Submitted:
23 January 2025
Posted:
24 January 2025
You are already at the latest version
Abstract
Introduction: Numerous studies on the ontogenetic development of human language have highlighted the importance of multimodal interactions in learning and communication. This study approaches the topic from a novel perspective, grounded in a fundamental theoretical premise: the multimodality of languages is essential for learning and semiosis, emerging in cognition through proprioceptive awareness. Methodology: The semiotic and communicative activity of different languages is analyzed across two dimensions: continuity and discreteness. These dimensions are shaped by the specialized processes of each cerebral hemisphere and their integration. This study explores these dynamics through an extensive interdisciplinary review of literature from cognitive sciences, semiotics, developmental psychology, and linguistics. Multimodal interactions between mother and infant are analyzed as primary examples, where continuous flows, such as prosody and facial expressions, integrate with discrete elements, such as first words and tactile or visual stimuli. Results: The integrated processing emerging from the right hemisphere (semantic continuity) and the left hemisphere (syntactic discreteness) transcends the mere sum of their specialized information. Instead, this integration operates at a metalevel enabled by multimodal metaphors. This creative process is facilitated by the proprioceptive-kinesthetic system, which also involves the cerebellum and limbic areas. This system, aware of the body’s action space and its parts, organizes external stimuli (perceptual, exteroceptive) and internal stimuli (emotional, interoceptive) into configurations built upon natural axial coordinates. These coordinates are rooted in brain-body lateralization and the vertical axis associated with upright posture and balance. Moment by moment, in readiness for action, the sensory, emotional, and other properties of elements within proprioceptive awareness form “configurations of meaning” that simultaneously embody semantic and syntactic programming features. Conclusion: The findings of this study aim to deepen our understanding of multimodal communication and offer insights for further research into language and communication disorders in children. Proprioception is proposed as fundamental to a comprehensive understanding of semiotic and cognitive systems. The multimodal integration paradigm of continuity-discreteness aspires to transcend the traditional conception of modal languages as autonomous in their expressive and functional domains.
Keywords:
1. Introduction
2. Discussion
2.1. Proprioception as Mediation Between Continuity and Discreteness in Semiosis
2.2. Multimodality and Conscious Proprioception
2.2.1. Multimodality
2.2.2. Proprioception as the Basis of Multimodal Configurations of Meaning
2.3. Continuity and Discreteness in the Language of the Maternal Face
2.3.1. The Primordial Configuration of Meaning in Emotional Dialogue: The Maternal Face
2.3.2. Proprioceptive Awareness Enables the Actor to Pretend
2.3.3. The Metaphorization of Emotions
2.4. The Pragmatics of the Communicative Act
2.5. Asymmetry and Dialogue Between Hemispheres
2.6. Multimodal Semiotics
3. Conclusions
References
- Afonso, D. , Santana, C., & Rodriguez, M. Neonatal lateralization of behavior and brain dopaminergic asymmetry. Brain Research Bulletin 1993, 32, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Banaszkiewicz, A. , Matuszewski, J., Bola, Ł., Szczepanik, M., Kossowski, B., Rutkowski, P., Szwed, M., Emmorey, K., Jednoróg, K., & Marchewka, A. Multimodal imaging of brain reorganization in hearing late learners of sign language. Human Brain Mapping 2020, 42, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, M. , Argall, B., Bodurka, J., Duyn, J., & Martin, A. Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nature Neuroscience 2004, 7, 1190–1192. [Google Scholar] [CrossRef]
- Behrendt, H. , Konrad, K., Perdue, K., & Firk, C. Infant brain responses to live face-to-face interaction with their mothers: Combining functional near-infrared spectroscopy (fNIRS) with a modified still-face paradigm. . Infant behavior & development 2020, 58, 101410. [Google Scholar] [CrossRef]
- Bernard-Espina, J. , Beraneck, M., Maier, M., & Tagliabue, M. Multisensory Integration in Stroke Patients: A Theoretical Approach to Reinterpret Upper-Limb Proprioceptive Deficits and Visual Compensation. Frontiers in Neuroscience. [CrossRef]
- Boisgontier, M. , & Swinnen, S. Proprioception in the cerebellum. Proprioception in the cerebellum. Frontiers in Human Neuroscience 2014, 8. [Google Scholar] [CrossRef]
- Brass, M. , & Rüschemeyer, S. Mirrors in science: How mirror neurons changed cognitive neuroscience Giacomo Rizzolatti Corrado Sinig. Cortex 2010, 46, 139–143. [Google Scholar] [CrossRef]
- Buiatti, M. , Giorgio, E., Piazza, M., Polloni, C., Menna, G., Taddei, F., Baldo, E., & Vallortigara, G. Cortical route for facelike pattern processing in human newborns. Proceedings of the National Academy of Sciences 2019, 116, 4625–4630. [Google Scholar] [CrossRef]
- Calvert, G. , Campbell, R., & Brammer, M. Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Current Biology 2000, 10, 649–657. [Google Scholar] [CrossRef]
- Cheng, Y. , Lee, S., Chen, H., Wang, P., & Decety, J. Voice and Emotion Processing in the Human Neonatal Brain. Journal of Cognitive Neuroscience 2012, 24, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Chomsky, N. (1957). Syntactic Structures. L’Aia, Nederland: Mouton & Co.
- Chomsky, N. (1995). The Minimalist Program. Cambridge, MA, USA: MIT Press.
- Clark, K. M. M. Embodied imagination: Lakoff and Johnson’s experientialist view of conceptual understanding. Review of General Psychology 2024, 28, 166–183. [Google Scholar] [CrossRef]
- Cohen, L. , & Cashon, C. Do 7-month-old infants process independent features or facial configurations?. Infant and Child Development 2001, 10, 83–92. [Google Scholar] [CrossRef]
- D’Angiulli, A. , Griffiths, G., & Marmolejo-Ramos, F. The embodied imagination in perceptual and memory processes: Theoretical evidence and applications. Frontiers in Psychology 2014, 5, 515. [Google Scholar] [CrossRef]
- Davis, E. , Stout, S., Molet, J., Vegetabile, B., Glynn, L., Sandman, C., Heins, K., Stern, H., & Baram, T. Exposure to unpredictable maternal sensory signals influences cognitive development across species. Proceedings of the National Academy of Sciences 2017, 114, 10390–10395. [Google Scholar] [CrossRef]
- Ekman, P. (1992). An Argument for Basic Emotions. Cognition and Emotion, 6(3‐4), 169–200. [CrossRef]
- Erberich, S. , Panigrahy, A., Friedlich, P., Seri, I., Nelson, M., & Gilles, F. Somatosensory lateralization in the newborn brain. NeuroImage 2006, 29, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Eskil, M. , & Benli, K. Facial expression recognition based on anatomy. Comput. Vis. Image Underst. 2014, 119, 1–14. [Google Scholar] [CrossRef]
- Etcoff, N. , & Magee, J. (1992). Categorical perception of facial expressions. Cognition. [CrossRef]
- Filippetti, M. , Orioli, G., Johnson, M., & Farroni, T. Newborn Body Perception: Sensitivity to Spatial Congruency. Infancy 2015, 20, 455–465. [Google Scholar] [CrossRef]
- Fontanille, J. (2004) Soma & Séma: Figures du corps, Maisonneuve & Larose.
- Fuentes, C. , & Bastian, A. Where is your arm? Variations in proprioception across space and tasks. Variations in proprioception across space and tasks.. Journal of neurophysiology 2010, 103 1, 164–171. [Google Scholar] [CrossRef]
- Gallese, V. , & Ferri, F. (2015). Schizophrenia, bodily selves, and embodied simulation. [CrossRef]
- Gallese, V. , & Cuccio, V. The neural exploitation hypothesis and its implications for an embodied approach to language and cognition: Insights from the study of action verbs processing and motor disorders in Parkinson’s disease. Cortex 2018, 100, 122–131. [Google Scholar]
- Gazzaniga, M. S., & LeDoux, J. E. (1978). The Integrated Mind. New York: Plenum Press.
- Field, T. , Woodson, R., Greenberg, R., & Cohen, D. Discrimination and imitation of facial expression by neonates. . Science 1982, 218, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Glasel, H. , Leroy, F., Dubois, J., Hertz-Pannier, L., Mangin, J., & Dehaene-Lambertz, G. A robust cerebral asymmetry in the infant brain: The rightward superior temporal sulcus. NeuroImage 2011, 58, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Gloor, P. , Salanova, V., Olivier, A., & Quesney, L. The human dorsal hippocampal commissure. An anatomically identifiable and functional pathway.. Brain : a journal of neurology, 1249. [Google Scholar] [CrossRef]
- Gotts, S. , Jo, H., Wallace, G., Saad, Z., Cox, R., & Martin, A. Two distinct forms of functional lateralization in the human brain. Proceedings of the National Academy of Sciences 2013, 110, E3435–E3444. [Google Scholar] [CrossRef]
- Greimas, A. J. (1983). Du sens II: Essais sémiotiques. Paris: Editions du Seuil.
- Greimas, A. J. (1984). Sémiotique plastique et sémiotique figurative. In Sémiotique et sciences sociales (pp. 31–50). Paris: Editions du Seuil.
- Halsband, U. , & Lange, R. Motor learning in man: A review of functional and clinical studies. Journal of Physiology-Paris 2006, 99, 414–424. [Google Scholar] [CrossRef]
- Hayashi, T. , Kato, Y., & Nozaki, D. Divisively Normalized Integration of Multisensory Error Information Develops Motor Memories Specific to Vision and Proprioception. The Journal of Neuroscience 2019, 40, 1560–1570. [Google Scholar] [CrossRef]
- Hillier, S. , Immink, M., & Thewlis, D. Assessing Proprioception. Neurorehabilitation and Neural Repair 2015, 29, 933–949. [Google Scholar] [CrossRef]
- Homayounnia Firouzjah, M. , Majidi Yaeichi, N., & Hematinia, R. (2024). The effectiveness of sensory-motor integration exercises on social skills and motor performance in children with autism. Journal of Autism and Developmental Disorders. [CrossRef]
- Kasprian, G., Langs, G., Brugger, P., Bittner, M., Weber, M., Arantes, M., & Prayer, D. The prenatal origin of hemispheric asymmetry: an in utero neuroimaging study.. Cerebral cortex 2011, 21 5, 1076–1083. . [CrossRef]
- Kaltner, S. , & Jansen, P. Does Body Awareness Influence Visual Spatial Intelligence. International Journal of Learning, Teaching and Educational Research 2015, 13.
- Kim, J. , Kim, B., Roy, P., & Jeong, D. Efficient Facial Expression Recognition Algorithm Based on Hierarchical Deep Neural Network Structure. IEEE Access 2019, 7, 41273–41285. [Google Scholar] [CrossRef]
- Kotz, S. A. , & Schwartze, M. Cortical plasticity within the basal ganglia: Timing and sequencing in speech processing. Frontiers in Human Neuroscience 2010, 4, 22. [Google Scholar] [CrossRef]
- Kreifelts, B. , Ethofer, T., Shiozawa, T., Grodd, W., & Wildgruber, D. Cerebral representation of non-verbal emotional perception: fMRI reveals audiovisual integration area between voice- and face-sensitive regions in the superior temporal sulcus. Neuropsychologia 2009, 47, 3059–3066. [Google Scholar] [CrossRef]
- Krumhansl, C. , & Castellano, M. Dynamic processes in music perception. Memory & Cognition 1983, 11, 325–334. [Google Scholar] [CrossRef]
- Kuhl, P. Brain Mechanisms in Early Language Acquisition. Neuron 2010, 67, 713–727. [Google Scholar] [CrossRef]
- Ladda, A. , Wallwork, S., & Lotze, M. Multimodal Sensory-Spatial Integration and Retrieval of Trained Motor Patterns for Body Coordination in Musicians and Dancers. Frontiers in Psychology 2020, 11. [CrossRef]
- Lakoff, G. , & Johnson, M. (1980). Metaphors We Live By. Chicago: University of Chicago Press.
- Lee, J. Integration mechanism and transcendental semiosis. Semiotica 2018, 2018, 57–76. [Google Scholar] [CrossRef]
- Leleu, A. , Rekow, D Poncet, F., Schaal, B., Durand, K., Rossion, B., & Baudouin, J. ( 2019). Maternal odor shapes rapid face categorization in the infant brain.. Developmental science, e12877. [CrossRef]
- Leroy, F. , Cai, Q., Bogart, S., Dubois, J., Coulon, O., Monzalvo, K., Fischer, C., Glasel, H., Haegen, L., Bénézit, A., Lin, C., Kennedy, D., Ihara, A., Hertz-Pannier, L., Moutard, M., Poupon, C., Brysbaert, M., Roberts, N.
- Heard, M. , & Lee, Y. (2020). Shared neural resources of rhythm and syntax: An ALE meta-analysis. Neuropsychologia. [CrossRef]
- Gordon, R. L. , Jacobs, M. S., Schuele, C. M., & McAuley, J. D. Perspectives on the rhythm–grammar link and its implications for typical and atypical language development. Annals of the New York Academy of Sciences 2015, 1337, 16–25. [Google Scholar] [CrossRef]
- Hopkins, W. , Mangin, J., & Dehaene-Lambertz, G. New human-specific brain landmark: The depth asymmetry of superior temporal sulcus. Proceedings of the National Academy of Sciences 2015, 112, 1208–1213. [Google Scholar] [CrossRef]
- Lindell, A. Lateral thinkers are not so laterally minded: Hemispheric asymmetry, interaction, and creativity. Laterality 2011, 16, 479–498. [Google Scholar] [CrossRef]
- Liszkowski, U. (2021). Ontogenetic origins of infant pointing. The Oxford Handbook of Human Symbolic Evolution. [CrossRef]
- Louwerse, M. , & Jeuniaux, P. The linguistic and embodied nature of conceptual processing. Cognition 2010, 114, 96–104. [Google Scholar] [CrossRef]
- Marko, M. , Crocetti, D., Hulst, T., Donchin, O., Shadmehr, R., & Mostofsky, S. Behavioural and neural basis of anomalous motor learning in children with autism. . Brain : a journal of neurology, 3. [CrossRef]
- Max, L. , & Yudman, E. B. Neural substrates of stuttering. Brain 2003, 126, 1927–1937. [Google Scholar] [CrossRef]
- Lars Marstaller, Hana Burianová, (2014) The multisensory perception of co-speech gestures—A review and meta-analysis of neuroimaging studies, Journal of Neurolinguistics, 30, 69-77. [CrossRef]
- McGettigan, C. , Evans, S., Rosen, S., Agnew, Z., Shah, P., & Scott, S. An Application of Univariate and Multivariate Approaches in fMRI to Quantifying the Hemispheric Lateralization of Acoustic and Linguistic Processes. Journal of Cognitive Neuroscience 2012, 24, 636–652. [Google Scholar] [CrossRef]
- McGowan, T. , & Delafield-Butt, J. Narrative as co-regulation: A review of embodied narrative in infant development. Infant behavior & development 2022, 68, 101747. [Google Scholar] [CrossRef]
- Meltzoff, A. , & Moore, K. Imitation in Newborn Infants: Exploring the Range of Gestures Imitated and the Underlying Mechanisms. . Developmental psychology 1989, 25, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Meltzoff, A. , Murray, L., Simpson, E., Heimann, M., Nagy, E., Nadel, J., Pedersen, E., Brooks, R., Messinger, D., Pascalis, L., Subiaul, F., Paukner, A., & Ferrari, P. Re-examination of Oostenbroek et al. (2016): evidence for neonatal imitation of tongue protrusion.. Developmental science 2018, 21, e12609. [Google Scholar] [CrossRef] [PubMed]
- Meteyard, L. , Cuadrado, S., Bahrami, B., & Vigliocco, G. Coming of age: A review of embodiment and the neuroscience of semantics. Cortex 2012, 48, 788–804. [Google Scholar] [CrossRef] [PubMed]
- Muratori, F. , Apicella, F., Muratori, P., & Maestro, S. Intersubjective Disruptions and Caregiver-Infant Interaction in Early Autistic Disorder. . Research in Autism Spectrum Disorders 2011, 5, 408–417. [Google Scholar] [CrossRef]
- Panksepp, J. (1998). Affective Neuroscience: The Foundations of Human and Animal Emotions. Oxford University Press.
- Panouillères, M. , Neggers, S., Gutteling, T., Salemme, R., Stigchel, S., van der Geest, J. N., Frens, M., & Pélisson, D. Transcranial magnetic stimulation and motor plasticity in human lateral cerebellum: Dual effect on saccadic adaptation. Human Brain Mapping. [CrossRef]
- Park, I. , Lee, K., Han, J., Lee, N., Lee, W., Park, K., & Rhyu, I. Experience-Dependent Plasticity of Cerebellar Vermis in Basketball Players. The Cerebellum 2009, 8, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Peterburs, J. , & Desmond, J. The role of the human cerebellum in performance monitoring. Current Opinion in Neurobiology 2016, 40, 38–44. [Google Scholar] [CrossRef]
- Petitto, L. A. , & Marentette, P. F. Babbling in the manual mode: evidence for the ontogeny of language. Science (New York, N.Y.) 1991, 251, 1493–1496. [Google Scholar] [CrossRef]
- Prochazka, A. (2021). Proprioception: clinical relevance and neurophysiology. Current Opinion in Physiology. [CrossRef]
- Prunty, J. , Keemink, J., & Kelly, D. (2021). Infants show pupil dilatory responses to happy and angry facial expressions.. Developmental science. [CrossRef]
- Preuss, N. , Harris, L., & Mast, F. .. Allocentric visual cues influence mental transformation of bodies.. Journal of vision, 13 12, 14. [CrossRef] [PubMed]
- Rekow, D. , Baudouin, J., Poncet, F., Damon, F., Durand, K., Schaal, B., Rossion, B., & Leleu, A. Odor-driven face-like categorization in the human infant brain. Proceedings of the National Academy of Sciences 2021, 118. [Google Scholar] [CrossRef]
- Ronga, I., Galigani, M., Bruno, V., Noel, J., Gazzin, A., Perathoner, C., Serino, A., & Garbarini, F. Spatial tuning of electrophysiological responses to multisensory stimuli reveals a primitive coding of the body boundaries in newborns. Proceedings of the National Academy of Sciences of the United States of America 2021, 118. [CrossRef]
- Rosenzweig, I. , Beniczky, S. , Brunnhuber, F., Alarcón, G., & Valentín, A. PA.01 The dorsal hippocampal commissure: when the functionality matters. Journal of Neurology, Neurosurgery & Psychiatry 2011, 82, e2–e2. [Google Scholar] [CrossRef]
- Sadoski, M. Reading Comprehension is Embodied: Theoretical and Practical Considerations. Educational Psychology Review 2018, 30, 331–349. [Google Scholar] [CrossRef]
- Schlerf, J. , Galea, J., Spampinato, D., & Celnik, P. Laterality Differences in Cerebellar-Motor Cortex Connectivity. . Cerebral cortex 2015, 25, 1827–1834. [Google Scholar] [CrossRef]
- Schmidt, S. , Hass, J., Kirsch, P., & Mier, D. (2021). The human mirror neuron system-A common neural basis for social cognition?. Psychophysiology, e13781. [CrossRef]
- Shultz, S. , Klin, A., & Jones, W. Neonatal Transitions in Social Behavior and Their Implications for Autism. Trends in Cognitive Sciences 2018, 22, 452–469. [Google Scholar] [CrossRef]
- Siffredi, V. , Wood, A., Leventer, R., Vaessen, M., McIlroy, A., Anderson, V., Vuilleumier, P., & Spencer-Smith, M. Anterior and posterior commissures in agenesis of the corpus callosum: Alternative pathways for attention processes? Cortex 2019, 121, 454–467. [Google Scholar] [CrossRef]
- Siffredi, V. , Preti, M., Obertino, S., Leventer, R., Wood, A., McIlroy, A., Anderson, V., Spencer-Smith, M., & Ville, D. Revisiting brain rewiring and plasticity in children born without corpus callosum. Revisiting brain rewiring and plasticity in children born without corpus callosum. Developmental Science 2021, 24. [Google Scholar] [CrossRef]
- Sinha, C. , & López, K. Language, culture, and the embodiment of spatial cognition. Cognitive Linguistics 2001, 11, 17–41. [Google Scholar] [CrossRef]
- Stein, A. , Arteche, A., Lehtonen, A., Craske, M., Harvey, A., Counsell, N., & Murray, L. Interpretation of infant facial expression in the context of maternal postnatal depression. Infant Behavior & Development 2010, 33, 273–278. [Google Scholar] [CrossRef]
- Stein, B. , Yu, L., Xu, J., & Rowland, B. Plasticity in the acquisition of multisensory integration capabilities in superior colliculus. Seeing and Perceiving 2012, 25, 133–133. [Google Scholar] [CrossRef]
- Stern, D. N. (1985). The Interpersonal World of the Infant: A View from Psychoanalysis and Developmental Psychology. Basic Books.
- Stephan, K. , Marshall, J., Penny, W., Friston, K., & Fink, G. Interhemispheric Integration of Visual Processing during Task-Driven Lateralization. The Journal of Neuroscience 2007, 27, 3512–3522. [Google Scholar] [CrossRef]
- Stevenson, R. , & James, T. Audiovisual integration in human superior temporal sulcus: Inverse effectiveness and the neural processing of speech and object recognition. NeuroImage 2009, 44, 1210–1223. [Google Scholar] [CrossRef]
- Thach, W. , Goodkin, H., & Keating, J. The cerebellum and the adaptive coordination of movement. . Annual review of neuroscience 1992, 15, 403–442. [Google Scholar] [CrossRef] [PubMed]
- Tilsen, S. Multitimescale dynamical interactions between speech rhythm and gesture. Cognitive Science 2009, 33, 839–879. [Google Scholar] [CrossRef]
- Timmann, D. , Drepper, J., Frings, M., Maschke, M., Richter, S., Gerwig, M., & Kolb, F. The human cerebellum contributes to motor, emotional and cognitive associative learning. A review. Cortex 2010, 46, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Trevarthen, C. , & Aitken, K. Infant intersubjectivity: research, theory, and clinical applications.. Journal of child psychology and psychiatry, and allied disciplines 2001, 42, 3–48. [Google Scholar] [CrossRef]
- Tononi, G. , Boly, M., Massimini, M., & Koch, C. Integrated information theory: From consciousness to its physical substrate. Nature Reviews Neuroscience 2016, 17, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Moll, F. , Monteiro, M., Andrade, J., Bramati, I., Vianna-Barbosa, R., Marins, T., Rodrigues, È., Dantas, N., Behrens, T., Oliveira-Souza, R., Moll, J., & Lent, R. Structural and functional brain rewiring clarifies preserved interhemispheric transfer in humans born without the corpus callosum. Proceedings of the National Academy of Sciences 2014, 111, 7843–7848. [Google Scholar] [CrossRef]
- Turkewitz, G. The Origins of Differential Hemispheric Strategies for Information Processing in the Relationships Between Voice and Face Perception. 1993, 165-170. [CrossRef]
- Tuthill, J. , & Azim, E. Proprioception. Current Biology 2018, 28, R194–R203. [Google Scholar] [CrossRef] [PubMed]
- Tzourio-Mazoyer, N. (2016). Intra- and Inter-hemispheric Connectivity Supporting Hemispheric Specialization. In: Kennedy, H., Van Essen, D., Christen, Y. (eds) Micro-, Meso- and Macro-Connectomics of the Brain. Research and Perspectives in Neurosciences. Springer, Cham. [CrossRef]
- Van der Haegen, Lise, and Qing Cai, ’Lateralization of Language’, in Greig I. de Zubicaray, and Niels O. Schiller (eds), The Oxford Handbook of Neurolinguistics, Oxford Handbooks (2019; online edn, Oxford Academic, 14 Mar. 2019). [CrossRef]
- Violi, P. (2001). Meaning and Experience. Translated by Jeremy Carden. Bloomington: Indiana University Press.
- Wang, L. , Huang, G., Zhang, L., Yang, J., Ren, C., Liang, C., Shen, Y., & Su, B. Effects of the Intermittent Theta Burst Stimulation of the Cerebellar Vermis on Balance Recovery After Stroke: A Study Protocol for a Randomized Controlled Trial. Frontiers in Aging Neuroscience. [CrossRef]
- Weeks, H. , Therrien, A., & Bastian, A. The cerebellum contributes to proprioception during motion. . Journal of neurophysiology 2017, 118, 693–702. [Google Scholar] [CrossRef]
- Weinberg, M. , & Tronick, E. Beyond the face: an empirical study of infant affective configurations of facial, vocal, gestural, and regulatory behaviors.. Child development 1994, 65, 1503–1515. [Google Scholar] [CrossRef]
- Welsh, T. Do Neonates Display Innate Self-Awareness? Why Neonatal Imitation Fails to Provide Sufficient Grounds for Innate Self- and Other-Awareness. Philosophical Psychology 2006, 19, 221–238. [Google Scholar] [CrossRef]
- Witteman, J. , Van IJzendoorn, M., Velde, D., Heuven, V., & Schiller, N. The nature of hemispheric specialization for linguistic and emotional prosodic perception: A meta-analysis of the lesion literature. Neuropsychologia 2011, 49, 3722–3738. [Google Scholar] [CrossRef]
- Zhang, D. , Zhou, Y., Hou, X., Cui, Y., & Zhou, C. Discrimination of emotional prosodies in human neonates: A pilot fNIRS study. Neuroscience Letters 2017, 658, 62–66. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
