Preprint
Article

This version is not peer-reviewed.

Calculated Transition Probabilities for Os VI Spectral Lines of Interest to Nuclear Fusion Research

A peer-reviewed article of this preprint also exists.

Submitted:

06 January 2025

Posted:

07 January 2025

You are already at the latest version

Abstract
In this work, we present a new set of transition probabilities for experimentally classified spectral lines in the Os VI spectrum. To do this, two independent computational approaches based on the pseudo-relativistic Hartree-Fock including core-polarization effects (HFR+CPOL) and fully relativistic Multiconfiguration Dirac-Hartree-Fock (MCDHF) methods were used, the detailed comparison of the results obtained with these two approaches allowing us to estimate the quality of the calculated radiative parameters. These atomic data, corresponding to 367 lines of five times ionized osmium between 438.720 and 1486.275 Ã…, are expected to be useful for the analysis of the spectra emitted by fusion plasmas in which osmium could appear as a result of transmutation by neutron bombardment of tungsten used as component of the reactor wall, such as the ITER divertor.
Keywords: 
;  ;  

1. Introduction

It is now well established that tungsten (W) will be widely used in nuclear fusion reactors as a plasma-facing material due to its high melting point, low sputtering yield, and resistance to neutron irradiation. In particular, tungsten will be a key material for the divertor of the International Thermonuclear Experimental Reactor (ITER), the component designed to manage heat and particle flux from the plasma [1,2,3]. During nuclear fusion operations, the divertor will endure some of the harshest conditions in the reactor. Thus, under neutron bombardment, tungsten will undergo nuclear transmutation, forming other elements, including osmium [4].
As a transmutation product of tungsten, osmium atoms will also be sprayed into the plasma, altering its composition. Monitoring osmium’s spectroscopic signals will help in understanding the dynamics of plasma-wall interactions, which are crucial for predicting material erosion and plasma contamination. The high ionization potential of neutral osmium (8.4 eV) means its ionic species may survive in high-temperature plasmas, providing diagnostic data about plasma conditions. Spectral lines of Os ions will therefore be particularly useful for identifying impurity influx from plasma-facing components and the corresponding radiative decay rates will also be used to calculate essential plasma properties, such as electron temperature and density.
The main goal of the present work is to make a new contribution to this field by determining the transition probabilities for spectral lines of five times ionized osmium (Os VI) which is characterized by a moderately complex atomic structure with 71 electrons giving 5d3 4F3/2 as the ground level. Spectroscopic studies have already been carried out previously for this ion. Indeed, nearly 30 years ago, Raassen et al. [5] classified 290 lines belonging to the 5d3 – 5d26p transition array in the 435 – 765 Å region and 87 lines belonging to the 5d26s – 5d26p transition array in the 940 – 1510 Å region from the analysis of spectrograms made by means of the 3.0 m and 10.6 m normal incidence spectrographs installed at that time in Antigonish (Canada) and Meudon (France). This resulted in the determination of all levels (19) in the 5d3 ground configuration, 14 levels (out of 16 possible) in the 5d26s configuration and all levels (45) in the 5d26p configuration. The analysis was guided by predicted energy level values and transition probabilities calculated by means of a complete set of orthogonal operators. Calculated energy values, LS-compositions and gA-values, obtained from the fitted parameters using a rather limited configuration interaction model were also reported. More recently, Azarov [6] critically reviewed the data available on the 5d3, 5d26s and 5d26p configurations in the Lu I isoelectronic sequence, including Os VI, by means of calculations with orthogonal operators. This study allowed the determination of two new levels in the 5d26s configuration of Os VI, namely (3P)2P1/2 and (3P)4P5/2.
If the electronic structure of the first three configurations of Os VI is now well known, the same cannot be said for the radiative parameters which have only been calculated by means of the pseudo-relativistic Hartree-Fock method (HFR) including the configuration interaction in a very limited way [5]. This motivated the present work, the objective of which is to provide a new set of reliable transition probabilities for experimentally observed spectral lines of Os VI. To do this, two independent methods were used, namely the pseudo-relativistic Hartree-Fock approach including core-polarization corrections (HFR+CPOL) and the fully relativistic Multiconfiguration Dirac-Hartree-Fock approach (MCDHF), the cross-comparison of the results obtained with these two methods allowing us to estimate the accuracy of the new calculated radiative data.

2. Computational Approaches

2.1. Pseudo-Relativistic Hartree-Fock Method with Core-Polarization Corrections

The first method used for computing the radiative rates in Os VI was the pseudo-relativistic Hartree-Fock (HFR) method, originally introduced by Cowan [7], modified for taking core-polarization effects into account, giving rise to the so-called HFR+CPOL method, as described e.g. in [8,9,10].
The physical model was chosen as consisting of three valence electrons surrounding an Os IX-type ionic core with 76 electrons. This led us to consider the valence-valence interactions by explicitly introducing the following configurations into the calculations : 5d3 + 5d26s + 5d6s2 + 5d26d + 5d6p2 + 5d6d2 + 5d5f2 + 5d6f2 + 5d6s6d + 5d6p5f + 5d6p6f + 5d5f6f + 6s26d + 6s6p2 + 6p26d + 6s6d2 + 6d3 + 6s5f2 + 6d5f2 + 6s6f2 + 6d6f2 for the even parity, and 5d26p + 5d25f + 5d26f + 5d6s6p + 5d6s5f + 5d6s6f + 5d6p6d + 5d6d5f + 5d6d6f + 6s26p + 6s25f + 6s26f + 6p25f + 6p26f + 6p3 + 6p6d2 + 6d25f + 6d26f + 6p5f2 + 6p6f2 + 5f26f + 5f6f2 for the odd parity. This list of configurations is similar to the one considered for our recent HFR+CPOL calculations of radiative parameters in the isoelectronic ion Re V [11]. Core-valence interactions were then estimated using a core-polarization potential and a correction to the electric dipole operator, as described in [8,9,10], with a dipole polarizability ad = 1.50 a03 and a cut-off radius rc = 1.12 a0, the former parameter being found by extrapolating the ad-values published by Fraga et al. [12] for the first ions of the erbium isoelectronic sequence, i.e. Tm II, Yb III, Lu IV, and Hf V, while the latter parameter corresponds to the mean radius of the outermost orbital of the Os IX ionic core (5p), as obtained in the HFR calculations.
The HFR+CPOL calculations were then refined using a well-known least-squares fitting procedure of the computed energy levels to the experimental values available in the literature. More precisely, the experimental energy levels belonging to the 5d3, 5d26s even configurations and the 5d26p odd configuration published by Raassen et al. [5] were used to optimize the radial parameters corresponding to the average energies (Eav), the Slater integrals (Fk, Gk, Rk), the spin-orbit parameters (znl), and the effective interaction parameters a, b characterizing these three configurations. This led to average deviations between calculated and experimental energies of 46 cm-1 and 150 cm-1 for the odd and even parities, respectively. These deviations are slightly higher than those obtained in the fits made by Raaseen et al. [5] (i.e. 11 and 107 cm-1) and Azarov [6] (14 and 95 cm-1) for the same configurations, but it should be noted that our calculations include a much larger number of interacting configurations, which often leads to slightly more complicated adjustment procedures, because of the more numerous mixtures in the eigenvector compositions. A detailed comparison between the HFR+CPOL levels and the available experimental values reported in [5,6] is given in Table 1 in which the first two LS-components obtained in our calculations for each level are also listed. These eigenvector compositions are in excellent agreement with those published in [6].

2.2. Fully Relativistic Multiconfiguration Dirac-Hartree-Fock Method

The second computational approach used in the present work was the fully-relativistic Multiconfiguration Dirac-Hartree-Fock (MCDHF) method, as described in [13,14] and implemented in the latest version of the General Relativistic Atomic Structure Package, namely GRASP2018 [15].
We started our calculations by considering the 5d3, 5d26s even- and the 5d26p odd-parity configurations as the multireference (MR) with all the orbitals optimized on the 5d3 4F3/2 ground state, in a first step, and then optimizing separately only the 5d and 6s orbitals on all the levels of the MR even configurations (5d3+5d26s) and only the 5d and 6p orbitals on all the levels of the MR odd configuration 5d26p. Thereafter, correlation orbitals were introduced and optimized layer by layer on all the levels of the MR in two steps in valence-valence (VV) expansions of the atomic state functions (ASFs) where all single and double (SD) excitations were allowed from the 5d, 6s and 6p spectroscopic orbitals to the following orbital active sets (AS) where the set of nmax stands for the maximum value of the orbital principal quantum number for each azimuthal quantum number l: {7s,6p,6d,5f} and {6s,7p,6d,5f} for the even- and odd-parities, respectively, in a first step (VV1 model), and {8s,7p,7d,6f} and {7s,8p,7d,6f} for the even- and odd-parities, respectively, in a second step (VV2 model). Finally, core-valence (CV) and core-core (CC) correlations were considered in a relativistic configuration interaction (RCI) calculation using the orbitals optimized previously. Here, the ASF expansions were further extended by adding SD excitations from the 4f core orbital of the MR configurations to the AS of the last step of the orbital optimizations. This gave rise to 515 057 and 900 402 configuration state functions (CSFs) in the even- and odd-parities, respectively.
The final MCDHF energy levels are compared to the available experimental values in Table 1, where it can be seen that a fairly good agreement has been reached, the average deviation being equal to 8% for the whole set of energy levels belonging to the 5d3, 5d26s and 5d26p configurations, with a lower value for even-parity levels (4%) compared to the value obtained for odd-parity levels (10%).

3. Radiative Decay Rates

Transition probabilities (gA in 1010 s-1) obtained in the present work with the HFR+CPOL and MCDHF methods are reported in Table 2. They are given for the lines experimentally identified by Raassen et al. [5] in the Os VI spectrum between 438.720 and 1486.275 Ã…. In this table, the transitions are classified by the numerical values of the lower and upper energy levels, with the spectroscopic designations of these levels given in Table 1. Transition probabilities published in [5] are also given for comparison in Table 2.
A first observation that can be made when looking at this table is that our HFR+CPOL transition probabilities are in good agreement with the results previously published by Raassen et al. [5], with a mean ratio gAHFR+CPOL/gARaassen equal to 0.95 ± 0.21 (where the number after ± represents the standard deviation from the mean), which is quite comparable to the ratio we get when comparing our HFR calculations with and without core polarization corrections, i.e. gAHFR+CPOL/gAHFR = 0.98 ± 0.10.
It is also interesting to note that the agreement between the HFR+CPOL and MCDHF results obtained in the present work is generally good, the mean ratio between both sets of data, gAHFR+CPOL/gAMCDHF, being equal to 1.08 ± 0.48, if we exclude the two transitions at 526.999 and 555.333 Å for which the gA-values differ from each other by one or two orders of magnitude. This means that the majority of our gA-values calculated using the two methods agree within a few tens of percent. Such a comparison is shown in Figure 1 where transition probabilities obtained using the HFR+CPOL approach are plotted against those deduced from MCDHF calculations.
The quality of the transition probabilities obtained in our work can also be estimated from parameters such as the cancellation factor (CF) and the uncertainty parameter (dT) for HFR+CPOL and MCDHF calculations, respectively. As a reminder, the former parameter is defined by [7]:
C F = [ | ∑ ∑   y β J γ β J P ( 1 ) β ' J ' y β ' J ' γ ' | ∑ ∑ | y β J γ β J P ( 1 ) β ' J ' | y β ' J ' γ ' ] 2
where P(1) is the dipole operator for the transition between two atomic states|γJ> and |γ’J’> developed in terms of pure basis states |βJ> and|β’J’>, with yγβJ and y γ’β’J’ as mixing coefficients, respectively. According to Cowan [7], very small values of this parameter (typically CF < 0.05) may be expected to show significant errors in the computed line strengths. In our work, it was verified that the CF-values were larger than 0.05 for most of the lines listed in Table 2, the only exceptions occurring for 91 transitions (among 367) generally characterized by rather weak gA-values (typically smaller than 109 s-1). This is illustrated in Figure 2 where the CF parameter is plotted as a function of HFR+CPOL transition probabilities for all Os VI lines considered in the present work.
As for the dT parameter, it is expressed by [16]:
d T = | A B − A C | max ( A B , A C )
where AB and AC are transition probabilities in Babushkin (length) and Coulomb (velocity) gauges, the electric dipole transition moment having the same value in both formalisms for exact solutions of the Dirac equation [17]. The dT parameter thus provides a statistical estimate of the uncertainty of MCDHF transition rates for approximate solutions for which the transition moment differs from one gauge to another. For transitions listed in Table 2, the average value of dT was found to be equal to 0.17 ± 0.06, which means that the uncertainties affecting most or our MCDHF gA-values do not exceed 25%. The few exceptions for which the dT parameter was found to be greater than 25% concern only 42 transitions out of the 367 listed in Table 2. This is illustrated in Figure 3 where dT is plotted as a function of gAMCDHF.
Finally, it should be noted that, if we set aside the transitions listed in Table 2 for which, both CF < 0.05 (in the HFR+CPOL calculations) and dT > 0.25 (in the MCDHF calculations), there remain 250 transitions whose differences between the gA-values obtained using the two methods do not exceed 30%, the mean relative deviation DgA/<gA> (where DgA = |gAHFR+CPOL – gAMCDHF| and <gA> = (gAHFR+CPOL + gAMCDHF)/2) being equal to 0.29. Consequently, at least for these 250 lines, the uncertainty on the HFR+CPOL and MCDHF transition probabilities obtained in our work can be estimated at most 30%, the gA-values of other transitions can be affected by slightly larger uncertainties up to a factor of two.

4. Conclusions

New transition probabilities for experimentally observed lines in the Os VI spectrum are reported in the present work. They were obtained using two different computational approaches based on the pseudo-relativistic Hartree-Fock method including core-polarization corrections (HFR+CPOL) and the fully relativistic Multiconfiguration Dirac-Hartree-Fock method (MCDHF). Based on the detailed comparison showing a good agreement between the two sets of results (within a few tens of percent for most transitions), it can be concluded that the gA-values reported in this paper are the most reliable currently available for the Os VI ion. These new atomic data will be useful for the analysis of the spectra emitted by fusion plasmas produced in Tokamaks such as ITER.

Author Contributions

Conceptualization, M.B. and P.Q.; methodology, M.B., P.P. and and P.Q.; software, M.B.; validation, M.B., P.P. and P.Q.; formal analysis, M.B.; investigation, M.B.; resources, M.B. and P.Q.; data curation, M.B. and and P.Q.; writing—original draft preparation, P.Q.; writing—review and editing, M.B., P.P. and P.Q.; visualization, P.Q.; supervision, P.Q.; project administration, P.Q.; funding acquisition, P.P. and P.Q. All authors have read and agreed to the published version of the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by F.R.S.-FNRS—EOS grant number O.0004.22.

Acknowledgments

P.P. and P.Q. are respectively Research Associate and Research Director of the Belgian Fund for Scientific Research F.R.S.-FNRS. This project received funding from the FWO and F.R.S.-FNRS under the Excellence of Science (EOS) programme (number O.0004.22). Part of the atomic calculations were made with computational resources provided by the Consortium des Equipements de Calcul Intensif (CECI), funded by the F.R.S.-FNRS under grant no. 2.5020.11 and by the Walloon Region of Belgium.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Pitts, R.A.; Carpentier, S.; Escourbiac, F.; Hirai, T.; Komarov, V.; Lisgo, S.; Kukushkin, A.S.; Merola, M.; Sashala Naik, A.; Mitteau, R.; Sugihara, M.; Bazylev, B.; Stangeby, P.C. A full tungsten divertor for ITER: Physics issues and design status. J. Nucl. Mater. 2013, 438, S48. [Google Scholar] [CrossRef]
  2. Hirai, T.; Panayotis, S.; Barabash, V.; Amzallag, C.; Escourbiac, F.; Durocher, A.; Merola, M.; Linke, J.; Loewenhoff, Th.; Pintsuk, G.; Wirtz, M.; Uytdenhouwen, I. Use of tungsten material for the ITER divertor. Nucl. Mat. En. 2016, 9, 616. [Google Scholar] [CrossRef]
  3. Pitts, R.A.; Bonnin, X.; Escourbiaca, F.; Frerichs, H.; Gunn, J.P.; Hirai, T.; Kukushkin, A.S.; Kaveeva, E.; Miller, M.A.; Moulton, D.; Rozhansky, V.; Senichenkov, I.; Sytova, E.; Schmitz, O.; Stangeby, P.C.; De Temmerman, G.; Veselova, I.; Wiesen, S. Physics basis for the first ITER tungsten divertor. Nucl. Mat. En. 2019, 20, 100696. [Google Scholar] [CrossRef]
  4. Gilbert, N.R.; Sublet, J.Ch. Neutron-induced transmutation effects in W and W-alloys in a fusion environment. Nucl. Fusion 2011, 51, 043005. [Google Scholar] [CrossRef]
  5. Raassen, A.J.J.; Azarov, V.I.; Uylings, P.H.M.; Joshi, Y.N.; Tchang-Brillet, L.; Ryabtsev, A.N. Analysis of the spectrum of five times ionized osmium (Os VI). Phys. Scr. 1996, 54, 56. [Google Scholar] [CrossRef]
  6. Azarov, V.I. Parametric study of the 5d3, 5d26s and 5d26p configurations in the Lu I isoelectronic sequence (Ta III–Hg X) using orthogonal operators. At. Data Nucl. Data Tables 2018, 119, 193. [Google Scholar] [CrossRef]
  7. Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
  8. Quinet, P.; Palmeri, P.; Biémont, E.; McCurdy, M.M.; Rieger, G.; Pinnington, E.H.; Wickliffe, M.E.; Lawler, J.E. Experimental and theoretical lifetimes, branching fractions and oscillator strengths in Lu II. Mon. Not. R. Astron. Soc. 1999, 307, 934. [Google Scholar] [CrossRef]
  9. Quinet, P.; Palmeri, P.; Biémont, E.; Li, Z.S.; Zhang, Z.G.; Svanberg, S. Radiative lifetime measurements and transition probability calculations in lanthanide ions. J. Alloys Compd. 2002, 344, 255. [Google Scholar] [CrossRef]
  10. Quinet, P. Overview of recent advances performed in the study of atomic structures and radiative processes for the lowest ionization stages of heavy elements. Can. J. Phys. 2017, 95, 790. [Google Scholar] [CrossRef]
  11. Brasseur, M.; Gamrath, S.; Quinet, P. Radiative decay rates for electric dipole transitions in doubly-, trebly- and quadruply-charged rhenium ions(Re III – V) of interest to nuclear fusion research and astrophysical spectra analyses. At. Data Nucl. Data Tables 2024, 157, 101636. [Google Scholar] [CrossRef]
  12. Fraga, S.; Karwowski, J.; Saxena, K.M.S. Handbook of atomic data; Elsevier: Amsterdam, 1976. [Google Scholar]
  13. Grant, I.P. Relativistic Quantum Theory of Atoms and Molecules; Springer: New York, NY, USA, 2007. [Google Scholar]
  14. Froese Fischer, C.; Godefroid, M.R.; Brage, T.; Jönsson, P.; Gaigalas, G. Advanced multiconfiguration methods for complex atoms: I. Energies and wave functions. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 182004. [Google Scholar] [CrossRef]
  15. Froese Fischer, C.; Gaigalas, G.; Jönsson, P. GRASP2018—A Fortran 95 version of the General Relativistic Atomic Structure Package. Comput. Phys. Commun. 2019, 237, 184. [Google Scholar] [CrossRef]
  16. Ekman,J. ; Godefroid, M.R.; Hartman, H. Validation and implementation of uncertainty estimates of calculated transition Rates. Atoms 2014, 2, 215. [Google Scholar] [CrossRef]
  17. Grant, I.P. Gauge invariance and relativistic radiative transitions. J. Phys. B 1974, 7, 1458. [Google Scholar] [CrossRef]
Figure 1. Comparison between transition probabilities (gA) obtained using the HFR+CPOL method and those deduced from MCDHF calculations.
Figure 1. Comparison between transition probabilities (gA) obtained using the HFR+CPOL method and those deduced from MCDHF calculations.
Preprints 145365 g001
Figure 2. Cancellation factors (CF) as a function of gA-values obtained using the HFR+CPOL method for Os VI transitions. The dotted line corresponds to CF = 0.05.
Figure 2. Cancellation factors (CF) as a function of gA-values obtained using the HFR+CPOL method for Os VI transitions. The dotted line corresponds to CF = 0.05.
Preprints 145365 g002
Figure 3. Uncertainty parameter (dT) as a function of gA-values obtained using the MCDHF method for Os VI transitions. The dotted line corresponds to dT = 0.25.
Figure 3. Uncertainty parameter (dT) as a function of gA-values obtained using the MCDHF method for Os VI transitions. The dotted line corresponds to dT = 0.25.
Preprints 145365 g003
Table 1. Comparison of the energy levels computed in the present work using the HFR+CPOL and MCDHF methods with the available experimental values for the 5d3, 5d26s and 5d26p configurations of Os VI. All values are given in cm-1.
Table 1. Comparison of the energy levels computed in the present work using the HFR+CPOL and MCDHF methods with the available experimental values for the 5d3, 5d26s and 5d26p configurations of Os VI. All values are given in cm-1.
Conf. Composition1 J EEXP2 EHFR+CPOL DEHFR+CPOL EMCDHF DEMCDHF
5d3 81% 4F + 10% 2D 1.5 0.0 0 0 0 0
94% 4F + 4% 2D 2.5 6397.4 6422 25 5912 -485
84% 4F + 13% 2G 3.5 11444.1 11450 6 11045 -399
46% 4P + 35% 2P 1.5 14430.2 14390 -40 15525 1095
56% 4F + 33% 2G 4.5 14678.3 14651 -27 14901 223
68% 4P + 32% 2P 0.5 16772.4 16806 34 17878 1106
81% 2G + 15% 4F 3.5 22919.6 22950 30 24181 1261
56% 2H + 34% 4F 4.5 24028.4 24054 26 25420 1392
89% 4P + 7% 2D 2.5 24828.5 24808 -20 25636 808
42% 4P + 34% 2D 1.5 27894.0 27944 50 28591 697
67% 2P + 32% 4P 0.5 28859.8 28876 16 29696 836
100% 2H 5.5 32155.8 32159 3 34620 2464
84% 2D + 6% 2D 2.5 34417.8 34433 15 35784 1366
57% 2G + 32% 2H 4.5 37019.4 37011 -8 38308 1289
85% 2F + 8% 2D 2.5 39600.8 39572 -29 43286 3685
55% 2P + 17% 2D 1.5 40202.6 40186 -17 40607 404
94% 2F + 5% 2G 3.5 40447.0 40455 8 43864 3417
66% 2D + 33% 2D 1.5 59910.8 59972 61 63816 4005
77% 2D + 12% 2F 2.5 61005.3 60968 -37 64058 3053
5d26s 91% (3F)4F + 8% (1D)2D 1.5 97940.4 97929 -11 101568 3628
78% (3F)4F + 12% (3F)2F 2.5 100973.9 101053 79 104606 3632
95% (3F)4F + 5% (3F)2F 3.5 108538.4 108578 40 111778 3240
53% (3F)2F + 21% (3F)4F 2.5 114140.1 114133 -7 118083 3943
90% (3P)4P + 7% (1S)2S 0.5 114363.2 114318 -45 119157 4794
90% (3F)4F + 10% (1G)2G 4.5 115173.8 115184 10 118469 3295
85% (3P)4P + 12% (1D)2D 1.5 118499.8 118478 -22 123014 4514
51% (3P)4P + 29% (3F)2F 2.5 119205.3 119259 54 123539 4334
59% (1D)2D + 21% (3P)2P 1.5 123318.6 123334 15 128060 4741
61% (3F)2F + 36% (1G)2G 3.5 123600.5 123520 -80 128038 4438
90% (3P)2P + 5% (3P)4P 0.5 129179.2 129417 238 134405 5226
89% (1G)2G + 10% (3F)4F 4.5 130849.6 130957 107 136556 5706
55% (1D)2D + 39% (3P)4P 2.5 131676.2 131632 -44 135923 4247
63% (1G)2G + 33% (3F)2F 3.5 132989.9 132897 -93 138231 5241
77% (3P)2P + 19% (1D)2D 1.5 138441.2 138555 114 143272 4831
89% (1S)2S + 5% (3P)2P 0.5 157388.9 157398 8 162297 4907
5d26p 62% (3F)4G + 19% (3F)2F 2.5 170473.6 170724 250 194287 23813
48% (3F)4F + 31% (3F)2D 1.5 175839.8 175579 -261 199974 24134
72% (3F)4G + 11% (3F)2F 3.5 182479.5 182524 44 205881 23401
44% (3F)4F + 20% (3F)2D 2.5 184033.0 184198 165 207833 23800
50% (3P)4D + 16% (3P)2S 0.5 186854.0 186757 -97 211679 24825
36% (3F)4G + 21% (3F)4F 4.5 190882.5 190866 -17 214816 23933
27% (3P)4D + 21% (1D)2P 1.5 190987.8 191141 153 215754 24766
20% (3F)4G + 13% (3P)4D 2.5 191516.9 191381 -136 215489 23972
39% (3P)2S + 33% (3P)4P 0.5 192087.9 192468 380 216865 24777
33% (3F)4D + 31% (3F)4F 3.5 192575.6 192473 -103 216520 23944
35% (3F)4F + 18% (3F)2D 1.5 194263.2 194306 43 217644 23381
39% (3P)4D + 21% (3P)4S 1.5 195716.1 195276 -440 220433 24717
24% (3F)2F + 20% (3F)4D 2.5 196152.8 196100 -53 219905 23752
33% (3F)2G + 17% (3F)4G 3.5 197134.0 197161 27 220461 23327
70% (3F)4D + 13% (1D)2P 0.5 198144.3 198214 70 222234 24090
57% (3F)4G + 18% (1G)2G 4.5 202263.2 202190 -73 225816 23553
46% (1G)2G + 29% (3F)4F 3.5 203069.9 203306 236 227580 24510
18% (3F)2F + 18% (1D)2F 2.5 204720.9 204779 58 228186 23465
38% (3P)4S + 20% (1D)2P 1.5 205711.8 205702 -10 230358 24646
20% (3F)2G + 18% (3F)2F 3.5 206193.4 206188 -5 230443 24250
41% (3F)4F + 34% (1G)2H 4.5 206555.3 206346 -209 231212 24657
29% (3F)2F + 28% (1D)2F 2.5 207333.9 207247 -87 231344 24010
55% (3F)4D + 20% (3F)2D 1.5 207349.5 207473 123 230967 23617
25% (3F)4D + 17% (3P)4D 3.5 209856.0 209916 60 233316 23460
90% (3F)4G + 10% (1G)2H 5.5 210146.1 209870 -276 232910 22764
60% (3P)4P + 14% (3P)4S 1.5 211634.7 211444 -191 236166 24531
39% (3P)4P + 28% (1D)2P 0.5 212086.5 212047 -40 236322 24235
25% (3P)4D + 25% (3F)2D 2.5 214387.4 214508 121 238266 23879
55% (3F)2G + 21% (3F)4F 4.5 215369.6 215554 214 238802 23432
42% (3P)4P + 27% (1D)2D 2.5 216397.1 216259 -138 240712 24315
33% (3P)4D + 16% (3F)4D 3.5 216704.6 216785 80 240859 24154
30% (1D)2D + 27% (3P)2P 1.5 217361.9 217482 120 241850 24488
53% (3P)2D + 14% (3F)2D 1.5 219500.4 219622 122 244276 24776
36% (1D)2P + 20% (3P)4P 0.5 219979.0 219971 -8 244249 24270
24% (1D)2D + 23% (3F)2D 2.5 220744.9 220682 -63 245292 24547
42% (1G)2G + 33% (1G)2H 4.5 221932.2 221965 33 246907 24975
42% (3P)2P + 30% (1S)2P 0.5 224004.9 224156 151 248952 24947
41% (1D)2F + 33% (3P)4D 3.5 225818.9 225920 101 249663 23844
89% (1G)2H + 10% (3F)4G 5.5 226320.5 226170 -150 251706 25386
33% (1G)2F + 18% (3P)2D 2.5 227935.6 228019 83 252758 24822
47% (1G)2F + 20% (1G)2G 3.5 228256.2 228274 18 253798 25542
48% (3P)2P + 16% (1D)2D 1.5 231998.6 231890 -109 256680 24681
55% (1G)2F + 15% (3F)2D 2.5 233168.5 233242 74 258815 25647
53% (1S)2P + 26% (3P)2P 0.5 236614.5 236645 31 262090 25476
87% (1S)2P + 3% (3P)2D 1.5 252203.4 252163 -40 277153 24950
1 Only the first two components, as computed in our HFR+CPOL model, are given. 2 Experimental energy level values taken from [5,6].
Table 2. Transition probabilities for experimentally observed lines in the Os VI emission spectrum.
Table 2. Transition probabilities for experimentally observed lines in the Os VI emission spectrum.
l (Ã…)1 Lower level2 Upper level2 gA (1010 s-1)
E (cm-1) J E (cm-1) J Previous3 HFR+CPOL4 MCDHF4
438.720 0.0 1.5 227935.6 2.5 0.006 0.006* 0.004
455.577 0.0 1.5 219500.4 1.5 0.068 0.061* 0.042
459.160 34417.8 2.5 252203.4 1.5 0.150 0.151 0.220
461.913 11444.1 3.5 227935.6 2.5 0.022 0.024* 0.022
466.531 6397.4 2.5 220744.9 2.5 0.092 0.087 0.053
469.251 6397.4 2.5 219500.4 1.5 0.017 0.025* 0.024
471.499 0.0 1.5 212086.5 0.5 0.025 0.023* 0.022
471.694 40202.6 1.5 252203.4 1.5 0.185 0.305 0.275
472.510 0.0 1.5 211634.7 1.5 0.069 0.070 0.044
473.616 14678.3 4.5 225818.9 3.5 0.061 0.071* 0.148
474.010 6397.4 2.5 217361.9 1.5 0.052 0.059* 0.041
475.490 6397.4 2.5 216704.6 3.5 0.007 0.011* 0.012**
475.625 22919.6 3.5 233168.5 2.5 0.104 0.095* 0.126
476.191 6397.4 2.5 216397.1 2.5 0.085 0.086* 0.084
477.151 14430.2 1.5 224004.9 0.5 0.041 0.044* 0.051
477.779 11444.1 3.5 220744.9 2.5 0.211 0.247 0.166
479.981 24828.5 2.5 233168.5 2.5 0.049 0.051* 0.030**
482.493 14678.3 4.5 221932.2 4.5 0.012 0.020* 0.009**
486.120 0.0 1.5 205711.8 1.5 0.038 0.037* 0.043
487.005 22919.6 3.5 228256.2 3.5 0.127 0.116* 0.101
487.180 11444.1 3.5 216704.6 3.5 0.247 0.234 0.196
487.241 6397.4 2.5 211634.7 1.5 0.054 0.068 0.035
487.643 14430.2 1.5 219500.4 1.5 0.049 0.065* 0.042
487.767 22919.6 3.5 227935.6 2.5 0.309 0.283 0.225
487.916 11444.1 3.5 216397.1 2.5 0.163 0.164 0.170
488.470 0.0 1.5 204720.9 2.5 0.023 0.027* 0.028**
489.648 24028.4 4.5 228256.2 3.5 0.459 0.429 0.215
490.375 11444.1 3.5 215369.6 4.5 0.206 0.193 0.153
491.577 24828.5 2.5 228256.2 3.5 0.174 0.176 0.125**
492.275 28859.8 0.5 231998.6 1.5 0.095 0.096* 0.074
492.355 24828.5 2.5 227935.6 2.5 0.096 0.097* 0.113
492.775 14430.2 1.5 217361.9 1.5 0.029 0.056* 0.027
492.857 22919.6 3.5 225818.9 3.5 0.096 0.127* 0.071
494.335 24028.4 4.5 226320.5 5.5 0.289 0.246 0.228
494.985 14678.3 4.5 216704.6 3.5 0.547 0.566* 0.527
495.131 14430.2 1.5 216397.1 2.5 0.129 0.139 0.137
495.562 24028.4 4.5 225818.9 3.5 0.116 0.191* 0.341
497.635 6397.4 2.5 207349.5 1.5 0.162 0.151* 0.057
497.671 6397.4 2.5 207333.9 2.5 0.114 0.112 0.135
498.279 14678.3 4.5 215369.6 4.5 0.496 0.567 0.660
498.536 16772.4 0.5 217361.9 1.5 0.083 0.094 0.064
499.892 27894.0 1.5 227935.6 2.5 0.116 0.128* 0.137
500.108 14430.2 1.5 214387.4 2.5 0.103 0.062* 0.090
500.511 6397.4 2.5 206193.4 3.5 0.141 0.167 0.027
502.478 22919.6 3.5 221932.2 4.5 0.078 0.108 0.047
503.144 34417.8 2.5 233168.5 2.5 0.187 0.210* 0.090
504.230 6397.4 2.5 204720.9 2.5 0.029 0.050* 0.025
504.684 0.0 1.5 198144.3 0.5 0.262 0.253 0.099**
505.302 24028.4 4.5 221932.2 4.5 0.162 0.180* 0.094
505.501 22919.6 3.5 220744.9 2.5 0.056 0.082* 0.056
506.123 34417.8 2.5 231998.6 1.5 0.157 0.190* 0.147
508.462 6397.4 2.5 203069.9 3.5 0.188 0.147 0.228
509.134 40202.6 1.5 236614.5 0.5 0.038 0.084* 0.033
509.800 0.0 1.5 196152.8 2.5 0.050 0.050* 0.010
509.914 27894.0 1.5 224004.9 0.5 0.507 0.538 0.524
510.425 24828.5 2.5 220744.9 2.5 0.123 0.168 0.137
510.492 11444.1 3.5 207333.9 2.5 0.312 0.382 0.423
510.947 0.0 1.5 195716.1 1.5 0.130 0.131 0.184
511.593 14678.3 4.5 210146.1 5.5 0.758 0.667 0.749
512.354 14678.3 4.5 209856.0 3.5 0.414 0.462* 0.805
512.442 28859.8 0.5 224004.9 0.5 0.061 0.062 0.108
512.534 11444.1 3.5 206555.3 4.5 0.035 0.031* 0.074
513.482 11444.1 3.5 206193.4 3.5 0.588 0.683 0.319
513.684 24828.5 2.5 219500.4 1.5 0.137 0.123 0.135
514.766 0.0 1.5 194263.2 1.5 0.071 0.087* 0.104**
515.025 32155.8 5.5 226320.5 5.5 3.680 3.780 3.759
516.033 22919.6 3.5 216704.6 3.5 0.081 0.083* 0.053
516.617 39600.8 2.5 233168.5 2.5 0.978 0.998 1.224
516.749 34417.8 2.5 227935.6 2.5 0.503 0.532 0.666
516.858 22919.6 3.5 216397.1 2.5 0.078 0.119 0.093
517.396 11444.1 3.5 204720.9 2.5 0.082 0.039* 0.146**
518.539 27894.0 1.5 220744.9 2.5 0.183 0.152* 0.141
518.885 40447.0 3.5 233168.5 2.5 0.105 0.113* 0.031
519.756 39600.8 2.5 231998.6 1.5 0.299 0.339 0.289
520.051 59910.8 1.5 252203.4 1.5 0.294 0.265 0.227
520.597 0.0 1.5 192087.9 0.5 0.239 0.227 0.282
521.169 14678.3 4.5 206555.3 4.5 0.925 0.848 0.580
521.386 40202.6 1.5 231998.6 1.5 0.933 0.756 0.746
521.858 11444.1 3.5 203069.9 3.5 0.343 0.250 0.593
522.008 24828.5 2.5 216397.1 2.5 1.520 1.590 1.560
522.152 0.0 1.5 191516.9 2.5 0.158 0.147 0.156
522.282 22919.6 3.5 214387.4 2.5 0.268 0.246 0.239
522.466 34417.8 2.5 225818.9 3.5 0.244 0.248 0.263
522.631 24028.4 4.5 215369.6 4.5 0.424 0.524 0.297**
522.911 37019.4 4.5 228256.2 3.5 0.876 1.360 1.264
523.020 61005.3 2.5 252203.4 1.5 1.960 1.880 1.819
523.232 28859.8 0.5 219979.0 0.5 0.099 0.071* 0.048
523.595 0.0 1.5 190987.8 1.5 0.099 0.071* 0.126
524.721 16772.4 0.5 207349.5 1.5 0.072 0.059* 0.090
525.512 14430.2 1.5 204720.9 2.5 0.262 0.252 0.279
526.939 32155.8 5.5 221932.2 4.5 0.841 0.559 1.437
526.999 6397.4 2.5 196152.8 2.5 0.038 0.101* 0.0003
528.211 6397.4 2.5 195716.1 1.5 1.060 1.280 0.907
529.270 16772.4 0.5 205711.8 1.5 0.132 0.117 0.120
529.661 37019.4 4.5 225818.9 3.5 7.410 6.770 6.104
530.070 39600.8 2.5 228256.2 3.5 0.074 0.087* 0.078
530.507 28859.8 0.5 217361.9 1.5 0.024 0.015* 0.017**
530.811 14678.3 4.5 203069.9 3.5 0.501 0.339 0.241
530.969 39600.8 2.5 227935.6 2.5 0.472 0.476 0.230
532.296 6397.4 2.5 194263.2 1.5 1.060 0.858 1.045
532.456 40447.0 3.5 228256.2 3.5 1.630 1.490 1.794
532.675 40202.6 1.5 227935.6 2.5 0.254 0.259 0.179**
533.093 14678.3 4.5 202263.2 4.5 1.920 1.830 2.568
533.367 40447.0 3.5 227935.6 2.5 0.654 0.710 0.849
535.179 0.0 1.5 186854.0 0.5 1.240 1.210 1.448
535.318 24828.5 2.5 211634.7 1.5 1.950 1.800 1.887
536.215 27894.0 1.5 214387.4 2.5 0.236 0.269 0.289**
536.691 34417.8 2.5 220744.9 2.5 0.098 0.050* 0.143
537.011 39600.8 2.5 225818.9 3.5 0.023 0.019* 0.018
537.119 6397.4 2.5 192575.6 3.5 0.151 0.159 0.203
537.294 24028.4 4.5 210146.1 5.5 0.217 0.197 0.140**
538.138 24028.4 4.5 209856.0 3.5 6.290 6.080 6.008
538.532 11444.1 3.5 197134.0 3.5 0.459 0.570 0.406
539.465 40447.0 3.5 225818.9 3.5 0.093 0.210 0.123
540.191 6397.4 2.5 191516.9 2.5 1.560 1.330 1.583
540.457 24828.5 2.5 209856.0 3.5 0.280 0.205 0.271
540.795 37019.4 4.5 221932.2 4.5 4.350 4.350 3.921
541.393 11444.1 3.5 196152.8 2.5 4.690 4.280 4.746
541.741 6397.4 2.5 190987.8 1.5 1.170 1.010 1.529
542.260 22919.6 3.5 207333.9 2.5 4.840 4.810 4.262
542.911 27894.0 1.5 212086.5 0.5 0.486 0.480 0.544
543.383 0.0 1.5 184033.0 2.5 0.211 0.195 0.256
544.063 40202.6 1.5 224004.9 0.5 0.427 0.502 0.242
544.249 27894.0 1.5 211634.7 1.5 0.028 0.047* 0.008
544.324 14430.2 1.5 198144.3 0.5 0.172 0.153 0.117
544.555 22919.6 3.5 206555.3 4.5 0.160 0.088* 0.198
545.629 22919.6 3.5 206193.4 3.5 0.147 0.265 0.138
545.771 28859.8 0.5 212086.5 0.5 0.859 0.812 0.781
545.809 32155.8 5.5 215369.6 4.5 11.100 10.030 10.048
546.616 34417.8 2.5 217361.9 1.5 2.110 2.140 1.978
547.126 28859.8 0.5 211634.7 1.5 0.112 0.124 0.104
547.863 24028.4 4.5 206555.3 4.5 3.710 3.340 3.974
548.078 14678.3 4.5 197134.0 3.5 5.150 4.870 4.651
548.589 34417.8 2.5 216704.6 3.5 0.346 0.318 0.229
548.954 24028.4 4.5 206193.4 3.5 2.290 1.820 1.889
549.515 34417.8 2.5 216397.1 2.5 0.189 0.274 0.276
550.051 22919.6 3.5 204720.9 2.5 0.410 0.113* 0.827
550.291 14430.2 1.5 196152.8 2.5 0.160 0.112* 0.058
551.011 40447.0 3.5 221932.2 4.5 0.604 0.448 0.470
551.358 16772.4 0.5 198144.3 0.5 0.675 0.638 0.632
551.616 14430.2 1.5 195716.1 1.5 0.801 0.530 1.020
552.086 11444.1 3.5 192575.6 3.5 3.200 2.870 3.444
552.843 24828.5 2.5 205711.8 1.5 0.396 0.271 0.316
553.893 40202.6 1.5 220744.9 2.5 0.635 0.569 0.484
554.642 40447.0 3.5 220744.9 2.5 6.130 2.860 3.099
555.091 22919.6 3.5 203069.9 3.5 3.530 3.270 3.614
555.333 11444.1 3.5 191516.9 2.5 0.117 0.242 0.014**
555.652 34417.8 2.5 214387.4 2.5 1.820 1.410 1.336
555.870 39600.8 2.5 219500.4 1.5 2.580 2.450 2.650
556.072 14430.2 1.5 194263.2 1.5 1.150 1.160 0.785
556.247 40202.6 1.5 219979.0 0.5 1.240 1.070 1.429
556.528 37019.4 4.5 216704.6 3.5 1.100 0.961 1.503
557.245 27894.0 1.5 207349.5 1.5 1.340 1.240 1.061
557.294 11444.1 3.5 190882.5 4.5 0.900 0.808 0.954
557.590 22919.6 3.5 202263.2 4.5 0.303 0.261 0.165
557.732 40202.6 1.5 219500.4 1.5 0.254 0.268 0.206
558.528 24028.4 4.5 203069.9 3.5 0.094 0.261* 0.095
558.833 16772.4 0.5 195716.1 1.5 0.608 0.468 0.523
560.257 28859.8 0.5 207349.5 1.5 0.513 0.455 0.537
560.695 37019.4 4.5 215369.6 4.5 0.698 0.487 0.885
561.057 24028.4 4.5 202263.2 4.5 0.179 0.254 0.080
561.828 32155.8 5.5 210146.1 5.5 0.310 0.322 0.249
562.123 14678.3 4.5 192575.6 3.5 0.652 0.808 0.682
562.374 27894.0 1.5 205711.8 1.5 1.400 1.160 1.523
562.550 39600.8 2.5 217361.9 1.5 0.877 0.761 0.641
562.880 14430.2 1.5 192087.9 0.5 0.752 0.762 0.866
562.950 6397.4 2.5 184033.0 2.5 2.000 1.900 2.145
563.407 16772.4 0.5 194263.2 1.5 0.293 0.222 0.408
564.282 34417.8 2.5 211634.7 1.5 0.068 0.055 0.112
564.465 40202.6 1.5 217361.9 1.5 0.397 0.343 0.425
564.695 14430.2 1.5 191516.9 2.5 0.209 0.230 0.303
565.448 28859.8 0.5 205711.8 1.5 0.696 0.667 0.628
565.524 27894.0 1.5 204720.9 2.5 0.881 0.764 0.782
565.625 39600.8 2.5 216397.1 2.5 0.021 0.014* 0.012**
565.919 59910.8 1.5 236614.5 0.5 1.780 1.660 1.729
566.387 14430.2 1.5 190987.8 1.5 0.343 0.301 0.367
567.352 40447.0 3.5 216704.6 3.5 1.920 1.930 1.631
567.522 14678.3 4.5 190882.5 4.5 2.580 2.360 2.380
567.916 6397.4 2.5 182479.5 3.5 0.853 0.757 0.858
568.343 40447.0 3.5 216397.1 2.5 0.127 0.203 0.173
568.698 0.0 1.5 175839.8 1.5 2.420 2.230 2.477
570.000 34417.8 2.5 209856.0 3.5 0.550 0.449 0.443
570.398 16772.4 0.5 192087.9 0.5 0.077 0.092 0.076
571.674 40447.0 3.5 215369.6 4.5 0.221 0.105* 0.071
572.123 39600.8 2.5 214387.4 2.5 0.127 0.138 0.064
573.395 32155.8 5.5 206555.3 4.5 1.590 1.900 1.534
574.005 16772.4 0.5 190987.8 1.5 0.567 0.628 0.510
574.102 40202.6 1.5 214387.4 2.5 0.648 0.668 0.743
574.909 40447.0 3.5 214387.4 2.5 0.743 0.614 0.423
577.176 59910.8 1.5 233168.5 2.5 0.611 0.514 0.701
577.256 22919.6 3.5 196152.8 2.5 0.532 0.548 0.768
577.615 37019.4 4.5 210146.1 5.5 0.060 0.061 0.050**
577.679 24028.4 4.5 197134.0 3.5 0.505 0.591 1.002
578.313 34417.8 2.5 207333.9 2.5 0.300 0.220 0.404
578.587 37019.4 4.5 209856.0 3.5 0.038 0.067* 0.125
579.963 14430.2 1.5 186854.0 0.5 0.029 0.040* 0.036
580.367 24828.5 2.5 197134.0 3.5 0.437 0.267 0.387
580.846 61005.3 2.5 233168.5 2.5 1.640 1.590 1.346
581.097 59910.8 1.5 231998.6 1.5 0.548 0.469 0.475
581.288 39600.8 2.5 211634.7 1.5 0.050 0.050* 0.040
582.154 34417.8 2.5 206193.4 3.5 0.565 0.513 0.657
583.320 40202.6 1.5 211634.7 1.5 0.042 0.038* 0.051
583.687 24828.5 2.5 196152.8 2.5 0.291 0.234 0.286
583.789 34417.8 2.5 205711.8 1.5 0.584 0.548 0.670
584.673 11444.1 3.5 182479.5 3.5 0.231 0.176 0.190
584.818 61005.3 2.5 231998.6 1.5 1.500 1.270 1.351
585.178 24828.5 2.5 195716.1 1.5 0.620 0.452 0.581
586.602 0.0 1.5 170473.6 2.5 0.549 0.506 0.554
587.188 34417.8 2.5 204720.9 2.5 0.152 0.165 0.072
587.361 39600.8 2.5 209856.0 3.5 0.121 0.055* 0.113
587.866 32155.8 5.5 202263.2 4.5 0.022 0.046* 0.038
587.954 16772.4 0.5 186854.0 0.5 0.122 0.091 0.140
589.432 22919.6 3.5 192575.6 3.5 0.037 0.044* 0.056
589.611 14430.2 1.5 184033.0 2.5 0.925 0.867 0.923
590.172 6397.4 2.5 175839.8 1.5 0.014 0.008* 0.015**
590.286 40447.0 3.5 209856.0 3.5 0.111 0.065* 0.094
591.104 37019.4 4.5 206193.4 3.5 0.368 0.305* 0.503
593.126 22919.6 3.5 191516.9 2.5 0.049 0.093* 0.021
595.148 59910.8 1.5 227935.6 2.5 0.705 0.620 0.498
595.942 14678.3 4.5 182479.5 3.5 0.343 0.373 0.320
596.136 24828.5 2.5 192575.6 3.5 1.090 1.010 1.056
596.188 39600.8 2.5 207333.9 2.5 0.575 0.577 0.473
597.903 61005.3 2.5 228256.2 3.5 1.260 1.140 1.182
599.206 40447.0 3.5 207333.9 2.5 0.192 0.163 0.275
599.325 24028.4 4.5 190882.5 4.5 0.028 0.037* 0.100
599.927 24828.5 2.5 191516.9 2.5 0.031 0.040 0.013
600.264 39600.8 2.5 206193.4 3.5 0.249 0.114 0.477
601.066 27894.0 1.5 194263.2 1.5 0.047 0.042* 0.050
601.826 24828.5 2.5 190987.8 1.5 0.045 0.042* 0.033
602.006 39600.8 2.5 205711.8 1.5 0.060 0.059 0.042
602.225 37019.4 4.5 203069.9 3.5 0.027 0.056* 0.014
603.331 40447.0 3.5 206193.4 3.5 0.317 0.318 0.309
604.200 40202.6 1.5 205711.8 1.5 0.031 0.023* 0.031
604.580 28859.8 0.5 194263.2 1.5 0.051 0.058 0.071
605.160 37019.4 4.5 202263.2 4.5 0.035 0.024* 0.059
606.743 61005.3 2.5 225818.9 3.5 0.229 0.077* 0.072
607.834 40202.6 1.5 204720.9 2.5 0.345 0.342 0.354
608.738 40447.0 3.5 204720.9 2.5 0.318 0.376 0.254
609.409 59910.8 1.5 224004.9 0.5 0.114 0.082* 0.171
611.164 27894.0 1.5 191516.9 2.5 0.083 0.081 0.090
611.734 39600.8 2.5 203069.9 3.5 0.721 0.696 0.377
612.637 28859.8 0.5 192087.9 0.5 0.076 0.066 0.102
614.914 40447.0 3.5 203069.9 3.5 0.022 0.020* 0.014**
616.793 28859.8 0.5 190987.8 1.5 0.114 0.102 0.138
617.982 40447.0 3.5 202263.2 4.5 0.161 0.145 0.121**
619.542 14430.2 1.5 175839.8 1.5 0.150 0.141 0.174
621.766 59910.8 1.5 220744.9 2.5 0.173 0.140 0.090
624.732 59910.8 1.5 219979.0 0.5 0.151 0.154 0.090
626.020 61005.3 2.5 220744.9 2.5 0.299 0.249 0.278
626.604 59910.8 1.5 219500.4 1.5 0.190 0.162 0.140
626.728 22919.6 3.5 182479.5 3.5 0.057 0.051 0.063
628.126 24828.5 2.5 184033.0 2.5 0.096 0.094 0.103
628.665 16772.4 0.5 175839.8 1.5 0.049 0.043 0.060
628.813 11444.1 3.5 170473.6 2.5 0.018 0.017* 0.019
630.014 32155.8 5.5 190882.5 4.5 0.199 0.261 0.325
630.939 61005.3 2.5 219500.4 1.5 0.089 0.074* 0.096
631.109 24028.4 4.5 182479.5 3.5 0.087 0.111 0.165
632.927 28859.8 0.5 186854.0 0.5 0.027 0.027 0.033
634.307 24828.5 2.5 182479.5 3.5 0.009 0.012 0.011
634.787 39600.8 2.5 197134.0 3.5 0.043 0.046 0.050**
635.136 59910.8 1.5 217361.9 1.5 0.024 0.031* 0.038
636.534 34417.8 2.5 191516.9 2.5 0.043 0.034* 0.047
638.219 40447.0 3.5 197134.0 3.5 0.100 0.074 0.114
638.698 34417.8 2.5 190987.8 1.5 0.070 0.066 0.087
638.764 39600.8 2.5 196152.8 2.5 0.175 0.167 0.170
639.568 61005.3 2.5 217361.9 1.5 0.034 0.032* 0.039
640.549 39600.8 2.5 195716.1 1.5 0.124 0.138 0.156
640.848 14430.2 1.5 170473.6 2.5 0.052 0.052 0.063
646.570 39600.8 2.5 194263.2 1.5 0.023 0.029* 0.016
647.344 59910.8 1.5 214387.4 2.5 0.016 0.012* 0.012
649.097 40202.6 1.5 194263.2 1.5 0.006 0.004* 0.004
649.931 37019.4 4.5 190882.5 4.5 0.078 0.074* 0.085
658.393 40202.6 1.5 192087.9 0.5 0.040 0.039 0.055
661.943 40447.0 3.5 191516.9 2.5 0.009 0.014* 0.008
664.738 40447.0 3.5 190882.5 4.5 0.048 0.041 0.043**
668.385 34417.8 2.5 184033.0 2.5 0.046 0.040* 0.058
675.399 34417.8 2.5 182479.5 3.5 0.019 0.015* 0.017**
686.606 24828.5 2.5 170473.6 2.5 0.005 0.005* 0.005
695.257 40202.6 1.5 184033.0 2.5 0.011 0.011* 0.015
696.443 40447.0 3.5 184033.0 2.5 0.016 0.011* 0.016
701.360 27894.0 1.5 170473.6 2.5 0.029 0.026 0.032
704.066 40447.0 3.5 182479.5 3.5 0.031 0.031 0.037
764.104 39600.8 2.5 170473.6 2.5 0.025 0.023 0.028
823.207 61005.3 2.5 182479.5 3.5 0.007 0.007* 0.006
940.059 100973.9 2.5 207349.5 1.5 0.342 0.262 0.337
944.741 108538.4 3.5 214387.4 2.5 0.258 0.194 0.259
958.446 123600.5 3.5 227935.6 2.5 0.500 0.302 0.420
975.001 114140.1 2.5 216704.6 3.5 0.192 0.134 0.129
977.922 114140.1 2.5 216397.1 2.5 0.236 0.175 0.190
984.931 115173.8 4.5 216704.6 3.5 0.512 0.354 0.426
986.987 108538.4 3.5 209856.0 3.5 0.389 0.362 0.388
997.955 97940.4 1.5 198144.3 0.5 0.585 0.423 0.515
998.040 115173.8 4.5 215369.6 4.5 1.040 0.870 1.066
998.213 132989.9 3.5 233168.5 2.5 1.580 1.030 1.661
1012.199 108538.4 3.5 207333.9 2.5 0.143 0.157 0.113
1018.199 97940.4 1.5 196152.8 2.5 0.457 0.388 0.343
1018.614 138441.2 1.5 236614.5 0.5 0.166 0.119 0.141
1020.229 108538.4 3.5 206555.3 4.5 0.759 0.632 0.324
1021.475 118499.8 1.5 216397.1 2.5 1.360 0.894 1.236
1024.015 108538.4 3.5 206193.4 3.5 0.306 0.282 0.053
1026.422 123318.6 1.5 220744.9 2.5 0.583 0.392 0.589
1026.617 130849.6 4.5 228256.2 3.5 1.120 0.729 1.187
1028.050 114363.2 0.5 211634.7 1.5 0.792 0.561 0.769
1029.397 123600.5 3.5 220744.9 2.5 0.714 0.394 0.478
1034.565 123318.6 1.5 219979.0 0.5 0.253 0.179 0.237
1035.410 131676.2 2.5 228256.2 3.5 0.573 0.268 0.333
1038.184 97940.4 1.5 194263.2 1.5 0.838 0.617 0.833
1038.864 131676.2 2.5 227935.6 2.5 0.662 0.419 0.630
1039.709 123318.6 1.5 219500.0 1.5 0.203 0.076 0.051
1039.943 100973.9 2.5 197134.0 3.5 1.500 1.140 1.435**
1047.439 130849.6 4.5 226320.5 5.5 3.760 2.580 3.576**
1049.695 132989.9 3.5 228256.2 3.5 0.833 0.688 0.945
1050.652 100973.9 2.5 196152.8 2.5 0.568 0.469 0.507
1052.939 115173.8 4.5 210146.1 5.5 3.670 2.670 3.612**
1053.231 132989.9 3.5 227935.6 2.5 0.276 0.188 0.167
1054.694 157388.9 0.5 252203.4 1.5 1.190 0.801 1.177
1055.665 138441.2 1.5 233168.5 2.5 0.327 0.180 0.200
1056.151 115173.8 4.5 209856.0 3.5 0.345 0.247 0.403
1057.849 108538.4 3.5 203069.9 3.5 0.483 0.264 0.726
1062.219 131676.2 2.5 225818.9 3.5 1.730 1.390 1.944**
1063.333 123318.6 1.5 217361.9 1.5 0.733 0.461 0.742
1066.956 108538.4 3.5 202263.2 4.5 1.890 1.310 2.232**
1068.531 118499.8 1.5 212086.5 0.5 0.335 0.240 0.333
1068.647 97940.4 1.5 191516.9 2.5 0.382 0.230 0.477**
1068.864 138441.2 1.5 231998.6 1.5 1.140 0.655 1.028
1071.936 100973.9 2.5 194263.2 1.5 0.138 0.085 0.126
1072.848 114140.1 2.5 207349.5 1.5 0.603 0.406 0.569
1074.069 123600.5 3.5 216704.6 3.5 0.471 0.388 0.436
1075.424 114363.2 0.5 207349.5 1.5 0.102 0.084 0.102
1077.246 132989.9 3.5 225818.9 3.5 0.501 0.279 0.341
1086.336 114140.1 2.5 206193.4 3.5 1.030 0.742 0.605**
1089.694 123600.5 3.5 215369.6 4.5 1.510 1.030 1.418**
1094.314 115173.8 4.5 206555.3 4.5 0.490 0.329 0.482
1098.083 123318.6 1.5 214387.4 2.5 0.276 0.202 0.231
1098.651 115173.8 4.5 206193.4 3.5 0.012 0.011* 0.019
1101.487 123600.5 3.5 214387.4 2.5 0.517 0.352 0.578
1103.982 114140.1 2.5 204720.9 2.5 0.366 0.186 0.482
1104.445 100973.9 2.5 191516.9 2.5 0.237 0.126 0.316
1117.393 138441.2 1.5 227935.6 2.5 0.387 0.267 0.478
1122.731 131676.2 2.5 220744.9 2.5 0.343 0.235 0.414
1124.334 132989.9 3.5 221932.2 4.5 1.320 0.942 1.365**
1124.487 114140.1 2.5 203069.9 3.5 0.146 0.069 0.532**
1126.533 123318.6 1.5 212086.5 0.5 0.119 0.091 0.126
1141.380 108538.4 3.5 196152.8 2.5 0.103 0.052 0.140
1183.150 130849.6 4.5 215369.6 4.5 0.146 0.107 0.132
1213.899 132989.9 3.5 215369.6 4.5 0.218 0.082 0.192**
1214.431 108538.4 3.5 190882.5 4.5 0.242 0.195 0.330**
1226.917 100973.9 2.5 182479.5 3.5 0.416 0.325 0.487**
1262.213 157388.9 0.5 236614.5 0.5 0.239 0.153 0.255**
1283.719 97940.4 1.5 175839.8 1.5 0.181 0.126 0.197
1291.962 115173.8 4.5 192575.6 3.5 0.747 0.569 0.818
1292.383 114140.1 2.5 191516.9 2.5 0.117 0.082 0.133
1320.854 115173.8 4.5 190882.5 4.5 0.774 0.572 0.861
1324.610 108538.4 3.5 184033.0 2.5 0.516 0.391 0.565
1350.694 131676.2 2.5 205711.8 1.5 0.416 0.323 0.471
1352.428 108538.4 3.5 182479.5 3.5 0.472 0.342 0.501
1366.055 132989.9 3.5 206193.4 3.5 0.162 0.088 0.315
1378.678 97940.4 1.5 170473.6 2.5 0.451 0.345 0.501**
1381.265 123318.6 1.5 195716.1 1.5 0.100 0.070 0.088
1426.942 132989.9 3.5 203069.9 3.5 0.205 0.215 0.148
1430.758 114140.1 2.5 184033.0 2.5 0.180 0.128 0.193
1443.568 132989.9 3.5 202263.2 4.5 0.085 0.073 0.028**
1449.783 123600.5 3.5 192575.6 3.5 0.253 0.196 0.262
1451.520 138441.2 1.5 207333.9 2.5 0.111 0.060 0.162**
1463.294 114140.1 2.5 182479.5 3.5 0.216 0.157 0.216**
1466.297 123318.6 1.5 191516.9 2.5 0.114 0.097 0.113**
1486.275 123600.5 3.5 190882.5 4.5 0.357 0.252 0.346**
1 Experimental wavelengths from [5]. 2 Experimental energy levels from [5,6]. 3 Calculated transition probabilities from [5]. 4 Calculated transition probabilities obtained in the present work. gA-values with * symbol correspond to transitions for which CF < 0.05 in HFR+CPOL calculations while gA-values with ** symbol correspond to transitions for which dT > 0.25 in MCDHF calculations (see text).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated