0,24 | 0,14 | 0,60 | -0,35 | -0,35 | 0,40 | 0,50 |
| Bulk speed | 460,28 | 99,45 | -0,21 | 0,08 | 0,84 | -0,24 | 1,00 | 0,13 | -0,56 | 0,30 | 0,39 | 0,73 | 0,10 |
| Kp*10 | 16,00 | 8,68 | 0,05 | 0,57 | 0,85 | 0,29 | 0,81 | 0,17 | -0,22 | 0,09 | 0,15 | 0,98 | 0,34 |
| R | 11,83 | 4,46 | -0,38 | 0,23 | 0,26 | 0,14 | 0,13 | 1,00 | 0,27 | -0,19 | -0,15 | 0,21 | 0,22 |
| DST Index | -3,44 | 9,26 | 0,02 | 0,32 | -0,33 | 0,60 | -0,56 | 0,27 | 1,00 | -0,60 | -0,42 | -0,16 | 0,49 |
| PR >10 MeV | 0,23 | 0,09 | 0,17 | -0,17 | 0,18 | -0,35 | 0,30 | -0,19 | -0,60 | 1,00 | 0,91 | 0,02 | -0,64 |
| PR >30 MeV | 0,10 | 0,01 | 0,06 | -0,20 | 0,23 | -0,35 | 0,39 | -0,15 | -0,42 | 0,91 | 1,00 | 0,05 | -0,58 |
| ap-index | 7,17 | 5,15 | 0,04 | 0,68 | 0,86 | 0,40 | 0,73 | 0,21 | -0,16 | 0,02 | 0,05 | 1,00 | 0,37 |
| f10.7_index | 73,71 | 2,20 | -0,14 | 0,38 | 0,19 | 0,50 | 0,10 | 0,22 | 0,49 | -0,64 | -0,58 | 0,37 | 1,00 |
| 2018 | |||||||||||||
| counts/ | 172,87 | 10,90 | 1,00 | -0,32 | 0,37 | -0,44 | 0,64 | 0,20 | -0,54 | -0,55 | -0,36 | 0,39 | -0,44 |
| FM | 4,82 | 1,50 | -0,32 | 1,00 | 0,44 | 0,57 | 0,10 | 0,46 | -0,08 | 0,11 | 0,17 | 0,57 | -0,18 |
| PrT | 57283 | 34338 | 0,37 | 0,44 | 1,00 | -0,17 | 0,77 | 0,54 | -0,79 | -0,23 | -0,39 | 0,77 | -0,40 |
| PrD | 8,17 | 3,17 | -0,44 | 0,57 | -0,17 | 1,00 | -0,49 | -0,06 | 0,58 | 0,29 | 0,29 | 0,19 | 0,24 |
| Bulk speed | 382,10 | 52,45 | 0,64 | 0,10 | 0,77 | -0,49 | 1,00 | 0,52 | -0,88 | -0,49 | -0,32 | 0,67 | -0,51 |
| Kp*10 | 14,10 | 6,77 | 0,40 | 0,58 | 0,72 | 0,28 | 0,64 | 0,50 | -0,56 | -0,29 | -0,24 | 0,97 | -0,45 |
| R | 4,20 | 5,89 | 0,20 | 0,46 | 0,54 | -0,06 | 0,52 | 1,00 | -0,48 | -0,09 | -0,03 | 0,53 | -0,26 |
| DST Index | -1,35 | 9,43 | -0,54 | -0,08 | -0,79 | 0,58 | -0,88 | -0,48 | 1,00 | 0,37 | 0,52 | -0,65 | 0,62 |
| PR >10 MeV | 0,27 | 0,01 | -0,55 | 0,11 | -0,23 | 0,29 | -0,49 | -0,09 | 0,37 | 1,00 | 0,26 | -0,29 | 0,44 |
| PR >30 MeV | 0,17 | 0,00 | -0,36 | 0,17 | -0,39 | 0,29 | -0,32 | -0,03 | 0,52 | 0,26 | 1,00 | -0,36 | 0,43 |
| ap-index | 6,00 | 3,20 | 0,39 | 0,57 | 0,77 | 0,19 | 0,67 | 0,53 | -0,65 | -0,29 | -0,36 | 1,00 | -0,52 |
| f10.7_index | 70,87 | 1,14 | -0,44 | -0,18 | -0,40 | 0,24 | -0,51 | -0,26 | 0,62 | 0,44 | 0,43 | -0,52 | 1,00 |
| n=91 | M | SD | Uncor | Press | Cor | LA avg., FV | By,GSE | By,GSM | sigma-phi-V | R | DST Index | f10.7_index, |
| Sr_1 | 28808 | 1446 | 0,20 | -0,22 | 0,05 | -0,07 | 0,02 | 0,04 | -0,19 | -0,07 | 0,19 | -0,04 |
| Sf_1 | 28229 | 1509 | 0,16 | -0,17 | 0,08 | -0,01 | -0,04 | -0,03 | -0,19 | -0,04 | 0,19 | -0,04 |
| Sl_1 | 27993 | 1511 | 0,11 | -0,11 | 0,08 | -0,06 | 0,00 | 0,00 | -0,18 | -0,04 | 0,31 | -0,01 |
| S1 | 28343 | 1406 | 0,17 | -0,17 | 0,08 | -0,05 | -0,01 | 0,00 | -0,20 | -0,05 | 0,25 | -0,03 |
| Er_1 | 3,64 | 0,12 | 0,02 | 0,01 | 0,16 | -0,15 | 0,20 | 0,19 | 0,08 | -0,04 | 0,12 | -0,07 |
| Ef_1 | 3,57 | 0,14 | 0,02 | 0,01 | 0,17 | -0,13 | 0,24 | 0,26 | 0,28 | -0,08 | -0,06 | -0,13 |
| El_1 | 3,61 | 0,13 | -0,04 | 0,04 | 0,03 | -0,26 | 0,31 | 0,33 | 0,26 | -0,05 | 0,02 | -0,10 |
| E1 | 3,61 | 0,11 | 0,00 | 0,02 | 0,14 | -0,21 | 0,30 | 0,31 | 0,26 | -0,07 | 0,03 | -0,12 |
| Kr_1 | 12,42 | 1,54 | 0,01 | 0,01 | 0,08 | -0,05 | 0,10 | 0,09 | 0,23 | 0,03 | -0,13 | -0,01 |
| Kf_1 | 15,34 | 2,27 | 0,00 | 0,01 | 0,03 | -0,04 | 0,12 | 0,11 | 0,27 | -0,02 | -0,12 | -0,05 |
| Kl_1 | 12,73 | 1,96 | -0,06 | 0,06 | -0,01 | -0,04 | 0,13 | 0,12 | 0,30 | -0,04 | -0,17 | -0,07 |
| Kf1 | 13,50 | 1,87 | -0,02 | 0,03 | 0,03 | -0,05 | 0,12 | 0,11 | 0,28 | -0,01 | -0,14 | -0,05 |
| Simf_1 | 0,93 | 0,02 | 0,04 | -0,04 | 0,02 | 0,10 | -0,25 | -0,27 | -0,37 | 0,05 | 0,11 | 0,09 |
| Sr_2 | 30166 | 1146 | 0,27 | -0,29 | 0,02 | -0,01 | 0,13 | 0,12 | -0,05 | -0,24 | 0,20 | -0,16 |
| Sf_2 | 30218 | 1102 | 0,25 | -0,26 | 0,01 | 0,08 | 0,02 | -0,02 | -0,14 | -0,25 | 0,18 | -0,24 |
| Sl_2 | 29746 | 987 | 0,28 | -0,28 | 0,07 | 0,13 | -0,01 | -0,01 | -0,11 | -0,35 | 0,25 | -0,33 |
| S2 | 30043 | 1006 | 0,29 | -0,30 | 0,03 | 0,07 | 0,05 | 0,04 | -0,10 | -0,29 | 0,22 | -0,26 |
| Er_2 | 3,55 | 0,14 | -0,02 | 0,04 | 0,17 | -0,32 | 0,28 | 0,29 | 0,21 | 0,15 | -0,03 | 0,08 |
| Ef_2 | 3,52 | 0,12 | 0,04 | -0,02 | 0,19 | -0,16 | 0,15 | 0,18 | 0,25 | 0,05 | -0,01 | -0,03 |
| El_2 | 3,55 | 0,14 | 0,02 | -0,01 | 0,24 | -0,24 | 0,16 | 0,16 | 0,23 | 0,06 | 0,14 | 0,03 |
| E2 | 3,54 | 0,11 | 0,01 | 0,00 | 0,24 | -0,30 | 0,24 | 0,25 | 0,27 | 0,10 | 0,04 | 0,03 |
| Kr_2 | 11,46 | 0,61 | -0,07 | 0,08 | 0,13 | -0,12 | 0,04 | 0,05 | 0,20 | 0,16 | -0,14 | 0,11 |
| Kf_2 | 13,28 | 0,69 | -0,14 | 0,14 | 0,07 | -0,02 | -0,02 | 0,01 | 0,25 | 0,14 | -0,13 | 0,18 |
| Kl_2 | 11,33 | 0,60 | -0,03 | 0,00 | -0,06 | -0,10 | -0,02 | 0,00 | 0,21 | 0,33 | -0,11 | 0,41 |
| Kf2 | 12,02 | 0,55 | -0,09 | 0,09 | 0,06 | -0,09 | 0,00 | 0,02 | 0,26 | 0,24 | -0,15 | 0,27 |
| Simf_2 | 0,94 | 0,01 | 0,09 | -0,10 | 0,00 | 0,16 | -0,17 | -0,21 | -0,18 | -0,06 | 0,09 | -0,06 |
| Indices | M, 2017, n=18 | SD, 2017 | M, 2018, n=20 | SD, 2018 | p | M, 2017, n=18 | SD, 2017 | M, 2023-2024, n=91 | SD, 2023-2024 | p | M, 2018, n=20 | SD, 2018 | M, 2023-2024, n=91 | SD, 2023-2024 | p |
| Sr_1 | 26988 | 2226 | 28094 | 1193 | 0,0609 | 26988 | 2226 | 28612 | 1993 | 0,0025 | 28094 | 1193 | 28612 | 1993 | 0,2663* |
| Sf_1 | 25356 | 1906 | 27279 | 1165 | 0,0005 | 25356 | 1906 | 27986 | 2189 | 0,0000 | 27279 | 1165 | 27986 | 2189 | 0,1647*,** |
| Sl_1 | 26002 | 1947 | 27409 | 956 | 0,0068,* | 26002 | 1947 | 27827 | 1847 | 0,0002 | 27409 | 956 | 27827 | 1847 | 0,3286* |
| S_1 | 26115 | 2004 | 27594 | 1059 | 0,0066,* | 26115 | 2004 | 28142 | 1928 | 0,0001 | 27594 | 1059 | 28142 | 1928 | 0,2221*,** |
| Er_1 | 3,8 | 0,08 | 3,74 | 0,07 | 0,6323 | 3,8 | 0,08 | 3,65 | 0,14 | 0,0028 | 3,74 | 0,07 | 3,65 | 0,14 | 0,0047 |
| Ef_1 | 3,8 | 0,06 | 3,75 | 0,06 | 0,1944 | 3,8 | 0,06 | 3,58 | 0,16 | 0,0000 | 3,75 | 0,06 | 3,58 | 0,16 | 0,0000 |
| El_1 | 3,7 | 0,07 | 3,68 | 0,06 | 0,1714 | 3,7 | 0,07 | 3,62 | 0,15 | 0,0218 | 3,68 | 0,06 | 3,62 | 0,15 | 0,1121*,** |
| E_1 | 3,7 | 0,06 | 3,73 | 0,06 | 0,2638 | 3,7 | 0,06 | 3,62 | 0,13 | 0,0001 | 3,73 | 0,06 | 3,62 | 0,13 | 0,0005 |
| Kr_1 | 16,5 | 1,71 | 15,78 | 1,60 | 0,1822 | 16,5 | 1,71 | 12,67 | 2,29 | 0,0000 | 15,78 | 1,60 | 12,67 | 2,29 | 0,0000 |
| Kf_1 | 19,1 | 2,27 | 18,42 | 2,11 | 0,3683 | 19,1 | 2,27 | 15,64 | 3,01 | 0,0000 | 18,42 | 2,11 | 15,64 | 3,01 | 0,0002 |
| Kl_1 | 16,8 | 1,89 | 15,72 | 1,58 | 0,0652** | 16,8 | 1,89 | 12,87 | 2,17 | 0,0000 | 15,72 | 1,58 | 12,87 | 2,17 | 0,0000 |
| K_1 | 17,5 | 1,89 | 16,94 | 1,67 | 0,3751 | 17,5 | 1,89 | 13,72 | 2,41 | 0,0000 | 16,94 | 1,67 | 13,72 | 2,41 | 0,0000 |
| Sim_1 | 0,9 | 0,02 | 0,91 | 0,02 | 0,9429 | 0,9 | 0,02 | 0,93 | 0,04 | 0,0899*,** | 0,909 | 0,02 | 0,925 | 0,04 | 0,0831 |
| Sr_2 | 31044 | 2118 | 31702 | 870 | 0,2098 | 31044 | 2118 | 30189 | 1177 | 0,0174 | 31702 | 870 | 30189 | 1177 | 0,0000 |
| Sf_2 | 30071 | 1835 | 31148 | 1392 | 0,0477 | 30071 | 1835 | 30244 | 1169 | 0,6077 | 31148 | 1392 | 30244 | 1169 | 0,0031 |
| Sl_2 | 30228 | 1787 | 30614 | 949 | 0,4046 | 30228 | 1787 | 29768 | 1092 | 0,1490*,** | 30614 | 949 | 29768 | 1092 | 0,0018 |
| S_2 | 30448 | 1900 | 31155 | 1029 | 0,1567 | 30448 | 1900 | 30067 | 1076 | 0,2380** | 31155 | 1029 | 30067 | 1076 | 0,0001 |
| Er_2 | 3,6 | 0,07 | 3,60 | 0,07 | 0,5653 | 3,6 | 0,07 | 3,55 | 0,14 | 0,0723,** | 3,60 | 0,07 | 3,55 | 0,14 | 0,1392 |
| Ef_2 | 3,6 | 0,04 | 3,62 | 0,05 | 0,8242 | 3,6 | 0,04 | 3,52 | 0,12 | 0,0012 | 3,62 | 0,05 | 3,52 | 0,12 | 0,0005 |
| El_2 | 3,5 | 0,05 | 3,54 | 0,06 | 0,3293 | 3,5 | 0,05 | 3,55 | 0,14 | 0,3479,** | 3,54 | 0,06 | 3,55 | 0,14 | 0,6817 |
| E_2 | 3,6 | 0,04 | 3,59 | 0,05 | 0,8592 | 3,6 | 0,04 | 3,54 | 0,11 | 0,1128*,** | 3,59 | 0,05 | 3,54 | 0,11 | 0,0792*,** |
| Kr_2 | 12,5 | 0,76 | 12,25 | 0,30 | 0,2181 | 12,5 | 0,76 | 11,47 | 0,64 | 0,0000 | 12,25 | 0,30 | 11,47 | 0,64 | 0,0000 |
| Kf_2 | 14,5 | 0,83 | 14,45 | 0,56 | 0,7435 | 14,5 | 0,83 | 13,28 | 0,73 | 0,0000 | 14,45 | 0,56 | 13,28 | 0,73 | 0,0000 |
| Kl_2 | 12,1 | 0,57 | 12,12 | 0,49 | 0,9990 | 12,1 | 0,57 | 11,32 | 0,62 | 0,0000 | 12,12 | 0,49 | 11,32 | 0,62 | 0,0000 |
| K_2 | 13,0 | 0,71 | 12,94 | 0,43 | 0,5904 | 13,0 | 0,71 | 12,02 | 0,59 | 0,0000 | 12,94 | 0,43 | 12,02 | 0,59 | 0,0000 |
| Sim_2 | 0,9 | 0,01 | 0,94 | 0,01 | 0,1532 | 0,9 | 0,01 | 0,937 | 0,01 | 0,0027 | 0,937 | 0,01 | 0,941 | 0,01 | 0,0516*,** |
| Uncor | 162,84 | 3,79 | 172,87 | 10,90 | 0,0007 | 162,84 | 3,79 | 176,70 | 17,31 | 0,0010 | 172,87 | 10,90 | 176,70 | 17,31 | 0,3462 |
| Pressure | 1004,86 | 3,37 | 1000,76 | 8,55 | 0,0648 | 1004,86 | 3,37 | 988,11 | 12,57 | 0,00 | 1000,76 | 8,55 | 988,11 | 12,57 | 0,0000 |
| Cor | 168,59 | 1,20 | 173,46 | 0,68 | 0,0000 | 168,59 | 1,20 | 161,43 | 2,23 | 0,0000 | 173,46 | 0,68 | 161,43 | 2,23 | 0,0000 |
| FM Avg | 5,3 | 1,94 | 4,82 | 1,50 | 0,3650 | 5,3 | 1,94 | 5,96 | 2,46 | 0,3100 | 4,82 | 1,50 | 5,96 | 2,46 | 0,0491 |
| MFV|<B>| | 3,4 | 1,24 | 2,81 | 1,40 | 0,1644 | 3,4 | 1,24 | 3,88 | 1,66 | 0,2653 | 2,81 | 1,40 | 3,88 | 1,66 | 0,0083* |
| PrT | 106454 | 60025 | 57283 | 34338 | 0,0034 | 106454 | 60025 | 89955 | 59599 | 0,2862 | 57283 | 34338 | 89955 | 59599 | 0,0200 |
| PrD | 5,3 | 3,05 | 8,17 | 3,17 | 0,0084 | 5,3 | 3,05 | 6,30 | 3,95 | 0,3334 | 8,17 | 3,17 | 6,30 | 3,95 | 0,0516*,** |
| Bulk speed | 460,3 | 99,45 | 382,10 | 52,45 | 0,0040 | 460,3 | 99,45 | 411,04 | 77,45 | 0,0208* | 382,10 | 52,45 | 411,04 | 77,45 | 0,1147 |
| FP | 1,9 | 1,16 | 2,08 | 0,73 | 0,6526 | 1,9 | 1,16 | 1,96 | 1,24 | 0,9469 | 2,08 | 0,73 | 1,96 | 1,24 | 0,6782 |
| Kp*10 | 16,0 | 8,68 | 14,10 | 6,77 | 0,4543 | 16,0 | 8,68 | 17,66 | 9,27 | 0,4848 | 14,10 | 6,77 | 17,66 | 9,27 | 0,1075 |
| R | 11,8 | 4,46 | 4,20 | 5,89 | 0,0001 | 11,8 | 4,46 | 118,11 | 52,77 | 1,1883*,** | 4,20 | 5,89 | 118,11 | 52,77 | 0,0000 |
| DST Index | -3,4 | 9,26 | -1,35 | 9,43 | 0,4951 | -3,4 | 9,26 | -12,58 | 14,30 | 0,0107 | -1,35 | 9,43 | -12,58 | 14,30 | 0,0011 |
| PrF>10MeV | 0,2 | 0,09 | 0,27 | 0,01 | 0,0490 | ||||||||||
| PrF>30MeV | 0,1 | 0,01 | 0,17 | 0,00 | 0,0000 | ||||||||||
| PrF>60MeV | 0,1 | 0,00 | 0,12 | 0,00 | 0,0000 | ||||||||||
| ap-index | 7,2 | 5,15 | 6,00 | 3,20 | 0,4017 | 7,2 | 5,15 | 8,53 | 6,84 | 0,4257 | 6,00 | 3,20 | 8,53 | 6,84 | 0,1101** |
| f10.7_index | 73,7 | 2,20 | 70,87 | 1,14 | 0,0000 | 73,7 | 2,20 | 153,84 | 27,91 | 0.0000 | 70,87 | 1,14 | 153,84 | 27,91 | 0,0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).