Submitted:
09 January 2025
Posted:
10 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methods
2.1. Study Area
2.2. Flash Flood Potential Index (FFPI)
2.3. Geospatial Analysis for FFPI
3. Results
3.1. FFPI Components
3.2. Nationwide GIS-based Flash Flood Modelling
3.3. Flash Flood Potential in Catchment Areas
3.4. Flash Flood Potential Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Didovets, I.; Krysanova, V.; Bürger, G.; Snizhko, S.; Balabukh, V.; Bronstert, A. Climate Change Impact on Regional Floods in the Carpathian Region. J. Hydrol. Reg. Stud. 2019, 22, 100590. [Google Scholar] [CrossRef]
- Clar, C. Barriers and Guidelines for Public Policies on Climate Change Adaptation: A Missed Opportunity of Scientific Knowledge-Brokerage. Nat. Resour. Forum 2013. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/1477-8947.12013 (accessed on 26 August 2024). [CrossRef]
- Dobler, C.; Bürger, G.; Stötter, J. Assessment of Climate Change Impacts on Flood Hazard Potential in the Alpine Lech Watershed. J. Hydrol. 2012, 460, 29–39. [Google Scholar] [CrossRef]
- Zelenáková, M.; Purcz, P.; Blišt’an, P.; Vranayová, Z.; Hlavatá, H.; Diaconu, D.C.; Portela, M.M. Trends in Precipitation and Temperatures in Eastern Slovakia (1962–2014). Water 2018, 10, 727. [Google Scholar] [CrossRef]
- Yohe, G.W. Mitigative Capacity – The Mirror Image of Adaptive Capacity on the Emissions Side. Clim. Chang. 2001, 49, 247–262. [Google Scholar] [CrossRef]
- Filatova, T. Market-Based Instruments for Flood Risk Management: A Review of Theory, Practice and Perspectives for Climate Adaptation Policy. Environ. Sci. Policy 2013, 37, 227–242. [Google Scholar] [CrossRef]
- Balica, S.F.; Popescu, I.; Wright, N.G.; Beevers, L. Parametric and Physically Based Modelling Techniques for Flood Risk and Vulnerability Assessment: A Comparison. Environ. Model. Softw. 2013, 41, 84–92. [Google Scholar] [CrossRef]
- Archer, D.R.; Leesch, F.; Harwood, K. Learning from the Extreme River Tyne Flood in January 2005. Water Environ. J. 2006, 21, 133–141. [Google Scholar] [CrossRef]
- Borga, M.; Boscolo, P.; Zanon, F.; Sangati, M. Hydrometeorological Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps. J. Hydrometeorol. 2007, 8, 1049–1067. [Google Scholar] [CrossRef]
- Gaume, E.; Bain, V.; Bernardara, P.; Viglione, A.; et al. A Collation of Data on European Flash Floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef]
- Costache, R. Flash-Flood Potential Assessment in the Upper and Middle Sector of Prahova River Catchment (Romania): A Comparative Approach between Four Hybrid Models. Sci. Total Environ. 2019a, 659, 1115–1134. [Google Scholar] [CrossRef] [PubMed]
- Termeh, S.V.R.; Kornejady, A.; Pourghasemi, H.R.; Keesstra, S. Flood Susceptibility Mapping Using Novel Ensembles of Adaptive Neuro Fuzzy Inference System and Metaheuristic Algorithms. Sci. Total Environ. 2018, 615, 438–451. [Google Scholar] [CrossRef]
- Hong, H.; Tsangaratos, P.; Ilia, I.; Liu, J.; Zhu, A.X.; Chen, W. Application of Fuzzy Weight of Evidence and Data Mining Techniques in Construction of Flood Susceptibility Map of Poyang County, China. Sci. Total Environ. 2018, 625, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Costache, R. Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models—A Useful Tool for Flood Risk Management. Water Resour. Manag. 2019b, 33, 3239–3256. [Google Scholar] [CrossRef]
- Elkhrachy, I. Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A Case Study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt. J. Remote Sens. Space Sci. 2015, 18, 261–278. [Google Scholar] [CrossRef]
- Jacinto, R.; Grosso, N.; Reis, E.; Dias, L.; Santos, F.; Garrett, P. Continental Portuguese Territory Flood Susceptibility Index: Contribution to a Vulnerability Index. Nat. Hazards Earth Syst. Sci. 2015, 15, 1907–1919. [Google Scholar] [CrossRef]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Bui, D.T. A Comparative Assessment of Decision Trees Algorithms for Flash Flood Susceptibility Modeling at Haraz Watershed, Northern Iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pradhan, B.; Sefry, S.A. Flash Flood Susceptibility Assessment in Jeddah City (Kingdom of Saudi Arabia) Using Bivariate and Multivariate Statistical Models. Environ. Earth Sci. 2016, 75, 12. [Google Scholar] [CrossRef]
- Carpenter, T.; Sperfslage, J.; Georgakakos, K.; Sweeney, T.; Fread, D. National Threshold Runoff Estimation Utilizing GIS in Support of Operational Flash Flood Warning Systems. J. Hydrol. 1999, 224, 21–44. [Google Scholar] [CrossRef]
- Barredo, J.I. Major Flood Disasters in Europe: 1950–2005. Nat. Hazards 2007, 42, 125–148. [Google Scholar] [CrossRef]
- Cvetković, V.M.; Renner, R.; Aleksova, B.; Lukić, T. Geospatial and Temporal Patterns of Natural and Man-Made (Technological) Disasters (1900–2024): Insights from Different Socio-Economic and Demographic Perspectives. Appl. Sci. 2024, 14, 8129. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R.; Easterling, D.R.; Sun, B.; Lawrimore, J.M. Contemporary Changes of the Hydrological Cycle over the Contiguous United States: Trends Derived from in situ Observations. J. Hydrometeor. 2004, 5, 64–85. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for Intensification of the Global Water Cycle: Review and Synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Pradhan, B. Flood Susceptible Mapping and Risk Area Delineation Using Logistic Regression, GIS, and Remote Sensing. J. Spat. Hydrol. 2009, 9, 1–18. [Google Scholar]
- Giustarini, L.; Chini, M.; Hostache, R.; Pappenberger, F.; Matgen, P. Flood Hazard Mapping Combining Hydrodynamic Modeling and Multi-Annual Remote Sensing Data. Remote Sens. 2015, 7, 14200–14226. [Google Scholar] [CrossRef]
- Gigović, L.; Pamučar, D.; Bajić, Z.; Drobnjak, S. Application of GIS-Interval Rough AHP Methodology for Flood Hazard Mapping in Urban Areas. Water 2017, 9, 360. [Google Scholar] [CrossRef]
- Balogun, A.-L.; Matori, A.-N.; Hamid-Mosaku, A.I. A Fuzzy Multi-Criteria Decision Support System for Evaluating Subsea Oil Pipeline Routing Criteria in East Malaysia. Environ. Earth Sci. 2015, 74, 4875–4884. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial Prediction of Flood Susceptible Areas Using Rule-Based Decision Tree (DT) and a Novel Ensemble Bivariate and Multivariate Statistical Model in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef]
- Mukerji, A.; Chatterjee, C.; Raghuwanshi, N.S. Flood Forecasting Using ANN, Neuro-Fuzzy, and Neuro-GA Models. J. Hydrol. Eng. 2009, 14, 647–652. [Google Scholar] [CrossRef]
- Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. An Algorithm for Operational Flood Mapping from Synthetic Aperture Radar (SAR) Data Using Fuzzy Logic. Nat. Hazards Earth Syst. Sci. 2011, 11, 529–540. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood Susceptibility Mapping Using a Novel Ensemble Weights-of-Evidence and Support Vector Machine Models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Campolo, M.; Soldati, A.; Andreussi, P. Artificial Neural Network Approach to Flood Forecasting in the River Arno. Hydrol. Sci. J. 2003, 48, 381–398. [Google Scholar] [CrossRef]
- An Artificial Neural Network Model for Flood Simulation Using GIS: Johor River Basin, Malaysia. Available online: https://link.springer.com/article/10.1007/s12665-011-1504-z (accessed on 26 September 2024). [CrossRef]
- Tiwari, M.K.; Chatterjee, C. Uncertainty Assessment and Ensemble Flood Forecasting Using Bootstrap-Based Artificial Neural Networks (BANNs). J. Hydrol. 2010, 382, 20–33. [Google Scholar] [CrossRef]
- Rahmati, O.; Pourghasemi, H.R.; Zeinivand, H. Flood Susceptibility Mapping Using Frequency Ratio and Weights-of-Evidence Models in the Golastan Province, Iran. Geocarto Int. 2016, 31, 42–70. [Google Scholar] [CrossRef]
- Nandi, A.; Mandal, A.; Wilson, M.; Smith, D. Flood Hazard Mapping in Jamaica Using Principal Component Analysis and Logistic Regression. Environ. Earth Sci. 2016, 75, 465. [Google Scholar] [CrossRef]
- Lee, M.J.; Kang, J.; Jeon, S. Application of Frequency Ratio Model and Validation for Predictive Flooded Area Susceptibility Mapping Using GIS. In 2012 IEEE International Geoscience and Remote Sensing Symposium; IEEE: Munich, Germany, 2012; pp. 895–898. [Google Scholar] [CrossRef]
- Evaluating the Application of the Statistical Index Method in Flood Susceptibility Mapping and Its Comparison with Frequency Ratio and Logistic Regression Methods. Geomatics, Natural Hazards and Risk. Available online: https://www.tandfonline.com/doi/full/10.1080/19475705.2018.1506509 (accessed on 31 August 2024). [CrossRef]
- Cao, C.; Chen, J.; Zhang, W.; Xu, P.; Zheng, L.; Zhu, C. Geospatial Analysis of Mass-Wasting Susceptibility of Four Small Catchments in Mountainous Area of Miyun County, Beijing. Int. J. Environ. Res. Public Health 2019, 16, 2801. [Google Scholar] [CrossRef] [PubMed]
- Nohani, E.; Moharrami, M.; Sharafi, S.; Khosravi, K.; Pradhan, B.; Pham, B.T.; Lee, S.; Melesse, A. Landslide Susceptibility Mapping Using Different GIS-Based Bivariate Models. Water 2019, 11, 1402. [Google Scholar] [CrossRef]
- Zhang, T.; Han, L.; Chen, W.; Shahabi, H. Hybrid Integration Approach of Entropy with Logistic Regression and Support Vector Machine for Landslide Susceptibility Modeling. Entropy 2018, 20, 884. [Google Scholar] [CrossRef]
- Khan, H.; Shafique, M.; Khan, M.A.; Bacha, M.A.; Shah, S.U.; Calligaris, C. Landslide Susceptibility Assessment Using Frequency Ratio, a Case Study of Northern Pakistan. Egypt. J. Remote Sens. Space Sci. 2019, 22, 11–24. [Google Scholar] [CrossRef]
- Kumar Samanta, R.; Bhunia, G.; Shit, P.; Pourghasemi, H.R. Flood Susceptibility Mapping Using Geospatial Frequency Ratio Technique: A Case Study of Subarnarekha River Basin, India. Model. Earth Syst. Environ. 2018, 4, 395–408. [Google Scholar] [CrossRef]
- Pham, B.T.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. Catena 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Gómez, H.; Kavzoglu, T. Assessment of Shallow Landslide Susceptibility Using Artificial Neural Networks in Jabonosa River Basin, Venezuela. Eng. Geol. 2005, 78, 11–27. [Google Scholar] [CrossRef]
- Gaume, E.; Borga, M. Post-Flood Field Investigations in Upland Catchments after Major Flash Floods: Proposal of a Methodology and Illustrations. J. Flood Risk Manag. 2008, 1(4), 175–189. [Google Scholar] [CrossRef]
- Aleksova, B.; Milevski, I.; Mijalov, R.; Marković, S.B.; Cvetković, V.M.; Lukić, T. Assessing Risk-Prone Areas in the Kratovska Reka Catchment (North Macedonia) by Integrating Advanced Geospatial Analytics and Flash Flood Potential Index. Open Geosci. 2024, 16, 20220684. [Google Scholar] [CrossRef]
- Milevski, I. Natural Hazards in the Republic of Macedonia with Special Emphasis on Flood and Earthquake in Skopje. Geogr. Rev. 2017, 50(5–22), 2016.
- Popa, M.C.; Peptenatu, D.; Draghici, C.; Diaconu, D.C. Flood Hazard Mapping Using the Flood and Flash-Flood Potential Index in the Buzău River Catchment, Romania. Water 2019, 11, 2116. [Google Scholar] [CrossRef]
- Marchi, L.; Borga, M.; Preciso, E.; Gaume, E. Characterisation of Selected Extreme Flash Floods in Europe and Implications for Flood Risk Management. J. Hydrol. 2010, 394(1–2), 118–133. [CrossRef]
- Costache, R.D.; Pham, Q.B.; Sharifi, E.; Khoi, D.N. Flash-Flood Susceptibility Assessment Using Multi-Criteria Decision Making and Machine Learning Supported by Remote Sensing and GIS Techniques. Remote Sens. 2019, 12(1), 106. [Google Scholar] [CrossRef]
- Georgakakos, K.P. Analytical Results for Operational Flash Flood Guidance. J. Hydrol. 2006, 317, 81–103. [Google Scholar] [CrossRef]
- Ntelekos, A.A.; Georgakakos, K.P.; Krajewski, W.F. On the Uncertainties of Flash Flood Guidance: Toward Probabilistic Forecasting of Flash Floods. J. Hydrometeorol. 2006, 7, 896–915. [Google Scholar] [CrossRef]
- Petroselli, A.; Vojtek, M.; Vojteková, J. Flood Mapping in Small Ungauged Basins: A Comparison of Different Approaches for Two Case Studies in Slovakia. Hydrol. Res. 2019, 50, 379–392. [Google Scholar] [CrossRef]
- Costache, R.; Bui, D.T. Spatial Prediction of Flood Potential Using New Ensembles of Bivariate Statistics and Artificial Intelligence: A Case Study at the Putna River Catchment of Romania. Sci. Total Environ. 2019, 691, 1098–1118. [Google Scholar] [CrossRef]
- Bui, D.T.; Hoang, N.D.; Martínez-Álvarez, F.; Ngo, P.T.T.; Hoa, P.V.; Pham, T.D.; Samui, P.; Costache, R. A Novel Deep Learning Neural Network Approach for Predicting Flash Flood Susceptibility: A Case Study at a High Frequency Tropical Storm Area. Sci. Total Environ. 2020, 701, 134413. [Google Scholar] [CrossRef]
- Aktar, M.A.; Shohani, K.; Hasan, M.N.; Hasan, M.K. Flood Vulnerability Assessment by Flood Vulnerability Index (FVI) Method: A Study on Sirajganj Sadar Upazila. Int. J. Disaster Risk Manag. 2021, 3(1), 1–14. [Google Scholar] [CrossRef]
- Cvetković, V.; Martinović, J. Innovative Solutions for Flood Risk Management. Int. J. Disaster Risk Manag. 2020, 2(2), 71–100. [Google Scholar] [CrossRef]
- Hossen, M.N.; Nawaz, S.; Kabir, M.H. Flood Research in Bangladesh and Future Direction: An Insight from the Last Three Decades. Int. J. Disaster Risk Manag. 2022, 4(1), 15–41. [Google Scholar] [CrossRef]
- Dragičević, S.; Filipović, D. Natural Conditions and Disasters in Planning to Protect Space. 2nd ed.; University of Belgrade - Geography Faculty: Belgrade, Serbia, 2016. (In Serbian).
- Gavrilović, L.J. Floods in SR Serbia in the 20th Century—Causes and Consequences. Special Issue SGD, no. 52; Serbian Geographical Society: Belgrade, Serbia, 1981. (In Serbian).
- Petrović, A. Flash Floods in Serbia. Special Editions SGD, Book 73; Serbian Geographical Society: Belgrade, Serbia, 2021. ISBN 978-86-82751-62-5. (In Serbian). ISBN 978-86-82751-62-5.
- Jovanović, D. Application of the Flash Flood Potential Index in Torrential Floods Risk Assessment (FFPI): A Case Study of Svilajnac Municipality. Proc. Fac. Geogr., Univ. Belgrade 2023, 71, 65–78. [Google Scholar] [CrossRef]
- Trobec, T. Spatio-Temporal Distribution of Flash Floods in Slovenia. Dela 2016, 46, 5–20. [Google Scholar] [CrossRef]
- Durlević, U.; Novković, I.; Lukić, T.; Valjarević, A.; Samardžić, I.; Krstić, F.; et al. Multi-Hazard Susceptibility Assessment: A Case Study—Municipality of Štrpce (Southern Serbia). Open Geosci. 2021, 13(1), 1414–1431. [Google Scholar] [CrossRef]
- Dragičević, S.; Kostadinov, S.; Novković, I.; Momirović, N.; Langović, M.; Stefanović, T., et al. Assessment of Soil Erosion and Torrential Flood Q9 Susceptibility: Case Study—Timok River Basin, Serbia. In The Lower Danube River, Hydro-Environmental Issues and Sustainability; Springer: Berlin, Germany, 2022; Chapter 12. [CrossRef]
- Lazarević, K.; Todosijević, M.; Vulević, T.; Polovina, S.; Momirović, N.; Caković, M. Determination of Flash Flood Hazard Areas in the Likodra Watershed. Water 2023, 15(15), 2698. [Google Scholar] [CrossRef]
- Krvavica, N.; Šiljeg, A.; Horvat, B.; Panđa, L. Pluvial Flash Flood Hazard and Risk Mapping in Croatia: Case Study in the Gospić Catchment. Sustainability 2023, 15(2), 1197. [Google Scholar] [CrossRef]
- Milevski, I.; Dragicević, S.; Radevski, I. GIS and Remote Sensing Based Natural Hazard Modelling of Kriva River Catchment, Republic of Macedonia. Zeitschrift für Geomorphologie Supplementary Issues 2017, 61(2), 213–228. [CrossRef]
- Aleksova, B.; Lukić, T.; Milevski, I.; Spalević, V.; Marković, S.B. Modelling Water Erosion and Mass Movements (Wet) by Using GIS-Based Multi-Hazard Susceptibility Assessment Approaches: A Case Study—Kratovska Reka Catchment (North Macedonia). Atmosphere 2023, 14, 1139. [Google Scholar] [CrossRef]
- Aleksova, B.; Lukić, T.; Milevski, I.; Puhar, D.; Marković, S.B. Preliminary Assessment of Geohazards’ Impacts on Geodiversity in the Kratovska Reka Catchment (North Macedonia). Geosciences 2024a, 14, 62. [Google Scholar] [CrossRef]
- Aleksova, B.; Milevski, I.; Dragićević, S.; Lukić, T. GIS-Based Integrated Multi-Hazard Vulnerability Assessment in Makedonska Kamenica Municipality, North Macedonia. Atmosphere 2024c, 15, 774. [Google Scholar] [CrossRef]
- Shawaqfah, M.; Almomani, F.; Khatatbeh, A.A. Mapping Flash Flood Q10 Potential and Risk Level Using GIS Techniques and the Flash Flood Potential Index (FFPI) in Amman Zarqa Basin of Jordan. Jordanian J. Eng. Chem. Ind. 2020, 3(3). [CrossRef]
- Milevski, I. Digital Model of the Mean Annual Temperature and Precipitation of the Republic of Macedonia. Geogr. Rev. 2015, 48, 33–38. [Google Scholar]
- Federal Geological Survey of SFRY. Interpreter of the Basic Geological Map of Socialist Federal Republic of Yugoslavia 100k (Sheet 25 for SR Macedonia); Professional Fund of the Federal Geological Survey of SFRY: Belgrade, Yugoslavia, 1963–1985. (In Macedonian).
- Djordjević, M.; Trendafilov, A.; Jelić, D.; Georgievski, S.; Popovski, A. Erosion Map of the Republic of Macedonia—Textual Part; Water Development Institute: Skopje, Macedonia, 1993. (In Macedonian).
- Jovanovski, M.; Milevski, I.; Papić, J.B.; Peševski, I.; Markoski, B. Landslides in the Republic of Macedonia Triggered by Extreme Events in 2010. In Geomorphological Impacts of Extreme Weather: Case Studies from Central and Eastern Europe; Denes, L., Ed.; Springer: Berlin, Germany, 2013; pp. 265–280.
- Milevski, I.; Radevski, I.; Dimitrovska, O.; Drogreška, K.; Gorin, S. Study for the Spatial Plan of the Republic of North Macedonia 2021–2040: Natural Characteristics. Ministry of Environment and Spatial Planning: Skopje, North Macedonia, 2023. Tech. No. A90123.
- Minea, G. Assessment of the Flash Flood Potential of Bâsca River Catchment (Romania) Based on Physiographic Factors. Cent. Eur. J. Geosci. 2013, 5(3), 344–353. [Google Scholar] [CrossRef]
- Costache, R.; Pravalie, R.; Mitof, I.; Popescu, C. Flood Vulnerability Assessment in the Low Sector of Saratel Catchment. Case Study: Joseni Village. Carpathian J. Earth Environ. Sci. 2015, 10(1), 161–169.
- Tincu, R.; Lazar, G.; Lazar, I. Modified Flash Flood Potential Index in Order to Estimate Areas with Predisposition to Water Accumulation. Open Geosci. 2018, 10, 593–606. [Google Scholar] [CrossRef]
- Petrović, A.; Kostadinov, S.; Dragićević, S. The Inventory and Characterization of Torrential Flood Phenomenon in Serbia. Pol. J. Environ. Stud. 2014, 23, 823–830. [Google Scholar]
- Petrović, A.; Dragićević, S.; Radić, B.; Milanović Pešić, A. Historical Torrential Flood Events in the Kolubara River Basin. Nat. Hazards 2015, 79, 537–547. [Google Scholar] [CrossRef]
- Smith, G. Flash Flood Potential: Determining the Hydrologic Response of FFMP Basins to Heavy Rain by Analyzing Their Physiographic Characteristics. Available online: https://www.cbrfc.noaa.gov/papers/ffp_wpap.pdf (accessed on 29 May 2024).
- Pravalie, R.; Costache, R. The Analysis of the Susceptibility of the Flash-Floods’ Genesis in the Area of the Hydrographical Basin of Basca Chiojdului River. Forum Geogr. 2014, 13, 39–49. [Google Scholar] [CrossRef]
- Ristić, R.; Radić, B.; Vasiljević, N. Characteristics of Maximal Discharges on Torrential Watersheds in Serbia. Bull. Serbian Geogr. Soc. 2009, 89, 161–189. [Google Scholar]
- Minea, G.; Iliescu, M.; Dedu, F. Temporal Rainfall Properties at Events Scale in the Curvature Subcarpathians (Romania). Forum Geografic 2016, 15, 115–123. [Google Scholar] [CrossRef]
- Kostadinov, S.; Dragićević, S.; Stefanović, T.; et al. Torrential Flood Prevention in the Kolubara River Basin. J. Mt. Sci. 2017, 14, 2230–2245. [Google Scholar] [CrossRef]
- Copernicus. Corine Land Cover 2018: Copernicus Land Monitoring Service; Technical Report; Office for Official Publications of the European Communities: Luxembourg, 2016.
- United States Geological Survey. Landsat 8 Program Taken by Earth Explorer. United States Geological Survey, 2024. Available online: https://earthexplorer.usgs.gov (accessed on 29 May 2024).
- Yue, J.; Fu, Y.; Guo, W.; Feng, H.; Qiao, H. Estimating Fractional Coverage of Crop, Crop Residue, and Bare Soil Using Shortwave Infrared Angle Index and Sentinel-2 MSI. Int. J. Remote Sensing 2022, 43, 1253–1273. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Fox, D.; Bryan, R.B.; Price, A.G. The Influence of Slope Gradient on Infiltration Rate for Interrill Conditions. Geoderma 1997, 80, 181–194. [Google Scholar] [CrossRef]
- Crisis Management Center of North Macedonia. (accessed on December 5, 2024) www.cuk.gov.mk.
- Gjeshovska, V.; Taseski, G.; Ilioski, B. Heavy Rainfall in the R.N. Macedonia. Sci. J. Civil Eng. 2021, 10(2), 19–30. [CrossRef]
- Milevski, I.; Dragićević, S.; Georgievska, A. GIS and RS-Based Modelling of Potential Natural Hazard Areas in Pehchevo Municipality, Republic of Macedonia. J. Geogr. Inst. Jovan Cvijić SASA 2012, 63, 95–107. [Google Scholar] [CrossRef]
- Ministry of Environment and Spatial Planning. Fourth National Climate Change Action Plan; Ministry of Environment and Spatial Planning, GEF, UNDP: Skopje, North Macedonia, 2023. (in Macedonian).
- Popovska, C.; Gjeshovska, V.; Ivanoski, D. Floods in Upper Vardar River Basin, May 2006. Proceedings of the International Conference on Water Observation and Information System for Decision Support (BALWOIS), Ohrid, Macedonia, 2006. [CrossRef]
- Popovska, C.; Gjeshovska, V. Water Balance Model for Vulnerability Assessment of Water Resources in Strumica River Basin. Irrigation & Drainage Systems Engineering 2014, 3(3). [CrossRef]
- Popovska, C.; Jovanovski, M.; Sekovski, D. Build Back Better Approach to Recovery of Flood-Damaged Transport and Water Infrastructure. In Proceedings of the Conference: Water Management and Hydraulic Engineering, Skopje, North Macedonia, 2019.
- Hydrometeorological Service of the Republic of North Macedonia (UHMR). Annual Report, 2023.
- Djurdjevic, V. Report on Climate Change Projections and Changes in Climate Extremes for the Republic of North Macedonia. In Macedonia’s Fourth National Communication and Third Biennial Update Report on Climate Change under the UNFCCC, Global Environmental Facility (GEF), and the United Nations Development Programme (UNDP); Ref. number IC 44/2019, 2020.
- Lukić, T.; Gavrilov, M.B.; Marković, S.; et al. Classification of Natural Disasters Between the Legislation and Application: Experience of the Republic of Serbia. Acta Geographica Slovenica 2013, 53, 149–164. [Google Scholar] [CrossRef]
- International Commission for the Protection of the Danube River - ICPDR. Slovenia’s Flood Forecasting Success: Minimizing Casualties Through Effective Warning Systems. Available online: www.icpdr.org (accessed on date).
- EU Delegation to Bosnia and Herzegovina. Support to Flood Protection and Flood Risk Management; Annual Action Programme for Bosnia and Herzegovina for the Year 2016, 2016.











| Value | Slope % |
| 1 | 0 – 3 |
| 2 | 3 – 6 |
| 3 | 6 – 9 |
| 4 | 9 – 12 |
| 5 | 12 – 15 |
| 6 | 15 – 18 |
| 7 | 18 – 21 |
| 8 | 21 – 24 |
| 9 | 24 – 29.2 |
| 10 | > 29.2 |
| Lithological unit | Susceptibility to flash floods |
| Quartzite, amphibolite, diabase | 2 |
| Solid volcanic rocks (andesite, dacite, basalt) | 3 |
| Clastic sediments | 4 |
| Compact marble, limestone | 5 |
| Gneisses, granite | 6 |
| Chert, shists | 7 |
| Slate, Mica shists | 8 |
| Tuffs | 9 |
| Clay containing clastic sediments | 10 |
| Land classes | Value |
| Mixed forest | 1 |
| Broad-leaved and coniferous forest | 2 |
| Shrubs | 3 |
| Natural grasslands | 4 |
| Continuous and discontinuous urban fabric | 5 |
| Transitional woodland-shrub | 6 |
| Pastures | 7 |
| Permanently irrigated land; Complex cultivation patterns; Land principally occupied by agriculture, with significant areas of natural vegetation | 8 |
| Bare rocks; Sparsely vegetated areas | 9 |
| Flash floods vulnerability | Value | Area | |
| km2 | % | ||
| Very high | 2.1 – 4.5 | 823.6 | 3.3 |
| High | 4.5 – 5.5 | 5625.7 | 22.3 |
| Moderate | 5.5 – 6.5 | 11796.8 | 46.7 |
| Low | 6.5 – 7.5 | 5919.9 | 23.4 |
| Very low | 7.5 – 15.1 | 1082.8 | 4.3 |
| Total | 25248.9 | 100.0 | |
| Class | Values | No. | No. % | Area | Area % |
| Very high | 6.3-7.2 | 305 | 24.7 | 5591.6 | 22.1 |
| High | 5.8-6.3 | 484 | 39.2 | 10473.1 | 41.5 |
| Moderate | 5.2-5.8 | 366 | 29.6 | 7286.0 | 28.9 |
| Low | 4.8-5.2 | 54 | 4.4 | 1411.6 | 5.6 |
| Very low | 3.9-4.8 | 27 | 2.2 | 486.6 | 1.9 |
| Total | 3.9-7.2 | 1236 | 100.0 | 25248.9 | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).