Submitted:
03 January 2025
Posted:
04 January 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Design
2.3. Participants
2.4. Dietary Plan
2.5. Exercise Protocol
2.6. Measurements
2.7. Blood Samples Analyses
2.8. Blood Pressure
2.9. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Dietary and Exercise Interventions
3.3. Cardiovascular Risk Factors
3.4. Hematological Parameters
3.5. Blood Pressure
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sobczak AIS, Stewart AJ (2019) Coagulatory Defects in Type-1 and Type-2 Diabetes. Int J Mol Sci. [CrossRef]
- Unger T, Borghi C, Charchar F et al. (2020) 2020 International Society of Hypertension Global Hypertension Practice Guidelines. (2020) 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 75, 1334–1357. [CrossRef]
- Yen F-S, Wei JC-C, Chiu L-T et al. (2022) Diabetes, hypertension, and cardiovascular disease development. ( and cardiovascular disease development. Journal of Translational Medicine 20, 9. [CrossRef]
- Rapsomaniki E, Timmis A, George J et al. (2014) Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet. [CrossRef]
- Chen G, McAlister FA, Walker RL et al. (2011) Cardiovascular outcomes in framingham participants with diabetes: the importance of blood pressure. Hypertension. [CrossRef]
- Dongway AC, Faggad AS, Zaki HY et al. (2015) C-reactive protein is associated with low-density lipoprotein cholesterol and obesity in type 2 diabetic Sudanese. Diabetes Metab Syndr Obes. [CrossRef]
- Morrato EH, Hill JO, Wyatt HR et al. (2007) Physical activity in U.S. adults with diabetes and at risk for developing diabetes, 2003. ( 2003. Diabetes Care 30, 203–209. [CrossRef]
- Pan B, Ge L, Xun YQ et al. (2018) Exercise training modalities in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Int J Behav Nutr Phys Act. [CrossRef]
- Cosentino F, Grant PJ, Aboyans V et al. (2020) 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. [CrossRef]
- Hordern MD, Dunstan DW, Prins JB et al. (2012) Exercise prescription for patients with type 2 diabetes and pre-diabetes: a position statement from Exercise and Sport Science Australia. J Sci Med Sport. [CrossRef]
- Ebrahim H, Fiseha T, Ebrahim Y et al. (2022) Comparison of hematological parameters between type 2 diabetes mellitus patients and healthy controls at Dessie comprehensive specialized hospital, Northeast Ethiopia: Comparative cross-sectional study. PLoS One. [CrossRef]
- Yatsutani H, Mori H, Ito H et al. (2020) Endocrine and Metabolic Responses to Endurance Exercise Under Hot and Hypoxic Conditions. ( 2020) Endocrine and Metabolic Responses to Endurance Exercise Under Hot and Hypoxic Conditions. Front Physiol 11, 932. [CrossRef]
- Baker JM, Parise G (2016) Skeletal Muscle Erythropoietin Expression Is Responsive to Hypoxia and Exercise. Med Sci Sports Exerc, 1301. [CrossRef]
- Glazachev OS, Kryzhanovskaya SY, Zapara MA et al. (2021) Safety and Efficacy of Intermittent Hypoxia Conditioning as a New Rehabilitation/ Secondary Prevention Strategy for Patients with Cardiovascular Diseases: A Systematic Review and Meta-analysis. Curr Cardiol Rev. [CrossRef]
- Kindlovits R, Pereira A, Sousa AC et al. (2022) Effects of Acute and Chronic Exercise in Hypoxia on Cardiovascular and Glycemic Parameters in Patients with Type 2 Diabetes: A Systematic Review. High Alt Med Biol. [CrossRef]
- Sato T, Takeda N (2023) The roles of HIF-1alpha signaling in cardiovascular diseases. J Cardiol. [CrossRef]
- Lindholm ME, Rundqvist H (2016) Skeletal muscle hypoxia-inducible factor-1 and exercise. Exp Physiol. [CrossRef]
- Weidemann A, Johnson RS (2008) Biology of HIF-1alpha. Cell Death Differ. [CrossRef]
- Sakagami H, Makino Y, Mizumoto K et al. (2014) Loss of HIF-1alpha impairs GLUT4 translocation and glucose uptake by the skeletal muscle cells. Am J Physiol Endocrinol Metab. [CrossRef]
- Arauz-Pacheco C, Parrott MA, Raskin P et al. (2004) Hypertension management in adults with diabetes. ( 2004) Hypertension management in adults with diabetes. Diabetes Care 27 Suppl 1, S65–67. [CrossRef]
- Eckel RH, Jakicic JM, Ard JD et al. (2014) 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. [CrossRef]
- Evert AB, Dennison M, Gardner CD et al. (2019) Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care. [CrossRef]
- Bueno NB, de Melo IS, de Oliveira SL et al. (2013) Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br J Nutr. [CrossRef]
- Saslow LR, Jones LM, Sen A et al. (2023) Comparing Very Low-Carbohydrate vs DASH Diets for Overweight or Obese Adults With Hypertension and Prediabetes or Type 2 Diabetes: A Randomized Trial. Ann Fam Med. [CrossRef]
- McSwiney FT, Doyle L (2019) Low-Carbohydrate Ketogenic Diets in Male Endurance Athletes Demonstrate Different Micronutrient Contents and Changes in Corpuscular Haemoglobin over 12 Weeks. Sports (Basel). [CrossRef]
- Kawamoto R, Tabara Y, Kohara K et al. (2013) Hematological parameters are associated with metabolic syndrome in Japanese community-dwelling persons. Endocrine. [CrossRef]
- Mansoori A, Sahranavard T, Hosseini ZS et al. (2023) Prediction of type 2 diabetes mellitus using hematological factors based on machine learning approaches: a cohort study analysis. Sci Rep. [CrossRef]
- Crawford JH, White CR, Patel RP (2003) Vasoactivity of S-nitrosohemoglobin: role of oxygen, heme, and NO oxidation states. Blood, 4415. [CrossRef]
- Floras JS, Meneilly G (2001) Insulin-mediated blood flow and glucose uptake. Can J Cardiol, /: A, 7A-10A. https, 1138.
- Crawford JH, Chacko BK, Kevil CG et al. (2004) The red blood cell and vascular function in health and disease. ( 2004) The red blood cell and vascular function in health and disease. Antioxid Redox Signal 6, 992–999. [CrossRef]
- Goodyear MD, Krleza-Jeric K, Lemmens T (2007) The Declaration of Helsinki. BMJ. [CrossRef]
- Kindlovits R, Sousa AC, Viana JL et al. (2024) Combined low-carbohydrate diet and long-term exercise in hypoxia in type 2 diabetes: A randomized controlled trial protocol to assess glycemic control, cardiovascular risk factors and body composition. Nutr Health. [CrossRef]
- Kindlovits R, Sousa AC, Viana JL et al. (2024) Eight Weeks of Intermittent Exercise in Hypoxia, with or without a Low-Carbohydrate Diet, Improves Bone Mass and Functional and Physiological Capacity in Older Adults with Type 2 Diabetes. Nutrients. [CrossRef]
- Cioffi I, Marra M, Pasanisi F et al. (2021) Prediction of resting energy expenditure in healthy older adults: A systematic review. Clin Nutr. [CrossRef]
- Sjostrom M, Ainsworth BE, Bauman A et al. (2005) Guidelines for data processing analysis of the International Physical Activity Questionnaire (IPAQ) - Short and long forms.
- Dyson PA, Twenefour D, Breen C et al. (2018) Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet Med. [CrossRef]
- Silverii GA, Botarelli L, Dicembrini I et al. (2020) Low-carbohydrate diets and type 2 diabetes treatment: a meta-analysis of randomized controlled trials. Acta Diabetol. [CrossRef]
- Idrose AM, Juliana N, Azmani S et al. (2022) Singing Improves Oxygen Saturation in Simulated High-Altitude Environment. J Voice. [CrossRef]
- Scherr J, Wolfarth B, Christle JW et al. (2013) Associations between Borg's rating of perceived exertion and physiological measures of exercise intensity. Eur J Appl Physiol. [CrossRef]
- van Zuuren EJ, Fedorowicz Z, Kuijpers T et al. (2018) Effects of low-carbohydrate- compared with low-fat-diet interventions on metabolic control in people with type 2 diabetes: a systematic review including GRADE assessments. Am J Clin Nutr. [CrossRef]
- Faul F, Erdfelder E, Lang AG et al. (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. [CrossRef]
- Hein M, Chobanyan-Jurgens K, Tegtbur U et al. (2021) Effect of normobaric hypoxic exercise on blood pressure in old individuals. ( 2021) Effect of normobaric hypoxic exercise on blood pressure in old individuals. Eur J Appl Physiol 121, 817–825. [CrossRef]
- Schobersberger W, Schmid P, Lechleitner M et al. (2003) Austrian Moderate Altitude Study 2000 (AMAS 2000). The effects of moderate altitude (1,700 m) on cardiovascular and metabolic variables in patients with metabolic syndrome. ( 700 m) on cardiovascular and metabolic variables in patients with metabolic syndrome. Eur J Appl Physiol 88, 506–514. [CrossRef]
- Kong Z, Zang Y, Hu Y (2014) Normobaric hypoxia training causes more weight loss than normoxia training after a 4-week residential camp for obese young adults. Sleep Breath. [CrossRef]
- Morishima T, Hasegawa Y, Sasaki H et al. (2015) Effects of different periods of hypoxic training on glucose metabolism and insulin sensitivity. ( 2015) Effects of different periods of hypoxic training on glucose metabolism and insulin sensitivity. Clin Physiol Funct Imaging 35, 104–109. [CrossRef]
- Gonzalez-Muniesa P, Lopez-Pascual A, de Andres J et al. (2015) Impact of intermittent hypoxia and exercise on blood pressure and metabolic features from obese subjects suffering sleep apnea-hypopnea syndrome. J Physiol Biochem. [CrossRef]
- Stewart KJ, Bacher AC, Turner KL et al. (2005) Effect of exercise on blood pressure in older persons: a randomized controlled trial. Arch Intern Med. [CrossRef]
- Gatterer H, Haacke S, Burtscher M et al. (2015) Normobaric Intermittent Hypoxia over 8 Months Does Not Reduce Body Weight and Metabolic Risk Factors--a Randomized, Single Blind, Placebo-Controlled Study in Normobaric Hypoxia and Normobaric Sham Hypoxia. Obes Facts. [CrossRef]
- Millet GP, Roels B, Schmitt L et al. (2010) Combining hypoxic methods for peak performance. ( 2010) Combining hypoxic methods for peak performance. Sports Med 40, 1–25. [CrossRef]
- Clark SA, Quod MJ, Clark MA et al. (2009) Time course of haemoglobin mass during 21 days live high:train low simulated altitude. Eur J Appl Physiol. [CrossRef]
- Liu X, Yang C, Zhang X et al. (2024) Association between hemoglobin concentration and hypertension risk in native Tibetans at high altitude. ( 2024) Association between hemoglobin concentration and hypertension risk in native Tibetans at high altitude. J Clin Hypertens (Greenwich) 26, 17–23. [CrossRef]
- Neya M, Enoki T, Ohiwa N et al. (2013) Increased hemoglobin mass and VO2max with 10 h nightly simulated altitude at 3000 m. ( 2013) Increased hemoglobin mass and VO2max with 10 h nightly simulated altitude at 3000 m. Int J Sports Physiol Perform 8, 366–372. [CrossRef]
- Billett HH (1990) Hemoglobin and Hematocrit. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.. https://www.ncbi.nlm.nih.gov/pubmed/21250102 [HK Walker, WD Hall and JW Hurst, editors]. Boston.
- Alkhaldy HY, Awan ZA, Abouzaid AA et al. (2022) Effect of Altitude on Hemoglobin and Red Blood Cell Indices in Adults in Different Regions of Saudi Arabia. ( 2022) Effect of Altitude on Hemoglobin and Red Blood Cell Indices in Adults in Different Regions of Saudi Arabia. Int J Gen Med 15, 3559–3565. [CrossRef]
- Yan Y, Mao Z, Jia Q et al. (2023) Changes in blood pressure, oxygen saturation, hemoglobin concentration, and heart rate among low-altitude migrants living at high altitude (5380 m) for 360 days. Am J Hum Biol. [CrossRef]
- Burtscher M, Pachinger O, Ehrenbourg I et al. (2004) Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. ( 2004) Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol 96, 247–254. [CrossRef]
- Nishiwaki M, Kawakami R, Saito K et al. (2011) Vascular adaptations to hypobaric hypoxic training in postmenopausal women. ( 2011) Vascular adaptations to hypobaric hypoxic training in postmenopausal women. J Physiol Sci 61, 83–91. [CrossRef]
- Urdampilleta A, Gonzalez-Muniesa P, Portillo MP et al. (2012) Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. ( 2012) Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. J Physiol Biochem 68, 289–304. [CrossRef]
- Ladage D, Braunroth C, Lenzen E et al. (2012) Influence of intermittent hypoxia interval training on exercise-dependent erythrocyte NOS activation and blood pressure in diabetic patients. Can J Physiol Pharmacol. [CrossRef]
- Jain T, Nikolopoulou EA, Xu Q et al. (2018) Hypoxia inducible factor as a therapeutic target for atherosclerosis. ( 2018) Hypoxia inducible factor as a therapeutic target for atherosclerosis. Pharmacol Ther 183, 22–33. [CrossRef]
- Tremblay JC, Hoiland RL, Howe CA et al. (2019) Global REACH 2018: High Blood Viscosity and Hemoglobin Concentration Contribute to Reduced Flow-Mediated Dilation in High-Altitude Excessive Erythrocytosis. Hypertension. [CrossRef]
- Zidek V, Fucikova A, Musilova A et al. (1999) Hematocrit and hemoglobin values are negatively correlated with insulin resistance in spontaneous hypertension. Folia Biol (Praha), 1073.
- McKay AKA, Peeling P, Pyne DB et al. (2019) Chronic Adherence to a Ketogenic Diet Modifies Iron Metabolism in Elite Athletes. ( 2019) Chronic Adherence to a Ketogenic Diet Modifies Iron Metabolism in Elite Athletes. Med Sci Sports Exerc 51, 548–555. [CrossRef]
- Yu JG, Javorschi S, Hevener AL et al. (2002) The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. ( and type 2 diabetic subjects. Diabetes 51, 2968–2974. [CrossRef]
- Kutlu M, Sonmez A, Genc H et al. (2009) Relationship between hemoglobin and CD40 ligand in prediabetes. ( 2009) Relationship between hemoglobin and CD40 ligand in prediabetes. Clin Invest Med 32, E244. [CrossRef]
- Missiou A, Wolf D, Platzer I et al. (2010) CD40L induces inflammation and adipogenesis in adipose cells--a potential link between metabolic and cardiovascular disease. Thromb Haemost. [CrossRef]
- Thabane L, Ma J, Chu R et al. (2010) A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol. [CrossRef]
| Variables | CTRL group | EH group | EH+LCHF group | p-Value |
|---|---|---|---|---|
| Gender (male:female) | 7:7 | 8:6 | 9:5 | 0.747 |
| Age (years) | 74.4 (3.6) | 71.6 (3.8) | 70.7 (4.0) | 0.110 |
| Body mass index (kg/m2) | 29.4 (4.1) | 28.3 (4.0) | 29.3 (3.4) | 0.707 |
| Hemoglobin A1c (%) | 6.9 (0.8) | 7.1 (0.7) | 6.8 (0.5) | 0.647 |
| Fasting glucose (mg/dL) | 118.7 (27.8) | 117.9 (22.3) | 108.2 (19.7) | 0.435 |
| Systolic blood pressure (mmHg) | 154.7 (20.9) | 142.3 (18.2) | 148.0 (18.9) | 0.254 |
| Diastolic blood pressure(mmHg) | 77.5 (8.1) | 76.3 (11.7) | 82.9 (16.3) | 0.347 |
| Mean arterial blood pressure (mmHg) | 107.9 (16.9) | 98.7 (13.6) | 107.1 (15.8) | 0.234 |
| Variables | CTRL group | EH group | EH+LCHF group | p-Value | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pre | Post | Δ | Pre | Post | Δ | Pre | Post | Δ | Moments | Groups | ||
| Cholesterol (mmol/L) | 181.2 (49.5) | 188.1 (51.8) | 2.4 (17.7) | 178.9 (30.1) | 161.9 (23.2) | 7.1 (6.7) | 158.5 (46.4) | 143.2 (42.7) | 7.3 (16.4) | 0.082 | ||
| 0.135 | ||||||||||||
| HDL-c (mmol/L) | 53.8 (11.7) | 52.5 (10.6) | 0.5 (2.2) | 52.3 (13.1) | 52.0 (9.4) | 0.1 (2.8) | 56.2 (14.0) | 57.2 (13.9) | 0.4 (1.4) | 0.987 | ||
| 0.511 | ||||||||||||
| LDL-c (mmol/L) | 100.4 (43.2) | 112.5 (48.4) | 3.6 (14.3) | 104.5 (29.2) | 93.8 (19.1) | 3.3 (6.4) | 87.7 (36.6) | 77.7 (28.4) | 3.5 (8.3) | 0.501 | ||
| 0.119 | ||||||||||||
| TAG (mmol/L) | 134.6 (61.5) | 133.8 (46.4) | 1.2 (9.4) | 136.5 (59.6) | 126.8 (47.1) | 2.1 (9.0) | 96.2 (29.8) | 91.2 (29.6) | 2.5 (9.9) | 0.435 | ||
| 0.518 | ||||||||||||
| CRP (mg/dL) | 1.8 (2.4) | 3.3 (6.4) | 0.1 (0.3) | 1.9 (2.1) | 1.6 (1.7) | 0.1 (0.1) | 3.4 (4.7) | 1.7 (1.3) | 0.2 (0.3) | 0.155 | ||
| 0.19 | ||||||||||||
| Variables | CTRL group | EH group | EH+LCHF group | p-Value | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pre | Post | Δ | Pre | Post | Δ | Pre | Post | Δ | Moments | Groups | ||||
| Erythrocytes (L) | 4.7 (0.4) | 4.7 (0.5) | 0.1 (0.1) | 4.5 (0.4) | 4.5 (0.5) | 0.1 (0.2) | 4.6 (0.51) | 4.7 (0.5) | 0.1 (0.2) | 0.585 | ||||
| 0.122 | ||||||||||||||
| Hemoglobin (g/dL) | 14.2 (1.0) | 14.2 (1.2) | 0.1 (0.5) | 13.9 (1.3) | 13.7 (1.4) | 0.1 (0.6) | 13.8 (1.6) | 13.7 (1.7) | 0.1 (0.5) | 0.355 | ||||
| 0.668 | ||||||||||||||
| MCV (%) | 42.7 (3.1) | 42.7 (3.5) | 0.1 (1.3) | 41.7 (3.6) | 41.1 (4.3) | 0.5 (1.9) | 41.9 (4.1) | 41.9 (5.0) | 0.1 (1.6) | 0.460 | ||||
| 0.611 | ||||||||||||||
| MCH (pg) | 29.9 (2.2) | 29.2 (2.2) | 0.7 (2.7) | 30.2 (1.2) | 31.3 (1.7) | 1.1 (1.3) | 29.7 (1.8) | 29.6 (1.8) | 0.1 (0.3) | 0.733 | ||||
| 0.027# | ||||||||||||||
| MCHC (g/dL) | 33.3 (1.3) | 33.4 (1.3) | 0.1 (0.3) | 33.3 (1.1) | 33.4 (1.3) | 0.1 (0.3) | 32.9 (0.9) | 32.6 (0.8) | 0.2 (0.5) | 0.669 | ||||
| 0.046# | ||||||||||||||
| RDW (%) | 12.5 (0.5) | 12.6 (0.7) | 0.1 (0.3) | 12.8 (0.5) | 12.8 (0.5) | 0.1 (0.1) | 13.4 (0.6) | 13.5 (0.6) | 0.1 (0.4) | 0.059 | ||||
| 0.911 | ||||||||||||||
| Leukocytes (L) | 7.4 (2.1) | 7.1 (1.9) | 0.2 (1.0) | 6.1 (1.3) | 6.3 (1.1) | 0.2 (1.0) | 6.1 (1.4) | 5.8 (1.1) | 0.3 (0.9) | 0.999 | ||||
| 0.156 | ||||||||||||||
| Neutrophils (%) | 62.2 (8.0) | 60.3 (10.1) | 1.8 (5.2) | 63.1 (7.2) | 63.9 (7.7) | 0.9 (5.4) | 61.5 (7.5) | 59.3 (7.4) | 2.1 (4.6) | 0.192 | ||||
| 0.241 | ||||||||||||||
| Eosinophils (%) | 2.6 (1.4) | 2.5 (1.4) | 0.1 (0.4) | 2.2 (1.1) | 1.9 (1.1) | 0.2 (0.6) | 2.4 (1.4) | 2.8 (1.1) | 0.37 (1.1) | 0.863 | ||||
| 0.118 | ||||||||||||||
| Basophils (%) | 0.5 (0.1) | 0.4 (0.1) | 0.1 (0.1) | 0.6 (0.2) | 0.7 (0.2) | 0.1 (0.2) | 0.6 (0.2) | 0.6 (0.3) | 0.1 (0.2) | 0.691 | ||||
| 0.138 | ||||||||||||||
| Lymphocytes (%) | 28.6 (6.3) | 30.4 (9.1) | 1.7 (4.7) | 28.1 (6.9) | 27.1 (7.1) | 0.9 (5.1) | 28.7 (7.2) | 30.3 (8.1) | 1.6 (4.4) | 0.279 | ||||
| 0.260 | ||||||||||||||
| Monocytes (%) | 5.9 (1.4) | 6.2 (1.6) | 0.2 (1.3) | 5.9 (1.1) | 6.1 (1.1) | 0.2 (0.6) | 6.7 (1.2) | 6.90 (1.6) | 0.1 (1.1) | 0.303 | ||||
| 0.967 | ||||||||||||||
| Platelets (L) | 218.2 (38.0) | 212.8 (35.4) | 5.4 (13.8) | 213.5 (43.3) | 227.4 (31.2) | 13.8 (27.1) | 219.1 (35.2) | 223.2 (35.9) | 4.1 (32.0) | 0.105 | ||||
| 0.066 | ||||||||||||||
| Variables | CTRL group | EH group | EH+LCHF group | p-Value | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pre | Post | Δ | Pre | Post | Δ | Pre | Post | Δ | Moments | Groups | ||||
| SBP (mmHg) | 154.7 (20.9) | 142.5 (16.6) | 12.2 (10.2) | 142.3 (18.2) | 124.5 (14.6) | 17.7 (15.6) | 148.0 (18.9) | 126.5 (18.6) | 21.5 (10.6) | <0.001* 0.151 | ||||
| DBP (mmHg) | 77.5 (8.1) | 72.2 (7.7) | 5.4 (5.2) | 76.3 (11.7) | 71.8 (12.0) | 4.1 (6.6) | 82.9 (16.3) | 71.4 (8.4) | 9.0 (8.9) | <0.001* 0.124 | ||||
| MAP (mmHg) | 107.9 (16.9) | 102.9 (10.2) | 5.0 (13.3) | 98.7 (13.6) | 87.0 (17.8) | 11.7 (15.6) | 107.1 (15.8) | 92.0 (12.1) | 15.1 (12.3) | <0.001* 0.158 | ||||
| RHR (bpm) | 68.5 (9.5) | 69.0 (9.7) | 0.5 (5.2) | 64.7 (10.5) | 67.3 (10.1) | 2.4 (8.1) | 62.1 (8.1) | 65.0 (9.5) | 2.8 (8.3) | 0.090 0.660 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
