Submitted:
23 January 2025
Posted:
23 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Structure and Properties of Fullerene
2. Synthesis of Fullerene
2.1. Laser Vaporization Method
2.2. Resistive and Inductive Heating
2.3. Arc Discharge
2.4. Pyrolysis
2.5. Combustion/ Flame Synthesis
3. Conclusion
References
- Kroto, H. (1992) Introduction. Carbon, 30 (8), 1139–1141.
- Tisza, L. (1932) Zur Deutung der Spektren mehratomiger Moleküle. Z. Für Phys., 82 (1–2), 48–72.
- Schultz, H.P. (1965) Topological Organic Chemistry. Polyhedranes and Prismanes. J. Org. Chem., 30 (5), 1361–1364.
- E, O. (1970) Superaromaticity. Kagaku, 25, 854–863.
- Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F., and Smalley, R.E. (1985) C60: Buckminsterfullerene. Nature, 318 (6042), 162–163. [CrossRef]
- Marks, R.W., and Fuller, R.B. (1973) The Dymaxion World of Buckminster Fuller, Anchor Books.
- Acquah, S.F.A., Penkova, A. V., Markelov, D.A., Semisalova, A.S., Leonhardt, B.E., and Magi, J.M. (2017) Review—The Beautiful Molecule: 30 Years of C 60 and Its Derivatives. ECS J. Solid State Sci. Technol., 6 (6), M3155–M3162. [CrossRef]
- Hedberg, K., Hedberg, L., Bethune, D.S., Brown, C.A., Dorn, H.C., Johnson, R.D., and DE Vries, M. (1991) Bond lengths in free molecules of buckminsterfullerene, C60, from gas-phase electron diffraction. Science, 254 (5030), 410–412. [CrossRef]
- David, W.I.F. (1991) Crystal structure and bonding of ordered C60. Lett. Nat., 353, 147–149. [CrossRef]
- Schwerdtfeger, P., Wirz, L.N., and Avery, J. (2015) The topology of fullerenes. WIREs Comput. Mol. Sci., 5 (1), 96–145. [CrossRef]
- Terrones, M., Terrones, G., and Terrones, H. (2002) Structure, chirality, and formation of giant icosahedral fullerenes and spherical graphitic onions. Struct. Chem., 13 (August), 373–384. [CrossRef]
- Bodner, M., Patera, J., and Szajewska, M. (2013) C 70 , C 80 , C 90 and carbon nanotubes by breaking of the icosahedral symmetry of C 60. Acta Crystallogr. A, A69 (6), 583–591. [CrossRef]
- Du, X., Chen, F., Chen, X., Wu, X., Cai, Y., Liu, X., and Wang, L. (2010) Adsorption geometry of individual fullerene on Si surface at room-temperature. Appl. Phys. Lett., 97 (25), 253106 (1–3). [CrossRef]
- Pawlak, R., Kawai, S., Fremy, S., Glatzel, T., and Meyer, E. (2011) Atomic-scale mechanical properties of orientated C60 molecules revealed by noncontact atomic force microscopy. ACS Nano, 5 (8), 6349–6354. [CrossRef]
- Biskupek, J.
- Cioslowski, J., and Fleischmann, E.D. (1991) Endohedral complexes: Atoms and ions inside the C60cage. J. Chem. Phys., 94 (5), 3730–3734. [CrossRef]
- Weiske, T. (1991) Endohedral Cluster Compounds: Inclusion of Helium within C60 and C70 through Collision Experiments. Angew. Chem. - Int. Ed., 30 (7), 884–886. [CrossRef]
- Shinohara, H. (2000) Endohedral Metallofullerenes. Rep. Prog. Phys., 63, 843–892. [CrossRef]
- Stibor, A., Schefzyk, H., and Fortágh, J. (2010) Sublimation of the endohedral fullerene Er3N@C80. Phys. Chem. Chem. Phys., 12 (40), 13076–13081. [CrossRef]
- Robert F. Curl and Richard E.Smalley (1991) Fullerenes. Sci. Am., 265 (4), 54–63.
- Rioux, F. (1994) Quantum Mechanics, Group Theory, and C60. J. Chem. Educ., 71 (6), 464–465. [CrossRef]
- Hebard, A.F. (1992) Superconductivity in Doped Fullerenes. Phys. Today, 45 (11), 26–32. [CrossRef]
- Haddon, R.C. (1992) Structure, Conductivity, and Superconductivity of Alkali Metal Doped C60. Acc. Chem. Res., 25 (13), 127–133. [CrossRef]
- Saito, S., and Oshiyama, A. (1991) Cohesive Mechanism and Energy-Bands of Solid C60. Phys. Rev. Lett., 66 (20), 2637–2640. [CrossRef]
- Weaver, J.H., Martins, J.L., Komeda, T., Chen, Y., Ohno, T.R., Kroll, G.H., Troullier, N., Haufler, R.E., and Smalley, R.E. (1991) Electronic structure of solid C60 : Experiment and theory. Phys. Rev. Lett., 66 (13), 1741–1744. [CrossRef]
- Golden, M.S., Knupfer, M., Fink, J., Armbruster, J.F., Cummins, T.R., Romberg, H.A., Roth, M., Sing, M., Schmidt, M., and Sohmen, E. (1995) The electronic structure of fullerenes and fullerene compounds from high-energy spectroscopy. J. Phys. Condens. Matter, 7 (43), 8219–8247. [CrossRef]
- Wen, C., Li, J., Kitazawa, K., Aida, T., Honma, I., Komiyama, H., and Yamada, K. (1992) Electrical conductivity of a pure C 60 single crystal. Appl. Phys. Lett., 61 (18), 2162–2163. [CrossRef]
- Gong, J., Ma, G., and Chen, G. (1996) Structural transitions and electrical conductivity of C60 films at high temperature. J. Mater. Res., 11 (08), 2071–2075. [CrossRef]
- Peimo, H. (1993) Electrical conductivity studies of a pure C60 single crystal. J. Phys. Condens. Matter, 5 (18), 7013–7016. [CrossRef]
- Kremer, R.K., Rabenau, T., Maser, W.K., Kaiser, M., Simon, A., Haluška, M., and Kuzmany, H. (1993) High-temperature conductivity study on single-crystal C60. Appl. Phys. Solids Surf., 56 (3), 211–214. [CrossRef]
- Peimo, H., Yabo, X., Xuanjia, Z., and Wenzhou, L. (1994) ANOMALY OF HIGH TEMPERATURE CONDUCTIVITY ON C60 SINGLE CRYSTAL. Solid State Commun., 89 (4), 373–374. [CrossRef]
- Osip’yan, Yu. a., Fortov, V.E., Kagan, K.L., Kveder, V. V., Kulakov, V.I., Kur’yanchik, a. N., Nikolaev, R.K., Postnov, V.I., and Sidorov, N.S. (2002) Conductivity of C60 fullerene crystals under dynamic compression up to 200 kbar. J. Exp. Theor. Phys. Lett., 75 (11), 563–565. [CrossRef]
- Tea, N.H., Yu, R.C., Salamon, M.B., Lorents, D.C., Malhotra, R., and Ruoff, R.S. (1993) Thermal conductivity of C60 and C70 crystals. Appl. Phys. Solids Surf., 56 (3), 219–225. [CrossRef]
- Yu, R.C., Tea, N., Salamon, M.B., Lorents, D., Malhotra, R., and Park, M. (1992) Thermal Conductivity of Single Crystal C6o. Phys. Rev. Lett., 68 (13), 2050–2053. [CrossRef]
- Andersson, O., Soldatov, A., and Sundqvist, B. (1996) Thermal conductivity of at pressures up to 1 GPa and temperatures in the 50-300 K range. Phys. Rev. B - Condens. Matter Mater. Phys., 54 (5), 3093–3100. [CrossRef]
- Hunter, J., Fye, J., and Jarrold, M.F. (1993) Annealing C60+: Synthesis of Fullerenes and Large Carbon Rings. Science, 260, 784–786. [CrossRef]
- Charles.M.Lieber (1994) Preparation of Fullerenes and Fullerene- Based Materials. Appl. Sci., 48 (1986), 109–148. [CrossRef]
- Oyama, T., and Ishii, T. (1997) Synthesis of Fullerenes by Ablation Using Pulsed and cw- Nd : YAG Lasers. Fuller. Sci. Technol., 5, 919–933. [CrossRef]
- Xie, S., Huang, R., Ding, J., Yu, L., Wang, Y., and Zheng, L. (2000) Formation of Buckminsterfullerene and Its Perchlorinated Fragments by Laser Ablation of Perchloroacenaphthylene. J. Phys. Chem. A, 104 (31), 7161–7164. [CrossRef]
- Aratono, Y., Wada, A., Akiyama, K., Kitazawa, S., Hojou, K., and Naramoto, H. (2005) Formation of fullerene(C60) by laser ablation in superfluid helium at 1.5 K. Chem. Phys. Lett., 408 (4–6), 247–251. [CrossRef]
- W. Krätschmer, Lowell D. Lamb, K.F.& D.R.H. (1990) Solid C60: a new form of carbon. Nature, 347, 354–358. [CrossRef]
- Krätschmer, W., Fostiropoulos, K., and Huffman, D.R. (1990) The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chem. Phys. Lett., 170 (2–3), 167–170. [CrossRef]
- Taylor, R. (1990) Isolation, Separation and Characterisation of the Fullerenes C60 and C70: The Third Form of Carbon. J. Chem. Soc. Chem. Commun., 1423–1425. [CrossRef]
- DIEDERICH, F., ETTL, R., RUBIN, Y., WHETTEN, R.L., BECK, R., ALVAREZ, M., ANZ, S., SENSHARMA, D., WUDL, F., KHEMANI, K.C., and KOCH, A. (1991) The Higher Fullerenes: Isolation and Characterization of C76, C84, C90, C94, and C70O, an Oxide of D5h-C70. Science, 252 (5005), 548–551. [CrossRef]
- Funasaka, H., Yamamoto, K., Sakurai, K., Ishiguro, T., Sugiyama, K., Takahashi, T., and Kishimoto, Y. (1993) Preparation of Fullerene Derivatives by Resistive Heating with Graphite Crucible. Fuller. Sci. Technol., 1 (3), 437–448. [CrossRef]
- Ryusei Otsuki, Shoichi Nasu, Ryosuke Fujimori, Kinji Anada, Kentaro Ohhashi, Ryoichi Yamamoto, Kimio Fujii, K.O. (2004) Preparation of Fullerenes by Resistive Heating Vaporization Method: Effect of Carbon Materials. J. Jpn. Soc. Powder Powder Metall., 51 (8), 622–625. [CrossRef]
- Peters, G., and Jansen, M. (1992) A New Fullerene Synthesis. Angew. Chem. Int. Ed. Engl., 31 (2), 223–224. [CrossRef]
- Krätschmer, W. (2011) The story of making fullerenes. Nanoscale, 3 (6), 2485–2489. [CrossRef]
- Alekseyev, N.I., and Dyuzhev, G.A. (2003) Fullerene formation in an arc discharge. Carbon, 41 (7), 1343–1348. [CrossRef]
- Haufler, R.E. (1990) Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J. Phys. Chem., 94 (8), 8634–8636. [CrossRef]
- A. S. Koch, K. C. Khemani, and F.W. (1991) Preparation of fullerenes with a simple benchtop reactor. J. Org. Chem., 56, 4543–4545. [CrossRef]
- Man, N., Nagano, Y., Kiyobayashi, T., and Sakiyama, M. (1995) Combustion energy of fullerene soot. J. Phys. Chem., 99 (8), 2254–2255. [CrossRef]
- Scrivens, W.A. (1992) Synthesis of Gram Quantities of C60 by Plasma Discharge in a Modified Round-Bottomed Flask. Key Parameters for Yield Optimization and Purification. J. Org. Chem., 57, 6932–6936. [CrossRef]
- Pang, L.S.K., Vassallo, A.M., and Wilson, M.A. (1992) Fullerenes from coal: A self-consistent preparation and purification process. Energy Fuels, 6 (2), 176–179. [CrossRef]
- Pang, L.S.K., Vassallo, A.M., and Wilson, M.A. (1991) Fullerenes from coal. Nature, 352 (6335), 480. [CrossRef]
- Yoshie, K., Kasuya, S., Eguchi, K., and Yoshida, T. (1992) Novel method for C 60 synthesis: A thermal plasma at atmospheric pressure. Appl. Phys. Lett., 61 (23), 2782–2783. [CrossRef]
- Sugai, T., Omote, H., and Shinohara, H. (1999) Production of fullerenes by high-temperature pulsed arc discharge. Eur. Phys. J. D, 9 (1), 369–372. [CrossRef]
- Kyesmen, P.I., Onoja, A., and Amah, A.N. (2016) Fullerenes synthesis by combined resistive heating and arc discharge techniques. SpringerPlus, 5 (1), 1323 (1–7). [CrossRef]
- Haufler, R.E., Chai, Y., Chibante, L.P.F., Conceicao, J., Jin, C., Wang, L.-S., Maruyama, S., and Smalley, R.E. (1991) Carbon Arc Generation of C60. Mat Res Soc Symp Proc, 206, 627. [CrossRef]
- H. Terrones, M. Terrones, W.K.H. (1995) Beyond C60: Graphite Structures for the Future. Chem. Soc. Rev., 24, 341–350. [CrossRef]
- Taylor, R., Langley, G.J., Kroto, H.W., and Walton, D.R.M. (1993) Formation of C60 by pyrolysis of naphthalene. Nature, 366 (6457), 728–731. [CrossRef]
- Minakata, T. (1995) Effective Formation of Fullerenes by Pyrolysis of Decacyclene. Polym. Adv. Technol., 6, 586–590. [CrossRef]
- Armand, X., Herlin, N., Voicu, I., and Cauchetier, M. (1997) Fullerene synthesis by laser pyrolysis of hydrocarbons. J. Phys. Chem. Solids, 58 (11), 1853–1859. [CrossRef]
- Koshio, A., Yudasaka, M., Ozawa, M., and Iijima, S. (2002) Fullerene Formation via Pyrolysis of Ragged Single-wall Carbon Nanotubes. Nano Lett., 2 (9), 995–997. [CrossRef]
- Amsharov, K.Y., and Jansen, M. (2007) Formation of fullerenes by pyrolysis of 1,2-binaphthyl and 1,3-oligonaphthylene. Carbon, 45 (1), 337–343. [CrossRef]
- Amsharov, K.Y., and Jansen, M. (2007) Formation of fullerenes by pyrolysis of perchlorofulvalene and its derivatives. Carbon, 45 (1), 117–123. [CrossRef]
- Osterodt, J., Zett, A., and Vögtle, F. (1996) Fullerenes by pyrolysis of hydrocarbons and synthesis of isomeric methanofullerenes. Tetrahedron, 52 (14), 4949–4962. [CrossRef]
- Jenkins, G.M., Holland, L.R., Maleki, H., and Fisher, J. (1998) Continuous production of fullerenes by pyrolysis of acetylene at a glassy carbon surface. Carbon, 36 (12), 1725–1727. [CrossRef]
- Howard, J.B., McKinnon, J.T., Makarovsky, Y., Lafleur, a L., and Johnson, M.E. (1991) Fullerenes C60 and C70 in flames. Nature, 352 (6331), 139–141. [CrossRef]
- Howard, J.B., Mckinnon, J.T., Makarovsky, Y., and Lafleur, A.L. (1992) Production of C60 and C70 Fullerenes in Benrene-Oxygen Flames. J. Phys. Chem., 96, 6657–6662.
- Richter, H., Labrocca, A.J., Grieco, W.J., Taghizadeh, K., Lafleur, A.L., and Howard, J.B. (1997) Generation of Higher Fullerenes in Flames. J. Phys. Chem. B, 101 (9), 1556–1560. [CrossRef]
- Reilly, P.T.A., Gieray, R.A., Whitten, W.B., and Ramsey, J.M. (2000) Fullerene evolution in flame-generated soot. J. Am. Chem. Soc., 122 (47), 11596–11601. [CrossRef]
- Ozawa, M., Deota, P., and Osawa, E. (1999) Production of fullerenes by combustion. Fuller. Sci. Technol., 7 (3), 387–409. [CrossRef]
- Howard, J.B., Lafleur, A.L., Makarovsky, Y., Mitra, S., Pope, C.J., and Yadav, T.K. (1992) Fullerenes synthesis in combustion. Carbon, 30 (8), 1183–1201. [CrossRef]
- Fields, C.L., Pitts, J.R., Hale, M.J., Bingham, C., Lewandowski, A., and King, D.E. (1993) Formation of fullerenes in highly concentrated solar flux. J. Phys. Chem., 97 (34), 8701–8702. [CrossRef]
- Chibante, L.P.F., Thess, A., Alford, J.M., Diener, M.D., and Smalley, R.E. (1993) Solar generation of the fullerenes. J. Phys. Chem., 97 (34), 8696–8700. [CrossRef]
- Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N.A., and Khlobystov, A.N. (2010) Direct transformation of graphene to fullerene. Nat. Chem., 2 (6), 450–453. [CrossRef]
- Mojica, M., Alonso, J.A., and Méndez, F. (2013) Synthesis of fullerenes. J. Phys. Org. Chem., 26 (7), 526–539. [CrossRef]











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
