Submitted:
06 February 2025
Posted:
07 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Conclusions
References
- E. G. Haug and S. Wojnow. Application of the ideal gas law to the hubble sphere leads to a new hubble sphere radiation pressure law. Cambridge engage, pre-print, 2025. URL https://www.cambridge.org/engage/coe/article-details/679c7c8dfa469535b987c3fb.
- M. Planck. Natuerliche Masseinheiten. Der Königlich Preussischen Akademie Der Wissenschaften: Berlin, Germany, 1899. URL https://www.biodiversitylibrary.org/item/93034#page/7/mode/1up.
- M. Planck. Vorlesungen über die Theorie der Wärmestrahlung. Leipzig: J.A. Barth, p. 163, see also the English translation “The Theory of Radiation" (1959) Dover, 1906.
- E. T. Tatum, U. V. S. Seshavatharam, and S. Lakshminarayana. The basics of flat space cosmology. International Journal of Astronomy and Astrophysics, 5:116, 2015. URL http://dx.doi.org/10.4236/ijaa.2015.52015.
- E. G. Haug. CMB, Hawking, Planck, and Hubble scale relations consistent with recent quantization of general relativity theory. International Journal of Theoretical Physics, Nature-Springer, 63(57), 2024. URL https://doi.org/10.1007/s10773-024-05570-6.
- E. G. Haug and S. Wojnow. How to predict the temperature of the CMB directly using the Hubble parameter and the Planck scale using the Stefan-Boltzman law. Journal of Applied Mathematics and Physics, 12:3552, 2024. URL https://doi.org/10.4236/jamp.2024.1210211.
- E. G. Haug and E. T. Tatum. The hawking Hubble temperature as a minimum temperature, the Planck temperature as a maximum temperature and the CMB temperature as their geometric mean temperature. Journal of Applied Mathematics and Physics, 12:3328, 2024a. URL https://doi.org/10.4236/jamp.2024.1210198.
- I. de Martino and et. al. Measuring the redshift dependence of the cosmic microwave background monopole temperature with Planck data. The Astrophysical Journal, 757:144, 2012. URL https://doi.org/10.1103/PhysRevE.108.044112.
- L. Yunyang. Constraining cosmic microwave background temperature evolution with Sunyaev–Zel’dovich galaxy clusters from the ATACAMA cosmology telescope. The Astrophysical Journal, 922:136, 2021. URL https://doi.org/10.3847/1538-4357/ac26b6.
- D.A. Riechers, A. Weiss, and F. et al. Walter. Microwave background temperature at a redshift of 6.34 from H2O absorption. Nature, 602:58, 2022. URL https://doi.org/10.1038/s41586-021-04294-5.
- E. G. Haug and E. T. Tatum. Solving the Hubble tension using the PantheonPlusSH0ES supernova database. Accepted and forthcoming Journal of Applied Mathematics and Physics, vol 13, no. 2, 2025.
- E. G. Haug and E. T. Tatum. How a new type of Rh=ct cosmological model outperforms the Λ-CDM model in numerous categories and resolves the Hubble tension. preprints.org, 2024b. URL https://doi.org/0.20944/preprints202410.1570.v1.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
