Submitted:
20 December 2024
Posted:
23 December 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Data and Methods
Results
Discussion
Limitations
Conclusion
References
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2020, 40, 606–630. [Google Scholar] [CrossRef] [PubMed]
- EPA. Environmental Protection Agency. “Our Current Understanding of the Human Health and Environmental Risks of PFAS”. 2023. Available online: https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas (accessed on 31 May 2023).
- Dalsager, L.; Christensen, N.; Halekoh, U.; Timmermann, C.A.G.; Nielsen, F.; Kyhl, H.B.; Husby, S.; Grandjean, P.; Jensen, T.K.; Andersen, H.R. Exposure to perfluoroalkyl substances during fetal life and hospitalization for infectious disease in childhood: A study among 1,503 children from the Odense Child Cohort. Environ. Int. 2021, 149, 106395. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Zhou, Y.; Zhang, X.; Lin, X.; Li, J.; Liu, P.; Lee, H.K.; Huang, Z. The sources and bioaccumulation of per- and polyfluoroalkyl substances in animal-derived foods and the potential risk of dietary intake. Sci. Total. Environ. 2023, 905, 167313. [Google Scholar] [CrossRef] [PubMed]
- Salvatore, D.; Mok, K.; Garrett, K.K.; Poudrier, G.; Brown, P.; Birnbaum, L.S.; Goldenman, G.; Miller, M.F.; Patton, S.; Poehlein, M.; et al. Presumptive Contamination: A New Approach to PFAS Contamination Based on Likely Sources. Environ. Sci. Technol. Lett. 2022, 9, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Banzhaf, H.S.; Ma, L.; Timmins, C. Environmental Justice: Establishing Causal Relationships. Annu. Rev. Resour. Econ. 2019, 11, 377–398. [Google Scholar] [CrossRef]
- Perlin, S.A.; Wong, D.; Sexton, K. Residential Proximity to Industrial Sources of Air Pollution: Interrelationships among Race, Poverty, and Age. J. Air Waste Manag. Assoc. 2001, 51, 406–421. [Google Scholar] [CrossRef]
- Bolin, B.; Nelson, A.; Hackett, E.J.; et al. The Ecology of Technological Risk in a Sunbelt City. Environ. Plan. A: Econ. Space 2002, 34, 317–39. [Google Scholar] [CrossRef]
- DC-water. “PFAS and Drinking Water”. Available online: https://www.dcwater.com/pfas-and-drinking-water (accessed on 31 May 2023).
- SSI. Silent Spring Institute. “The PFAS Exchange”. Available online: https://pfas-exchange.org/ (accessed on 31 May 2023).
- ESRI. Environmental Science Research Institute. “Empirical Bayesian Kriging (Geostatistical Analyst)”. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/geostatistical-analyst/empirical-bayesian-kriging.htm (accessed on 6 February 2023).
- Zhou, J.; Baumann, K.; Surratt, J.D.; Turpin, B.J. Legacy and emerging airborne per- and polyfluoroalkyl substances (PFAS) collected on PM(2.5) filters in close proximity to a fluoropolymer manufacturing facility. Env. Sci Process Impacts 2022, 24, 2272–2283. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.V.; Hilbert, T.J.; Reilly, M.; Christian, W.J.; Hoover, A.; Pennell, K.G.; Ding, Q.; Haynes, E.N. PFAS soil concentrations surrounding a hazardous waste incinerator in East Liverpool, Ohio, an environmental justice community. Environ. Sci. Pollut. Res. 2023, 30, 80643–80654. [Google Scholar] [CrossRef]
- Evich, M.G.; Davis, M.J.B.; McCord, J.P.; Acrey, B.; Awkerman, J.A.; Knappe, D.R.U.; Lindstrom, A.B.; Speth, T.F.; Tebes-Stevens, C.; Strynar, M.J.; et al. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375, 512. [Google Scholar] [CrossRef]
- Andrews, D.Q.; Naidenko, O.V. Population-Wide Exposure to Per- and Polyfluoroalkyl Substances from Drinking Water in the United States. Environ. Sci. Technol. Lett. 2020, 7, 931–936. [Google Scholar] [CrossRef]
- USACE. U.S. Army Corps of Engineers. Formerly Used Defense Sites. “Environmental Program”. Available online: https://www.usace.army.mil/missions/environmental/formerly-useddefense-sites/ (accessed on 11 December 2023).
- DeLuca, N.M.; Thomas, K.; Mullikin, A.; Slover, R.; Stanek, L.W.; Pilant, A.N.; Hubal, E.A.C. Geographic and demographic variability in serum PFAS concentrations for pregnant women in the United States. J. Expo. Sci. Environ. Epidemiology 2023, 33, 710–724. [Google Scholar] [CrossRef]
- Lee, J.; Ramírez, I.J. Geography of Disparity: Connecting COVID-19 Vulnerability and Social Determinants of Health in Colorado. Behav. Med. 2022, 48, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Buzzelli M, Jerrett M. Comparing proximity measures of exposure to geostatistical estimates in environmental justice research. Glob. Environ. Change Part B Environ. Hazards 2003, 5, 13–21. [Google Scholar] [CrossRef]
- Liddie, J.M.; Schaider, L.A.; Sunderland, E.M. Sociodemographic Factors Are Associated with the Abundance of PFAS Sources and Detection in U.S. Community Water Systems. Environ. Sci. Technol. 2023, 57, 7902–7912. [Google Scholar] [CrossRef] [PubMed]
- Barton, K.E.; Starling, A.P.; Higgins, C.P.; McDonough, C.A.; Calafat, A.M.; Adgate, J.L. Sociodemographic and behavioral determinants of serum concentrations of per- and polyfluoroalkyl substances in a community highly exposed to aqueous film-forming foam contaminants in drinking water. Int. J. Hyg. Environ. Heal. 2019, 223, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.S.; Ma, Z.-Q.; Watkins, S.M.; Wood, S.S. Demographic and exposure characteristics as predictors of serum per- and polyfluoroalkyl substances (PFASs) levels – A community-level biomonitoring project in Pennsylvania. Int. J. Hyg. Environ. Health 2020, 231, 113631. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.D.; Reh, C.M.; Breysse, P. Advancing per- and polyfluoroalkyl substances (PFAS) research: an overview of ATSDR and NCEH activities and recommendations. J. Expo. Sci. Environ. Epidemiology 2021, 31, 961–971. [Google Scholar] [CrossRef]
- Ruyle, B.J.; Thackray, C.P.; Butt, C.M.; LeBlanc, D.R.; Tokranov, A.K.; Vecitis, C.D.; Sunderland, E.M. Centurial Persistence of Forever Chemicals at Military Fire Training Sites. Environ. Sci. Technol. 2023, 57, 8096–8106. [Google Scholar] [CrossRef] [PubMed]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
