Submitted:
18 December 2024
Posted:
19 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. β-Lactam/β-Lactamase Inhibitor Combination Antibiotics in Phase 3 Trials
2.1. Cefepime/Zidebactam
2.2. Cefepime/Taniborbactam
2.3. Imipenem/Cilastatin/Funobactam
3. B-Lactams/B-Lactamase Inhibitors in Phase 1 Trials
3.1. Meropenem/Nacubactam
3.2. Xeruborbactam/β-Lactams
3.3. Meropenem/Pralurbactam
4. Discussion
Supplementary Materials
Conflicts of Interest
Abbreviations List
- AMR: Antimicrobial resistance
- BL/BLI: β-lactam/ β-lactamase inhibitors
- cUTI: Complicated urinary tract infections
- ESBL: Extended-spectrum β-lactamases
- GIM-1: German imipenemase-1
- IMP: Imipenemase metallo-β-lactamase
- KPC: Klebsiella pneumoniae carbapenemase
- MBL: Metallo-β-lactamase
- MDR: multidrug resistance
- NDM: New Delhi Metallo-β-Lactamase
- SPM-1: São Paulo metallo-beta-lactamase-1
- VIM: Verona integron-encoded metallo-β-lactamase
- WHO: World Health Organization
- XDR: extensively drug-resistant
References
- World Health Organization. Antimicrobial resistance [Internet]. 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.
- Murray CJL, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet. 2022 Feb;399(10325):629–55. [CrossRef]
- Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, et al. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS Hygiene and Infection Control; 12:Doc05 [Internet]. 2017 Apr 10 [cited 2024 Oct 9]; Available from: http://www.egms.de/en/journals/dgkh/2017-12/dgkh000290.shtml.
- Poudel AN, Zhu S, Cooper N, Little P, Tarrant C, Hickman M, et al. The economic burden of antibiotic resistance: A systematic review and meta-analysis. Karunasagar I, editor. PLoS ONE. 2023 May 8;18(5):e0285170. [CrossRef]
- Nelson RE, Hatfield KM, Wolford H, Samore MH, Scott RD, Reddy SC, et al. National Estimates of Healthcare Costs Associated With Multidrug-Resistant Bacterial Infections Among Hospitalized Patients in the United States. Clin Infect Dis. 2021 Jan 29;72(Suppl 1):S17–26. [CrossRef]
- Barbier F, Hraiech S, Kernéis S, Veluppillai N, Pajot O, Poissy J, et al. Rationale and evidence for the use of new beta-lactam/beta-lactamase inhibitor combinations and cefiderocol in critically ill patients. Ann Intensive Care. 2023 Jul 18;13(1):65. [CrossRef]
- Webster P. US tries to stem antimicrobial resistance. CMAJ. 2014 Nov 4;186(16):1207–1207. [CrossRef]
- Keam SJ. Cefepime/Enmetazobactam: First Approval. Drugs. 2024 Jun;84(6):737–44. [CrossRef]
- Keam SJ. Sulbactam/Durlobactam: First Approval. Drugs. 2023 Sep;83(13):1245–52. [CrossRef]
- Beninger P. Ceftobiprole Medocaril Sodium. Clinical Therapeutics. 2024 Aug;46(8):659–60. [CrossRef]
- World Health Organization. 2024 WHO Bacterial Priority Pathogens List [Internet]. World Health Organization; 2024. Available from: https://www.who.int/publications/i/item/9789240093461.
- Krco S, Davis SJ, Joshi P, Wilson LA, Monteiro Pedroso M, Douw A, et al. Structure, function, and evolution of metallo-β-lactamases from the B3 subgroup—emerging targets to combat antibiotic resistance. Front Chem. 2023 Jun 20;11:1196073.
- Glen KA, Lamont IL. β-lactam Resistance in Pseudomonas aeruginosa: Current Status, Future Prospects. Pathogens. 2021 Dec 18;10(12):1638.
- Černiauskienė K, Dambrauskienė A, Vitkauskienė A. Associations between β-Lactamase Types of Acinetobacter baumannii and Antimicrobial Resistance. Medicina. 2023 Jul 28;59(8):1386.
- Preston RA, Mamikonyan G, DeGraff S, Chiou J, Kemper CJ, Xu A, et al. Single-Center Evaluation of the Pharmacokinetics of WCK 5222 (Cefepime-Zidebactam Combination) in Subjects with Renal Impairment. Antimicrob Agents Chemother. 2019 Jan;63(1):e01484-18. [CrossRef]
- Pais GM, Chang J, Barreto EF, Stitt G, Downes KJ, Alshaer MH, et al. Clinical Pharmacokinetics and Pharmacodynamics of Cefepime. Clin Pharmacokinet. 2022 Jul;61(7):929–53. [CrossRef]
- Meini S, Tascini C, Cei M, Sozio E, Rossolini GM. AmpC β-lactamase-producing Enterobacterales: what a clinician should know. Infection. 2019 Jun;47(3):363–75. [CrossRef]
- Livermore DM, Mushtaq S, Warner M, Vickers A, Woodford N. In vitro activity of cefepime/zidebactam (WCK 5222) against Gram-negative bacteria. Journal of Antimicrobial Chemotherapy. 2017 May;72(5):1373–85. [CrossRef]
- Moya B, Barcelo IM, Bhagwat S, Patel M, Bou G, Papp-Wallace KM, et al. WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent “β-Lactam Enhancer” Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-β-Lactamase-Producing High-Risk Clones. Antimicrob Agents Chemother. 2017 Jun;61(6):e02529-16.
- Sader HS, Rhomberg PR, Flamm RK, Jones RN, Castanheira M. WCK 5222 (cefepime/zidebactam) antimicrobial activity tested against Gram-negative organisms producing clinically relevant β-lactamases. Journal of Antimicrobial Chemotherapy. 2017 Jun;72(6):1696–703. [CrossRef]
- Yang Y, Guo Y, Yin D, Zheng Y, Wu S, Zhu D, et al. In Vitro Activity of Cefepime-Zidebactam, Ceftazidime-Avibactam, and Other Comparators against Clinical Isolates of Enterobacterales , Pseudomonas aeruginosa, and Acinetobacter baumannii: Results from China Antimicrobial Surveillance Network (CHINET) in 2018. Antimicrob Agents Chemother. 2020 Dec 16;65(1):e01726-20. [CrossRef]
- Bhagwat SS, Periasamy H, Takalkar SS, Palwe SR, Khande HN, Patel MV. The Novel β-Lactam Enhancer Zidebactam Augments the In Vivo Pharmacodynamic Activity of Cefepime in a Neutropenic Mouse Lung Acinetobacter baumannii Infection Model. Antimicrob Agents Chemother. 2019 Apr;63(4):e02146-18. [CrossRef]
- Avery LM, Abdelraouf K, Nicolau DP. Assessment of the In Vivo Efficacy of WCK 5222 (Cefepime-Zidebactam) against Carbapenem-Resistant Acinetobacter baumannii in the Neutropenic Murine Lung Infection Model. Antimicrob Agents Chemother. 2018 Nov;62(11):e00948-18. [CrossRef]
- Almarzoky Abuhussain SS, Avery LM, Abdelraouf K, Nicolau DP. In Vivo Efficacy of Humanized WCK 5222 (Cefepime-Zidebactam) Exposures against Carbapenem-Resistant Acinetobacter baumannii in the Neutropenic Thigh Model. Antimicrob Agents Chemother. 2019 Jan;63(1):e01931-18. [CrossRef]
- Tirlangi PK, Wanve BS, Dubbudu RR, Yadav BS, Kumar LS, Gupta A, et al. Successful Use of Cefepime-Zidebactam (WCK 5222) as a Salvage Therapy for the Treatment of Disseminated Extensively Drug-Resistant New Delhi Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Infection in an Adult Patient with Acute T-Cell Leukemia. Antimicrob Agents Chemother. 2023 Aug 17;67(8):e00500-23. [CrossRef]
- Dubey D, Roy M, Shah TH, Bano N, Kulshrestha V, Mitra S, et al. Compassionate use of a novel β-lactam enhancer-based investigational antibiotic cefepime/zidebactam (WCK 5222) for the treatment of extensively-drug-resistant NDM-expressing Pseudomonas aeruginosa infection in an intra-abdominal infection-induced sepsis patient: a case report. Ann Clin Microbiol Antimicrob. 2023 Jul 5;22(1):55. [CrossRef]
- Rodvold KA, Gotfried MH, Chugh R, Gupta M, Patel A, Chavan R, et al. Plasma and Intrapulmonary Concentrations of Cefepime and Zidebactam following Intravenous Administration of WCK 5222 to Healthy Adult Subjects. Antimicrob Agents Chemother. 2018 Aug;62(8):e00682-18. [CrossRef]
- Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-Lactam–β-Lactamase Inhibitor Combinations. Clin Microbiol Rev. 2020 Dec 16;34(1):e00115-20.
- Zhanel GG, Mansour C, Mikolayanko S, Lawrence CK, Zelenitsky S, Ramirez D, et al. Cefepime–Taniborbactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination. Drugs [Internet]. 2024 Aug 30 [cited 2024 Oct 16]; Available from: https://link.springer.com/10.1007/s40265-024-02082-9. [CrossRef]
- Karlowsky JA, Hackel MA, Wise MG, Six DA, Uehara T, Daigle DM, et al. In Vitro Activity of Cefepime-Taniborbactam and Comparators against Clinical Isolates of Gram-Negative Bacilli from 2018 to 2020: Results from the Global Evaluation of Antimicrobial Resistance via Surveillance (GEARS) Program. Antimicrob Agents Chemother. 2023 Jan 24;67(1):e01281-22. [CrossRef]
- Lasko MJ, Nicolau DP, Asempa TE. Clinical exposure–response relationship of cefepime/taniborbactam against Gram-negative organisms in the murine complicated urinary tract infection model. Journal of Antimicrobial Chemotherapy. 2022 Feb 2;77(2):443–7. [CrossRef]
- Abdelraouf K, Nicolau DP. In vivo pharmacokinetic/pharmacodynamic evaluation of cefepime/taniborbactam combination against cefepime-non-susceptible Enterobacterales and Pseudomonas aeruginosa in a murine pneumonia model. Journal of Antimicrobial Chemotherapy. 2023 Mar 2;78(3):692–702.
- Chris Dall. FDA rejects new drug application for cefepime-taniborbactam [Internet]. 2024. Available from: https://www.cidrap.umn.edu/antimicrobial-stewardship/fda-rejects-new-drug-application-cefepime-taniborbactam.
- Wagenlehner FM, Gasink LB, McGovern PC, Moeck G, McLeroth P, Dorr M, et al. Cefepime–Taniborbactam in Complicated Urinary Tract Infection. N Engl J Med. 2024 Feb 15;390(7):611–22. [CrossRef]
- Zhang S, Liao X, Ding T, Ahn J. Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria. Antibiotics. 2024 Mar 15;13(3):260. [CrossRef]
- Li Y, Yan M, Xue F, Zhong W, Liu X, Chen X, et al. In vitro and in vivo activities of a novel β-lactamase inhibitor combination imipenem/XNW4107 against recent clinical Gram-negative bacilli from China. Journal of Global Antimicrobial Resistance. 2022 Dec;31:1–9. [CrossRef]
- Evaluation of the Efficacy and Safety of Intravenous Imipenem/Cilastatin/XNW4107 in Comparison With Meropenem in Hospitalized Adults With cUTI Including AP (EudraCT no. 2022-000061-40) [Internet]. ClinicalTrials.gov; Available from: https://clinicaltrials.gov/study/NCT05204368.
- Imipenem/Cilastatin-XNW4107 Versus Imipenem/Cilastatin/Relebactam for Treatment of Participants With Bacterial Pneumonia (XNW4107-302, REITAB-2) (REITAB-2) [Internet]. ClinicalTrials.gov; Available from: https://clinicaltrials.gov/study/NCT05204563.
- Barnes MD, Taracila MA, Good CE, Bajaksouzian S, Rojas LJ, Van Duin D, et al. Nacubactam Enhances Meropenem Activity against Carbapenem-Resistant Klebsiella pneumoniae Producing KPC. Antimicrob Agents Chemother. 2019 Aug;63(8):e00432-19. [CrossRef]
- Mushtaq S, Vickers A, Woodford N, Haldimann A, Livermore DM. Activity of nacubactam (RG6080/OP0595) combinations against MBL-producing Enterobacteriaceae. Journal of Antimicrobial Chemotherapy. 2019 Apr 1;74(4):953–60.
- Asempa TE, Motos A, Abdelraouf K, Bissantz C, Zampaloni C, Nicolau DP. Efficacy of Human-Simulated Epithelial Lining Fluid Exposure of Meropenem-Nacubactam Combination against Class A Serine β-Lactamase-Producing Enterobacteriaceae in the Neutropenic Murine Lung Infection Model. Antimicrob Agents Chemother. 2019 Apr;63(4):e02382-18. [CrossRef]
- Monogue ML, Giovagnoli S, Bissantz C, Zampaloni C, Nicolau DP. In Vivo Efficacy of Meropenem with a Novel Non-β-Lactam–β-Lactamase Inhibitor, Nacubactam, against Gram-Negative Organisms Exhibiting Various Resistance Mechanisms in a Murine Complicated Urinary Tract Infection Model. Antimicrob Agents Chemother. 2018 Sep;62(9):e02596-17. [CrossRef]
- Clinicaltrials.gov. A Study to Investigate the Pharmacokinetics of RO7079901 and Meropenem in Participants With a Complicated Urinary Tract Infection [Internet]. 2018. Available from: https://clinicaltrials.gov/study/NCT03174795#study-overview.
- Mallalieu NL, Winter E, Fettner S, Patel K, Zwanziger E, Attley G, et al. Safety and Pharmacokinetic Characterization of Nacubactam, a Novel β-Lactamase Inhibitor, Alone and in Combination with Meropenem, in Healthy Volunteers. Antimicrob Agents Chemother. 2020 Apr 21;64(5):e02229-19.
- Lomovskaya O, Castanheira M, Lindley J, Rubio-Aparicio D, Nelson K, Tsivkovski R, et al. In vitro potency of xeruborbactam in combination with multiple β-lactam antibiotics in comparison with other β-lactam/β-lactamase inhibitor (BLI) combinations against carbapenem-resistant and extended-spectrum β-lactamase-producing Enterobacterales. Poirel L, editor. Antimicrob Agents Chemother. 2023 Nov 15;67(11):e00440-23. [CrossRef]
- Lomovskaya O, Tsivkovski R, Totrov M, Dressel D, Castanheira M, Dudley M. New boronate drugs and evolving NDM-mediated beta-lactam resistance. Poirel L, editor. Antimicrob Agents Chemother. 2023 Sep 19;67(9):e00579-23. [CrossRef]
- Griffith D, Roberts J, Wallis S, Hernandez-Mitre MP, Morgan E, Gehrke S, et al. 216. A Phase 1 Study of the Safety, Tolerability, and Pharmacokinetics of Multiple Doses of the Beta-lactamase inhibitor Xeruborbactam Alone and in Combination Meropenem in Healthy Adult Subjects. Open Forum Infectious Diseases. 2022 Dec 15;9(Supplement_2):ofac492.294. [CrossRef]
- A DDI Study to Investigate PK and Safety of Cefiderocol in Combination With Xeruborbactam in Healthy Adult Participants [Internet]. ClinicalTrials.gov; Available from: https://clinicaltrials.gov/study/NCT06547554?intr=xeruborbactam&rank=1#study-plan.
- P1, DDI & MAD PK and Safety Study of Xeruborbactam Oral Prodrug in Combo With Ceftibuten in Healthy Participants [Internet]. ClinicalTrials.gov; Available from: https://clinicaltrials.gov/study/NCT06079775?intr=xeruborbactam&rank=3.
- PK & Safety Study of Xeruborbactam Oral Prodrug Combined With Ceftibuten in Participants With Renal Impairment [Internet]. ClinicalTrials.gov; Available from: https://clinicaltrials.gov/study/NCT06157242?intr=xeruborbactam&rank=2.
- Huang Z, Yang X, Jin Y, Yu J, Cao G, Wang J, et al. First-in-human study to evaluate the safety, tolerability, and population pharmacokinetic/pharmacodynamic target attainment analysis of FL058 alone and in combination with meropenem in healthy subjects. Leggett JE, editor. Antimicrob Agents Chemother. 2024 Jan 10;68(1):e01330-23. [CrossRef]
- Tamma PD, Heil EL, Justo JA, Mathers AJ, Satlin MJ, Bonomo RA. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clinical Infectious Diseases. 2024 Aug 7;ciae403. [CrossRef]
- EMA. New antibiotic to fight infections caused by multidrug-resistant bacteria [Internet]. 2024. Available from: https://www.ema.europa.eu/en/news/new-antibiotic-fight-infections-caused-multidrug-resistant-bacteria.
- Carmeli Y, Cisneros JM, Paul M, Daikos GL, Wang M, Torre-Cisneros J, et al. Aztreonam–avibactam versus meropenem for the treatment of serious infections caused by Gram-negative bacteria (REVISIT): a descriptive, multinational, open-label, phase 3, randomised trial. The Lancet Infectious Diseases. 2024 Oct;S1473309924004997.
- Carcione D, Siracusa C, Sulejmani A, Leoni V, Intra J. Old and New Beta-Lactamase Inhibitors: Molecular Structure, Mechanism of Action, and Clinical Use. Antibiotics. 2021 Aug 17;10(8):995. [CrossRef]
- Boyd SE, Livermore DM, Hooper DC, Hope WW. Metallo-β-Lactamases: Structure, Function, Epidemiology, Treatment Options, and the Development Pipeline. Antimicrob Agents Chemother. 2020 Sep 21;64(10):e00397-20.
- Mojica MF, Rossi MA, Vila AJ, Bonomo RA. The urgent need for metallo-β-lactamase inhibitors: an unattended global threat. The Lancet Infectious Diseases. 2022 Jan;22(1):e28–34. [CrossRef]
- King AM, Reid-Yu SA, Wang W, King DT, De Pascale G, Strynadka NC, et al. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature. 2014 Jun;510(7506):503–6. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).