Submitted:
21 January 2025
Posted:
21 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Basic Mechanisms of Laser-Driven Acceleration of Ions
2.1. Ion Acceleration by the RPA Mechanism
2.2. Ion Acceleration by the TNSA Mechanism
3. Acceleration of Heavy Ions at Moderate and High Laser Intensities
3.1. Backward Acceleration of Heavy Ions
3.2. Forward Acceleration of Heavy Ions
4. Acceleration of Heavy Ions at Ultra-High Laser Intensities
4.1. Acceleration of Super-Heavy Ions by a Multi-PW Femtosecond Laser
4.2. Acceleration of Heavy Ions by a High-Energy Picosecond Laser
5. Challenges Facing Research on Laser-Driven Ion Acceleration
6. Perspectives for the Application of Laser-Driven Heavy Ion Beams
6.1. Nuclear and Particle Physics
6.2. High Energy Density Physics
6.3. Inertial Confinement Fusion
6.4. Materials Science and Technology
7. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Daido, H.; Nishiuchi, M.; Pirozhkov, A. S. Review of laser driven ion sources and their applications. Rep. Prog. Phys. 2012, 75, 056401.
- Macchi, A.; Borghesi, M.; Passoni, M. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 2013, 85, 751.
- Badziak, J. Laser-driven ion acceleration: methods, challenges and prospects. J. Phys. Conf. Series 2018, 959, 012001.
- Badziak, J.; Domanski, J. Towards ultra-intense ultra-short ion beams driven by a multi-PW laser. Laser Part. Beams 2019, 37, 288.
- Linlor, W. I. Ion energies produced by laser giant pulse. Appl. Phys. Lett.1963, 3, 210-212.
- Badziak, J. Laser-driven generation of fast particles. Opto-Electron. Rev. 2007, 15, 1.
- Laska, L.; Jungwirth, K.; Kralikova, B.; Krasa, J.; Pfeifer, M.; Rohlena, K.; Skala, J.; Ullschmied, J.; Badziak, J.; Parys, P.; et al. Generation of multiply charged ions at low and high laser-power densities. Plasma Phys. Control. Fusion 2003, 45, 585.
- Laska, L.; Jungwirth, K.; Krasa, J.; Krousky, E.; Pfeifer, M.; Rohlena, K.; Velyhan, A.; Ullschmied, J.; Gammino, S.; Torrisi, L.; et al. Angular distributions of ions emitted from laser plasma produced at various irradiation angles and laser intensities. Laser Part. Beams 2008, 26, 555–565.
- Danson, C. N.; Haefner, C.; Bromage, J.; Butcher, T.; Chanteloup, J.-C. F.; Chowdhury, E. A.; Galvanauskas, A.; Gizzi, L. A.; Hein, J.; Hillier, D. I.; et al. Petawatt and exawatt class lasers worldwide. High Power Laser Science and Engineering 2019, 7, e54.
- Radier, Ch.; Chalus, O.; Charbonneau, M.; Thambirajah, Sh.; Deschamps, G.; David, S.; Barbe, J.; Etter, E.; Matras, G.; Ricaud S.; et al. 10 PW peak power femtosecond laser pulse at ELI-NP. High Power Laser Science and Engineering 2022, 10, e21.
- Wang, P.; Gong, Z.; Lee, S. G.; Shou, Y.; Geng, Y.; Jeon, C.; Kim, I J.; Lee, H. W.; Yoon, J. W.; Sung, J. H.; et al. Super-Heavy Ions Acceleration Driven by Ultrashort Laser Pulses at Ultrahigh Intensity. Phys. Rev. X 2021, 11, 021049.
- Yoon, J. W.; Kim, Y. G.; Choi, Il W.; Sung, J. H.; Lee, H. W.; Lee, S. Ku; Nam, Ch. H. Realization of laser intensity over 1023 W/cm2. Optica 2021, 8, 630.
- Mourou, G. Nobel Lecture: Extreme light physics and application. Rev. Mod. Phys. 2019, 91, 030501.
- Khazanov, E.; Shaykin, A.; Kostyukov, I.; Ginzburg, V.; Mukhin, I.; Yakovlev, I.; Soloviev, A.; Kuznetsov, I.; Mironov, S.; Korzhimanov, A.; et al. Exawatt Center for Extreme Light Studies (XCELS). High Power Laser Science and Engineering 2023, 11, e78.
- Wang, X.; Liu, X.; Lu, X.; Chen, J.; Long, Y.; Li, W.; Chen, H.; Chen, X.; Bai, P.; Li, Y.; et al. 13.4fs, 0.1 Hz OPCPA Front End for the 100PW-Class Laser Facility. Ultrafast Sci. 2022, 2022, 9894358.
- Karasik, M.; Weaver, J. L.; Aglitskiy, Y.; Watari, T.; Arikawa, Y.; Sakaiya, T.; Oh, J.; Velikovich, A. L.; Zalesak S. T.; Bates, J. W.; et al. Acceleration to high velocities and heating by impact using Nike KrF laser. Phys. Plasmas 2010, 17, 056317.
- Badziak, J.; Borodziuk, S.; Pisarczyk, T.; Chodukowski, T.; Krousky, E.; Masek, K.; Skala, J.; Ullschmied, J.; Rhee, Y.-J. Highly efficient acceleration and collimation of high-density plasma using laser-induced cavity pressure. Appl. Phys. Lett. 2010, 96, 251502.
- Badziak, J.; Jabłoński, S.; Pisarczyk, T.; Rączka, P.; Krousky, E.; Liska, R.; Kucharik, M.; Chodukowski, T.; Kalinowska, Z.; Parys, P.; et al. Highly efficient accelerator of dense matter using laser-induced cavity pressure acceleration. Phys. Plasmas 2012, 19, 053105.
- Shui, M.; Chu, G.; Zhu, B.; He, W.; Xi, T.; Fan, W.; Xin, J.; Gu, Y. Hypervelocity launching of flyers at the SG-III prototype laser facility. J. Appl. Phys. 2016, 119, 035903.
- Atzeni, S.; Meyer-ter-Vehn, J. The Physics of Inertial Fusion; Publisher: Clarendon, Oxford, UK, 2004.
- Wilks, S. C.; Langdon, A. B.; Cowan, T. E.; Roth, M.; Singh, M.; Hatchett, S.; Key, M. H.; Pennington, D.; McKinnon, A.; Snavely, R.A. Energetic proton generation in ultra-intense laser-solid interactions. Phys. Plasmas 2001, 8, 542.
- Mackinnon, A. J.; Borghesi, M.; Hatchett, S.; Key, M. H.; Patel, P. K.; Campbell, H.; Schiavi, A.; Snavely, R.; Wilks, S. C.; Willi, O. Effect of Plasma Scale Length on Multi-MeV Proton Production by Intense Laser Pulse. Phys. Rev. Lett. 2001, 86, 1769.
- Badziak, J.; Woryna, E.; Parys, P.; Platonov, K. Yu.; Jabłoński, S.; Ryć, L.; Vankov, A. B.; Wołowski, J. Fast Proton Generation from Ultrashort Laser Pulse with Double-Layer Foil Targets. Phys. Rev. Lett. 2001, 87, 215001.
- Mackinnon, A. J.; Sentoku, Y.; Patel, P. K.; Price, D. W.; Hatchett, S.; Key, M. H.; Andersen, C.; Snavely, R.; Freeman, R.R. Enhancement of Proton Acceleration by Hot-Electron Recirculation in Thin Foils Irradiated by Ultraintense Laser Pulses. Phys. Rev. Lett. 2002, 88, 215006.
- Borghesi, M.; Mackinnon, A. J.; Campbell, D. H.; Hicks, D. G.; Kar, S.; Patel, P. K.; Price, D.; Romagnani, L.; Schiavi, A.; Willi, O. Multi-MeV Proton Source Investigations in Ultraintense Laser-Foil Interactions. Phys. Rev. Lett. 2004, 92, 055003.
- Cowan, T. E.; Fuchs, J.; Ruhl, H.; Kemp, A.; Audebert, P.; Roth, M.; Stephens, R.; Barton, I.; Blazevic, A.; Brambrink, E.; et al. Ultralow Emittance, Multi-MeV Proton Beams from a Laser Virtual-Cathode Plasma Accelerator. Phys. Rev. Lett. 2004, 92, 204801.
- Allen, M.; Patel, P. K.; Mackinnon, A.; Price, D.; Wilks, S.; Morse, E. Direct Experimental Evidence of Back-Surface Ion Acceleration from Laser-Irradiated Gold Foils. Phys. Rev. Lett. 2004, 93, 265004.
- Esirkepov, T.; Borghesi, M.; Bulanov, S. V.; Mourou, G.; Tajima, T. Highly Efficient Relativistic-Ion Generation in the Laser-Piston Regime. Phys. Rev. Lett. 2004, 92, 175003.
- Macchi, A.; Cattani, F.; Liseykina, T. V.; Cornalti, F. Laser Acceleration of Ion Bunches at the Front Surface of Overdense Plasmas. Phys. Rev. Lett. 2005, 94, 165003.
- Robinson, A. P. L.; Zepf, M.; Kar, S.; Evans, R. G.; Bellei, C. Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 2008, 10, 013021.
- Liseykina, T. V.; Borghesi, M.; Macchi, A.; Tuveri, S. Radiation pressure acceleration by ultraintense laser pulses. Plasma Phys. Control. Fusion 2008, 50, 124033.
- Klimo, O.; Psikal, J.; Limpouch, J.; Tikhonchuk, V. T. Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. ST Accel. Beams 2008, 11, 031301.
- Grech, M.; Skupin, S.; Diaw, A.; Schlegel, T.; Tikhonchuk, V. T. Energy dispersion in radiation pressure accelerated ion beams. New J. Phys. 2011, 13, 123003.
- Badziak, J.; Głowacz, S.; Jabłoński, S.; Parys, P.; Wołowski, J.; Hora, H. Generation of picosecond high-density ion fluxes by skin-layer laser-plasma interaction. Laser Part. Beams 2005, 23, 143.
- Głowacz, S.; Hora, H.; Badziak, J.; Jabłoński, S.; Cang, Y.; Osman, F. Analytical description of rippling effect and ion acceleration in plasma produced by a short laser pulse. Laser. Part. Beams 2006, 24, 15-25.
- Badziak, J.; Jabłoński, S.; Parys, P.; Rosiński, M.; Wołowski, J.; Szydłowski, A.; Antici, P.; Fuchs, J.; Mancic, A. Ultraintense proton beams from laser-induced skin-layer ponderomotive acceleration. J. Appl. Phys. 2008, 104, 063310.
- Silva, L. O.; Marti, M.; Davies, J. R.; Fonseca, R. A. Proton shock acceleration in laser-plasma interactions. Phys. Rev. Lett. 2004, 92, 015002.
- Esirkepov, T.; Bingham, R.; Bulanov, S.; Honda, T.; Nishihara, K.; Pegoraro, F. Coulomb explosion of a cluster irradiated by a high intensity laser pulse. Laser Part. Beams 2000, 18, 503.
- Bychenkov, V. Yu.; Kovaliev, V. F. Coulomb explosion in a cluster plasma. Plasma Phys. Rep. 2005, 31, 178-183.
- Yin, L.; Albright, B. J.; Hegelich, B. M.; Fernandez, J. C. GeV laser ion acceleration from ultrathin targets: the laser breakout afterburner. Laser Part. Beams 2006, 24, 291-298.
- Yin, L.; Albright, B. J.; Hegelich, B. M.; Browers, K. J.; Flippo, K. A.; Kwan, T. J. T.; Fernandez, J. C. Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets. Phys. Plasmas 2007, 14, 056706.
- Nakamura, T.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M. High-Energy Ions from Near-Critical Density Plasmas via Magnetic Vortex Acceleration. Phys. Rev. Lett. 2010, 105, 135002.
- Park, J.; Bulanov, S. S.; Bin, J.; Ji, Q.; Steinke, S.; Vay, J.-L.; Geddes, C. G. R.; Schroeder, C. B.; Leemans, W. P.; Schenkel, T.; et al. Ion acceleration in laser generated megatesla magnetic vortex. Phys. Plasmas 2019, 26, 103108.
- Jung, D.; Yin, L.; Albright, B. J.; Gautier, D. C.; Hörlein, R.; Kiefer, D.; Henig, A.; Johnson, R.; Letzring, S.; Palaniyappan, S.; et al. Monoenergetic Ion Beam Generation by Driving Ion Solitary Waves with Circularly Polarized Laser Light. Phys. Rev. Lett. 2011, 107, 115002.
- Yin, L.; Albright, B. J.; Jung, D.; Bowers, K. J.; Shah, R. C.; Palaniyappan, S.; Fernández, J. C.; Hegelich, B. M. Mono-energetic ion beam acceleration in solitary waves during relativistic transparency using high-contrast circularly polarized short-pulse laser and nanoscale targets. Phys. Plasmas 2011, 18, 053103.
- Domański, J.; Badziak, J. Towards single-charge heavy ion beams driven by an ultra-intense laser. Plasma Phys. Control. Fusion 2022, 64, 085002.
- Domański, J.; Badziak, J. Super-heavy ion beams generated by a multi-PW femtosecond laser. Phys. Plasmas 2024, 31, 023110.
- Badziak, J.; Domański, J. In search of ways to improve the properties of a laser-accelerated heavy ion beam relevant for fusion fast ignition. Phys. Plasmas 2023, 30, 053107.
- Hora, H. Physics of Laser Driven Plasmas; Publisher: Wiley, New York, USA, 1981.
- Eliezer, S.; Nissim, N.; Martinez Val, J. M.; Mima, K.; Hora, H. Double layer acceleration by laser radiation. Laser Part. Beams 2014, 32, 211.
- Roth, M.; Blazevic, A.; Geissel, M.; Schlegel, T.; Cowan, T. E.; Allen, M.; Gauthier, J.-C.; Audebert, P.; Fuchs, J.; Meyer-ter-Vehn, J.; et al. Energetic ions generated by laser pulses: A detailed study on target properties. Phys. Rev. ST Accel. Beams 2002, 5, 0613001.
- Snavely, R. A.; Key, M. H.; Hatchett, S. P.; Cowan, T. E.; Roth, M.; Philips, T. W.; Stoyer, M. A.; Henry, E. A.; Sangster, T. C.; Singh, M. S.; et al. Intense High-Energy Proton Beams from Petawatt-Laser Irradiation of Solids. Phys. Rev. Lett. 2000, 85, 2945.
- Brenner, C. M.; Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Gray, R. J.; Rosiński, M.; Deppert, O.; Badziak, J.; Batani, D.; Davies, J. R.; et. al. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets. Appl. Phys. Lett. 2014, 104, 081123.
- Petrov, M.; Willingale, L.; Davis, J.; Petrova, Tz.; Maksimchuk, A.; Krushelnick, K. The impact of contaminants on laser-driven light ion acceleration. Phys. Plasmas 2010, 17, 103111.
- Petrov, M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N. Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes. Phys. Plasmas 2016, 23, 063108.
- Domański, J.; Badziak, J. Properties of heavy ion beams produced by a PW sub-picosecond laser. J. Instrum. 2020, 15, C05037.
- Laska, L.; Badziak, J.; Gammino, S.; Jungwirth, K.; Kasperczuk, A.; Krasa, J.; Krousky, E.; Kubes, P.; Parys, P.; Pfeifer, M.; et al. The influence of an intense laser beam interaction with preformed plasma on the characteristics of emitted ion streams. Laser Part. Beams 2007, 25, 549 .
- Torrisi, L.; Cutroneo, M.; Andò L.; Ullschmied, J. Thomson parabola spectrometry for gold laser-generated plasmas. Phys. Plasmas 2013, 20, 023106.
- Badziak, J.; Kasperczuk, A.; Parys, P.; Pisarczyk, T.; Rosiński, M.; Ryć, L.; Wołowski, J.; Jabłoński, S.; Suchańska, R.; Krousky, E.; et al. Production of high-current heavy ion jets at the short-wavelength subnanosecond laser-solid interaction. Appl. Phys. Lett. 2007, 91, 081502.
- Prencipe, I.; Fuchs, J.; Pascarelli, S.; Schumacher, D. W.; Stephens, R. B.; Alexander, N. B.; Briggs, R.; Büscher, M.; Cernaianu, M. O.; Choukourov, A.; et al. Targets for high repetition rate laser facilities: needs, challenges and perspectives. High Power Laser Science and Engineering 2017, 5, e17.
- Badziak, J.; Makowski, J.; Parys, P.; Ryć, L.; Wołowski J.; Woryna, E.; Vankov, A. B. Intensity-dependent characteristics of a picosecond laser-produced Cu plasma. J. Phys. D: Appl. Phys. 2001, 34, 1885.
- Badziak, J.; Makowski, J.; Parys, P.; Wołowski, J.; Woryna, E.; Vankov, A. B. Generation of streams of highly charged Ag ions by picosecond laser. Appl. Phys. Lett. 2001, 78, 1823.
- Badziak, J.; Parys, P.; Vankov, A. B.; Wołowski, J.; Woryna, E. Generation of fluxes of highly charged ions from a picosecond laser-produced plasma. Appl. Phys. Lett. 2001, 79, 21.
- Badziak, J.; Hora, H.; Woryna, E.; Jabłoński, S.; Laska, L.; Parys, P.; Rohlena, K.; Wołowski, J. Experimental evidence of differences in properties of fast ion fluxes from short-pulse and long-pulse laser-plasma interactions. Phys. Lett. A 2003, 315, 452.
- Clark, E. L.; Krushelnick, K.; Zepf, M.; Beg, F. N.; Tatarakis, M.; Machacek, A.; Santala, M. I. K.; Watts, I.; Norreys, P. A.; Dangor, A. E. Energetic heavy-ion and proton generation from ultraintense laser-plasma interactions with solids. Phys. Rev. Lett. 2000, 85, 1654.
- McKenna, P.; Ledingham, K. W. D.; Yang, J. M.; Robson, L.; McCanny, T.; Shimizu, S.; Clarke, R. J.; Neely, D.; Spohr, K.; Chapman, R.; et al. Characterization of proton and heavier ion acceleration in ultrahigh-intensity laser interactions with heated target foils. Phys. Rev. E 2004, 70, 036405.
- McKenna, P.; Lindau, F.; Lundh, O.; Carroll, D. C.; Clarke, R. J.; Ledingham, K. W. D.; McCanny, T.; Neely, D.; Robinson, A. P. L.; Robson, L.; et al. Low- and medium-mass ion acceleration driven by petawatt laser plasma interactions. Plasma Phys. Control. Fusion 2007, 49, B223–B231.
- Tayyab, M.; Bagchi, S.; Chakera, J. A.; Avasthi, D. K.; Ramis, R.; Upadhyay, A.; Ramakrishna, B.; Mandal, T.; Naik, P. A. Mono-energetic heavy ion acceleration from laser plasma based composite nano-accelerator. Phys. Plasmas 2018, 25, 123102.
- Bagchi, S.; Tayyab, M.; Pasley, J.; Robinson, A. P. L.; Nayak, M.; Chakera, J. A. Quasi mono-energetic heavy ion acceleration from layered targets. Phys. Plasmas 2021, 28, 023108.
- Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Sako, H.; Pirozhkov, A. S.; et al. Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser. Phys. Plasmas 2015, 22, 033107.
- Braenzel, J.; Andreev, A. A.; Platonov, K.; Klingsporn, M.; Ehrentraut, L.; Sandner, W.; Schnurer, M. Coulomb-Driven Energy Boost of Heavy Ions for Laser-Plasma Acceleration. Phys. Rev. Lett. 2015, 114, 124801.
- Lindner, F. H.; McCary, E.; Jiao, X.; Ostermayr, T. M.; Roycroft, R.; Tiwari, G.; Hegelich, B. M.; Schreiber, J.; Thirolf, P. G. En-route to the fission–fusion reaction mechanism: a status update on laser-driven heavy ion acceleration. Plasma Phys. Control. Fusion 2019, 61, 055002.
- Nishiuchi, M.; Dover, N. P.; Hata, M.; Sakaki, H.; Kondo, Ko.; Lowe , H. F.; Miyahara, T.; Kiriyama, H.; Koga , J. K.; Iwata, N.; et al. Dynamics of laser-driven heavy-ion acceleration clarified by ion charge states. Phys. Rev. Research 2020, 2, 033081.
- Hollinger, R.; Wang, S.; Wang, Y.; Moreau, A.; Capeluto, M. G.; Song, H.; Rockwood, A.; Bayarsaikhan, E.; Kaymak, V.; Pukhov, A.; et al. Extreme ionization of heavy atoms in solid-density plasmas by relativistic second-harmonic laser pulses. Nature Photonics 2020, 14, 607.
- Lindner, F. H.; Fitzpatrick, E. G.; Haffa, D.; Ponnath, L.; Schmidt, A.-K.; Speicher, M.; Zielbauer, B.; Schreiber, J.; Thirolf, P. G. Charge-state resolved laser acceleration of gold ions to beyond 7 MeV/u. Sci. Rep. 2022, 12, 4784.
- Doria, D.; Martin, P.; Ahmed, H.; Alejo, A.; Cerchez, M.; Ferguson, S.; Fernandez-Tobias, J.; Green, J. S.; Gwynne, D.; Hanton, F.; et al. Calibration of BAS-TR image plate response to GeV gold ions. Rev. Sci. Instrum. 2022, 93, 033304.
- Martin, P.; Ahmed, H.; Doria, D.; Cerchez, M.; Hanton, F.; Gwynne, D.; Alejo, A.; Fernández-Tobías, J.; Green, J.; Macchi, A.; et al. Narrow-band acceleration of gold ions to GeV energies from ultra-thin foils. Communications Physics 2024, 7, 3.
- Korzhimanov, A. V.; Efimenko, E. S.; Golubev, S. V.; Kim, A. V. Generating High-Energy Highly Charged Ion Beams from Petawatt-Class Laser Interactions with Compound Targets. Phys. Rev. Lett. 2012, 109, 245008.
- Wu, D.; Qiao, B.; McGuffey, C.; He, X. T.; Beg, F. N. Generation of high-energy mono-energetic heavy ion beams by radiation pressure acceleration of ultra-intense laser pulses. Phys. Plasmas 2014, 21, 123118.
- Wang, H. Y.; Lin, C.; Liu, B.; Sheng, Z. M.; Lu, H. Y.; Ma, W. J.; Bin, J. H.; Schreiber, J.; He, X. T.; Chen, J. E.; et al. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction. Phys. Rev. E 2014, 89, 013107.
- Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N. Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes. Plasma Phys. Control. Fusion 2017, 59, 075003.
- Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating. Phys. Rev. Lett. 2017, 118, 204802.
- Li, J.; Arefiev, A. V.; Bulanov, S. S.; Kawahito, D.; Bailly-Grandvaux, M.; Petrov, G. M.; McGuffey, C.; Beg, F. N. Ionization injection of highly-charged copper ions for laser driven acceleration from ultra-thin foils. Sci. Rep. 2019, 9, 666.
- Kawahito, D.; Kishimoto, Y. Ionization and acceleration of multiply charged gold ions in solid film irradiated by high intensity laser. Phys. Plasmas 2020, 27, 033108.
- Afshari, M.; Morris, S.; Geulig, L. D.; Chitgar, Z. M.; Gibbon, P.; Thirolf, P. G.; Schreiber, J. The role of collisional ionization in heavy ion acceleration by high intensity laser pulses. Sci. Rep. 2022, 12,18260.
- Mehrangiz, M. Application of encapsulated hollow gold nanocluster targets for high-quality and quasi-monoenergetic ions generation. Plasma Phys. Control. Fusion 2022, 64, 035007.
- Wu, D.; Qiao, B.; He, X. T. The radiation reaction effects in the ultra-intense and ultra-short laser foil interaction regime. Phys. Plasmas 2015, 22, 093108.
- Domański, J.; Badziak, J. Ultra-intense femtosecond super-heavy ion beams driven by a multi-PW laser. Phys. Lett. A 2018, 382, 3412.
- Zhao, N.; Zou, D. B.; Jiang, X. R.; Yu, T. P.; Yu, M. Y.; Liu, K.; Huang, T. W.; Zhang, H.; Wu, S. Z.; Hu, L. X.; et al. Hundreds-GeV Au ion generation by 1022-24 W cm-2 laser pulses interacting with high-Z grain doped gas. Plasma Phys. Control. Fusion 2021, 63, 035009.
- Zou, D.; Yu, M.; Jiang, X.; Zhao, N.; Yu, T.; Zhuo, H.; Pukhov, A.; Ma, Y.; Shao, F.; Zhou, C.; et al. Highly Efficient Heavy Ion Acceleration from Laser Interaction with Dusty Plasma. Adv. Photonics Res. 2021, 2, 2000181.
- Zhao, N.; Gan, L.; Liu, K.; Zou, D.; Zhou, Y.; Zhang, G.; Wang, W.; Zhuo, H. Quasi monoenergetic heavy ion acceleration driven by sub-100 PW linearly polarized laser pulses in the radiation-dominated QED regime. Phys. Plasmas 2024, 31, 033103.
- Tamburini, M.; Pegoraro, F.; Di Piazza, A.; Keitel, C. H.; Macchi, A. Radiation reaction effects on radiation pressure acceleration. New. J. Phys. 2010, 12,123005.
- Ridgers, C. P.; Brady, C. S.; Duclous, R.; Kirk, J. G.; Bennett, K.; Arber, T. D.; Robinson, A. P. L.; Bell, A. R. Dense electron-positron plasmas and ultraintense γ rays from laser-irradiated solids. Phys. Rev. Lett. 2012, 108, 165006.
- Brady, C. S.; Ridges, C. P.; Arber, T. D.; Bell, A. R. Synchrotron radiation, pair production, and longitudinal electron motion during 10-100 PW laser solid interaction. Phys. Plasmas 2014, 21, 033108.
- Capdessus, R.; McKenna, P. Influence of radiation force on ultraintense laser-driven ion acceleration. Phys. Rev. E 2015, 91, 053105.
- Domański, J.; Badziak, J. Generation of ion beams from a high-Z target irradiated by a laser pulse of ultra-relativistic intensity. Acta Phys. Polon. A 2020, 138, 586.
- Roth, M.; Cowan, T. E.; Key, M. H.; Hatchett, S. P.; Brown, C.; Fountain, W.; Johnson, J.; Pennington, D. M.; Snavely, R. A.; Wilks S. C.; et.al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 2001, 86, 436.
- Key, M. H. Status of and prospects for the fast ignition inertial fusion concept. Phys. Plasmas 2007,14, 055502.
- Badziak, J.; Jabłoński, S.; Wołowski, J. Progress and prospect of fast ignition of ICF targets. Plasma Phys. Control. Fusion 2007, 49, B651.
- Fernandez, J. C.; Albright, B. J.; Beg, F. N.; Foord, M. E.; Hegelich, B. M.; Honrubia, J. J.; Roth, M.; Stephens, R. B.; Yin, L. Fast ignition with laser-driven proton and ion beams. Nucl. Fusion 2014, 54, 054006.
- Badziak, J.; Domański, J. Laser-driven acceleration of ion beams for high-gain inertial confinement fusion. Nucl. Fusion 2021, 61, 046011.
- Honrubia, J. J.; Fernandez, J. C.; Hegelich, B. M.; Murakami, M.; Enriquez, C. D. Fast ignition driven by quasi-monoenergetic ions: Optimal ion type and reduction of ignition energies with an ion beam array. Laser Part. Beams 2014, 32, 419.
- Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P. Radiation pressure acceleration: The factors limiting maximum attainable ion energy. Phys. Plasmas 2016, 23, 056703.
- Jain, S.; Soni, K. K.; Jaiman, N. K.; Maheshwari, K. P. Effect of Laser Group Velocity on Maximum Attainable Ion Energy in the Radiation Pressure Dominant (RPD) Regime. IEEE Transactions on Plasma Science 2021, 49, no. 3, 1253-1258.
- Di Piazza, A.; Müller, C.; Hatsagortsyan, K. Z.; Keitel, C. H. Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 2012, 84, 1177.
- Gonoskov, A.; Blackburn, T. G.; Marklund, M. Charged particle motion and radiation in strong electromagnetic fields. Rev. Mod. Phys. 2022, 94, 045001.
- Negoita, F.; Roth, M.; Thirolf, P. G.; Tudisco, S.; Hannachi, F.; Moustaizis, S.; Pomerantz, I.; McKenna, P.; Fuchs, J.; Sphor, K.; et al. Laser driven nuclear physics at ELI_NP. Romanian Reports in Physics 2016, 68, Supplement, S37-S144.
- Domański, J.; Badziak, J.; Marchwiany, M. Laser-driven acceleration of heavy ions at ultra-relativistic laser intensity. Laser. Part. Beams 2018, 36, 507.
- Sturm, C.; Böttcher, I.; Dȩbowski, M.; Förster, A.; Grosse, E.; Koczoń, P.; Kohlmeyer, B.; Laue, F.; Mang, M.; Naumann, L.; et al. Evidence for a Soft Nuclear Equation-of-State from Kaon Production in Heavy-Ion Collisions. Phys. Rev. Lett. 2001, 86, 39.
- Drake, R. P. High-Energy-Density Physics; Publisher: Springer-Verlag, Berlin, Hidelberg, Germany, 2006.
- Hoffmann, D. H. H.; Fortov, V. E.; Kuster, M.; Mintsev, V.; Sharkov, B. Y.; Tahir, N. A.; Udrea, S.; Varentsov, D.; Weyrich, K. High energy density physics generated by intense heavy ion beams. Astrophys. Space Sci. 2009, 322, 167.
- Sharkov, B. Yu.; Hoffmann, D. H. H.; Golubev, A. A.; Zhao, Y. High energy density physics with intense ion beams. Matter Radiat. Extremes 2016, 1, 28.
- Boody, F. P.; Hopel, R.; Hora, H.; Kelly, J. C. Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability. Laser Part. Beams 1996, 14, 443–8.
- Torrisi, L.; Gammino, S.; Mezzasalma, A. M.; Badziak, J.; Parys, P.; Wołowski, J.; Woryna, E.; Krasa, J.; Laska, L.; Pfeifer, M.; et al. Implantation of ions produced by the use of high power iodine laser. Appl. Surf. Sci. 2003, 217, 319-331.
- Wołowski, J.; Badziak, J.; Czarnecka, A.; Parys, P.; Pisarek, M.; Rosiński M.; Turan, R.; Yerci, S. Application of pulsed laser deposition and laser-induced ion implantation for formation of semiconductor nano-crystallites. Laser Part. Beams 2007, 25, 65-69.













| Element | Zmax | Emax , MeV |
IL , 1018 W/cm2 |
τL , ps |
EL , J |
References |
| 207Pb82 | 46 | 430 | 50 | 1 | 50 | [65] |
| 197Au79 | 33 | ~1 | 0.05 | 1 | 0.45 | [63] |
| 197Au79 | 26 | >1 | 0.08 | 1 | 0.45 | [64] |
| 197Au79 | ~10 | ~0.45 | 20 | 0.025 | ~1 | [68,69] |
| 181Ta73 | 38 | ~1 | 0.08 | 1 | 0.45 | [63] |
| 108Ag47 | 29 | 0.9 | 0.05 | 1 | 0.5 | [62] |
| 106Pd46 | 30 | 400 | 200 | 1 | 120 | [67] |
| 64Cu29 | 13 | ≥0.3 | 0.63 | 1 | 0.5 | [61] |
| 56Fe26 | 18 | >0.2 | 0.05 | 1 | 0.45 | [63] |
| 56Fe26 | 650 | 200 | 0.7 | 400 | [66] |
| Element | Zmax | Emax , GeV |
IL , 1020 W/cm2 |
τL , fs |
EL , J |
References |
| 56Fe26 | ~25 | 0.9 | 10 | 35 | 8 | [70] |
| 108Ag47 | 45 | ≥2.2 | 50 | 40 | 12 | [73] |
| 197Au79 | 56 | 0.2 | 0.8 | 35 | 1.3 | [71] |
| 197Au79 | ~50 | ≥1 | 8 | 140 | ~100 | [72] |
| 197Au79 | 61 | 1.1 | 110 | 22 | 15 | [11] |
| 197Au79 | 72 | ≥1.4 | 4 | 500 | 185 | [75] |
| 197Au79 | 58 | 1.6 | 3-5 | 850 | 200 | [76] |
| 197Au79 | 51 | 2 | 3 | 800 | 175 | [77] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
