Submitted:
11 December 2025
Posted:
15 December 2025
You are already at the latest version
Abstract
Keywords:
MSC: 62H20,62E15,62E10,62F10,62F03
1. Introduction
2. Materials and Methods:
2.1. Definitions of Probability Weighted Moments (PWMs)
2.2. Calculating PWMs for MBUW
2.2.1. Calculating M_(1,0,1): Equations (12–20)
2.2.2. Calculating Equations (21-26)
- Start with the initial guess of parameters (alpha and beta).
- Substitute these values in the objective function and the Jacobian.
- Choose the damping factor, say lambda=0.001
- Substitute in the equation (LM equation) to get the new parameters.
- Calculate the SSE at these parameters and compare this SSE value with the previous one when using the initial parameters to adjust for the damping factor.
- Update the damping factor accordingly as previously explained.
- Start new iteration with the new parameters and the new updated damping factor, i.e., apply the previous steps many times till convergence is achieved or a pre-specified number of iterations is accomplished.
2.2.3. Calculating Equation (29)
2.2.4. Calculating Equation (30)
2.3. Asymptotic Distribution of PWM Estimators
3. Monte Carlo Simulation Study
3.1. Simulation Study for the Parameters
- Average Absolute Bias (AAB) =
- Mean Square Error (MSE) =
- Mean Relative Error (MRE) =
3.2. Simulation Study for the Function of the Parameters (Validation of the Delta Method)
4. Results and Discussion of the Simulation Study



5. Real data analysis
![]() |
![]() |
| Beta | Kumaraswamy | MBUW | Topp-Leone | Unit-Lindley | ||||
|---|---|---|---|---|---|---|---|---|
| theta | 12.3585 | 0.2891 | ||||||
| Var-cov | 2.9116 | 0.9141 | 1.0268 | 0.3651 | 0.0000 | 0.0000 | 3.8183 | 0.0011 |
| 0.9141 | 0.3410 | 0.3651 | 0.2227 | 0.0000 | 0.0000 | |||
| SE | 1.7063 | 1.0133 | 1.9540 | 0.0332 | ||||
| 0.5839 | 0.4719 | |||||||
| AIC | −48.1413 | −48.8385 | −48.0574 | −40.9642 | −57.3738 | |||
| CAIC | −47.8170 | −48.5142 | −47.7331 | −40.8589 | −57.2685 | |||
| BIC | −44.7636 | −45.4607 | −44.6796 | −39.2753 | −55.6849 | |||
| HQIC | −46.9200 | −47.6172 | −46.8361 | −40.3535 | −56.7631 | |||
| LL | 26.0707 | 26.4193 | 26.0287 | 21.4821 | 29.6869 | |||
| K-S Value | 0.1481 | 0.1434 | 0.1577 | 0.2598 | 0.0697 | |||
| H0 | Fail to reject | Fail to reject | Fail to reject | Reject | Fail to reject | |||
| P-value | 0.1613 | 0.1841 | 0.1219 | 0.0023 | 0.9442 | |||
| AD | 1.1861 | 1.1575 | 1.4386 | 4.5709 | 0.2596 | |||
| CVM | 0.2068 | 0.1985 | 0.2546 | 0.8485 | 0.0344 | |||
| Beta | Kumaraswamy | MBUW | Topp-Leone | Unit-Lindley | ||||
|---|---|---|---|---|---|---|---|---|
| theta | 7.3278 | 0.5929 | ||||||
| Var-cov | 3.3978 | 1.6515 | 0.7936 | 1.2015 | 0.0000 | 0.0000 | 1.3768 | 0.0058 |
| 1.6515 | 0.9425 | 1.2015 | 2.5192 | 0.0000 | 0.0000 | |||
| SE | 1.8433 | 0.8908 | 1.1734 | 0.0693 | ||||
| 0.9708 | 1.5872 | |||||||
| AIC | −46.2684 | −47.3865 | −38.5536 | −44.4298 | −40.09617 | |||
| CAIC | −45.9351 | −47.0531 | −38.2202 | −44.3217 | −39.9617 | |||
| BIC | −42.9413 | −44.0594 | −35.2264 | −42.7662 | −38.4062 | |||
| HQIC | −45.0746 | −46.1927 | −37.3598 | −43.8329 | −39.4729 | |||
| LL | 25.1342 | 25.6932 | 21.2768 | 23.2149 | 21.0349 | |||
| K-S Value | 0.0867 | 0.0684 | 0.1625 | 0.1234 | 0.1400 | |||
| H0 | Fail to reject | Fail to reject | Fail to reject | Fail to reject | Fail to reject | |||
| P-value | 0.6674 | 0.8577 | 0.2284 | 0.5512 | 0.2102 | |||
| AD | 0.4674 | 0.3414 | 1.4935 | 0.8744 | 1.6862 | |||
| CVM | 0.0807 | 0.0547 | 0.2492 | 0.1397 | 0.2886 | |||
| Using unbiasedSample estimator for and | Using unbiasedSample estimator for and | ||||
|---|---|---|---|---|---|
| thetas | 0.3564 | 0.3529 | |||
| 1.4307 | 1.4316 | ||||
| Var-cov matrixof parameter | 10.7370 | 22.9418 | 627.8954 | 2.4064e+3 | |
| 22.9418 | 94.1037 | 2.4064e+3 | 9.3821e+3 | ||
| Eigenvalues=4.8406, 100 | Eigenvalue=10.0408, 10000 | ||||
| AD | 0.3418 (p=0.8810) | 0.3820 (p=0.865) | |||
| CVM | 0.0531 (p=0.8420) | 0.0637 (p=0.785) | |||
| KS & p-value | 0.0980 (p=0.7901) | 0.1061 (p=0.7051) | |||
| H0 | Fail to reject | Fail to reject | |||
| SSE | 1.8169e-19 | 1.7110e-19 | |||
| , unbiased estimator | 0.3891 | 0.2491 | |||
| , unbiased estimator | 0.4441 | 0.3041 | |||
| Sig. of parameter | 11.0082 () | 11.0053 () | |||
| Sig. of parameter | 17.9465 () | 18.1268 () | |||
| Variance of thefunction of theparameter, after thedelta method application.Determinant and traceof this matrix | 0.0181 | 0.0096 | 0.0214 | 0.0080 | |
| 0.0096 | 0.0051 | 0.0080 | 0.0030 | ||
| Eigenvalues=0.0232, 8.6736e-19Determinant=0Trace=0.0232 | Eigenvalues=0.0244, -4.3368e-19Determinant=0Trace=0.0244 | ||||
| Var-cov betweenM101&M110 | 0.1187e-3 | 0.0543e-3 | |||
| 0.0543e-3 | 0.0430e-3 | ||||
| Var-cov betweenM102 & M120 | 0.7094e-4 | 0.1719e-4 | |||
| 0.1719e-4 | 0.1547e-4 | ||||
| andassociated | 0.0010 | 0.0015 | 0.0010 | 0.0014 | |
| 0.0015 | 0.0064 | 0.0014 | 0.0062 | ||
| to achieved condition number=10 | to achieved condition number=10 | ||||
| Jacobian matrix | |||||
| Using unbiasedSample estimator for and | Using unbiasedSample estimator for and | ||||
|---|---|---|---|---|---|
| thetas | 0.4310 | 0.4462 | |||
| 1.3483 | 1.3442 | ||||
| Var-cov matrixof parameter | 679.8845 | 2.5075e+3 | 679.7206 | 2.4966e+3 | |
| 2.5075e+3 | 9.3254e+3 | 2.4966e+3 | 9.3313e+3 | ||
| Eigenvalues=5.2672, 10000 | Eigenvalue=10.9762, 10000 | ||||
| AD | 1.4027 (p=0.2090) | 1.6993( p=0.1330) | |||
| CVM | 0.2420 (p=0.1990) | 0.3333(p=0.1110) | |||
| KS & p-value | 0.1787 (p=0.1371) | 0.2041 (p=0.0615) | |||
| H0 | Fail to reject | Fail to reject | |||
| SSE | 2.2362e-19 | 2.4395e-19 | |||
| , unbiased estimator | 0.3485 | 0.2139 | |||
| , unbiased estimator | 0.4325 | 0.2979 | |||
| Sig. of parameter | 10.1191 () | 12.0627 () | |||
| Sig. of parameter | 13.0970 () | 18.8075 () | |||
| Variance of thefunction of theparameter, after thedelta method application.Determinant and traceof this matrix | 0.0190 | 0.0107 | 0.0213 | 0.0089 | |
| 0.0107 | 0.0060 | 0.0089 | 0.0037 | ||
| Eigenvalues=0.0250, 2.6021e-18Determinant=0Trace=0.0250 | Eigenvalues=0.0250, 4.3368e-19Determinant=0Trace=0.0250 | ||||
| Var-cov betweenM101&M110 | 0.1848e-3 | 0.0924e-3 | |||
| 0.0924e-3 | 0.0785e-3 | ||||
| Var-cov betweenM102 & M120 | 0.1136e-3 | 0.0321e-3 | |||
| 0.0321e-3 | 0.0328e-3 | ||||
| andassociated | 0.0018 | 0.0025 | 0.0019 | 0.0027 | |
| 0.0025 | 0.0106 | 0.0027 | 0.0114 | ||
| =88.6209 to achieve a condition number=10 | =82.3445 to achieved condition number=10 | ||||
| Jacobian matrix | |||||
| Using unbiasedSample estimator for and | Using unbiasedSample estimator for and | ||||
|---|---|---|---|---|---|
| thetas | 0.5843 | 0.5752 | |||
| 1.2806 | 1.2829 | ||||
| Var-cov matrixof parameter | 11.610 | 21.6717 | 71.1767 | 230.3148 | |
| 21.6717 | 94.6865 | 230.3148 | 942.8902 | ||
| Eigenvalues=6.2964, 100 | Eigenvalue=14.0669, 1000 | ||||
| AD | 1.4443 (p=0.2010) | 1.5100 (p=0.1780) | |||
| CVM | 0.2382 (p=0.2100) | 0.2529 (p=0.1900) | |||
| KS & p-value | 0.1549 (p=0.2768) | 0.1645 (p=0.2167) | |||
| H0 | Fail to reject | Fail to reject | |||
| SSE | 5.9631e-19 | 0 | |||
| , unbiased estimator | 0.3019 | 0.1865 | |||
| , unbiased estimator | 0.3775 | 0.2621 | |||
| Sig. of parameter | 9.7573 () | 9.7503 () | |||
| Sig. of parameter | 8.5322 () | 8.7119 () | |||
| Variance of thefunction of theparameter, after thedelta method application.Determinant and traceof this matrix | 0.0172 | 0.0108 | 0.0205 | 0.0099 | |
| 0.0108 | 0.0068 | 0.0099 | 0.0047 | ||
| Eigenvalues=0.0240, 1.7347e-18Determinant=0Trace=0.0240 | Eigenvalues=0.0253, 0Determinant=0Trace=0.0253 | ||||
| Var-cov betweenM101&M110 | 0.2856e-3 | 0.1636e-3 | |||
| 0.1636e-3 | 0.1541e-3 | ||||
| Var-cov betweenM102 & M120 | 0.1556e-3 | 0.0524e-3 | |||
| 0.0524e-3 | 0.0604e-3 | ||||
| andassociated | 0.0036 | 0.0049 | 0.0035 | 0.0048 | |
| 0.0049 | 0.0225 | 0.0048 | 0.0217 | ||
| =42.1234 to achieve a condition number=10 | =43.7133 to achieve a condition number=10 | ||||
| Jacobian matrix | |||||










6. Conclusions
7. Future Work
Appendix A
Maximum Likelihood Estimation
Appendix B
Appendix C
The first picture contains 8 figures with the following description: The first four figures are obtained from the replicates of sample size n=20, while the last four figures are from the replicates of sample size, n=50. The figures for each sample size is arranged as the pairs mentioned in the text, the first pair is ( & ), the second pair is ( & ), the third pair ( & ), and the fourth pair ( & ). These are the runs obtained from the MLE method.
The second picture contains 8 figures with the following description: The first four figures are obtained from the replicates of sample size n=100, while the last four figures are from the replicates of sample size, n=500. The figures for each sample size is arranged as the pairs mentioned in the text, the first pair is ( & ), the second pair is ( & ), the third pair ( & ), and the fourth pair ( & ). These are the runs obtained from the MLE method.
The third picture contains 5 figures with the following description: The first three figures are obtained from the replicates of sample size n=20, while the last two figures are from the replicates of sample size, n=50. The figures for each sample size is arranged as the pairs mentioned in the text, the first pair is ( & ), the second pair is ( & ), the third pair ( & ), and the fourth pair ( & ). These are the runs obtained from the MOM method.
The fourth picture contains 8 figures with the following description: The first four figures are obtained from the replicates of sample size n=100, while the last four figures are from the replicates of sample size, n=500. The figures for each sample size is arranged as the pairs mentioned in the text, the first pair is ( & ), the second pair is ( & ), the third pair ( & ), and the fourth pair ( & ). These are the runs obtained from the MOM method.References
- Attia, Iman M. Median-Based Unit Weibull (MBUW): A New Variants of Generalized Method of Moments and Percentile Estimators. Journal of Probability and Statistics 2025, vol. 2025(no. 1), 1503091. [Google Scholar] [CrossRef]
- Greenwood, J. A.; Landwehr, J. M.; Matalas, N. C.; Wallis, J. R. Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research 1979, vol. 15(no. 5), 1049–1054. [Google Scholar] [CrossRef]
- Hosking, J. R. M.; Wallis, J. R.; Wood, E. F. Estimation of the Generalized Extreme-Value Distribution by the Method of Probability-Weighted Moments. Technometrics 1985, vol. 27(no. 3), 251–261. [Google Scholar] [CrossRef]
- Hosking, J. R. M.; Wallis, J. R. Parameter and Quantile Estimation for the Generalized Pareto Distribution. Technometrics 1987, vol. 29(no. 3), 251–261. [Google Scholar] [CrossRef]
- Hooda, Ekta; Hooda, B K; Tanwar, Nitin. Probability weighted moments (PWMs) and partial probability weighted moments (PPWMs) of type-II extreme value distribution. Conference: National Conference on Mathematics and Its applications in Science and technology, Department of Mathematics, GJUS&T, Hisar, Haryana, India, Oct. 2018. [Google Scholar]
- Ashkar, F.; Mahdi, S. Comparison of two fitting methods for the log-logistic distribution. Water Resources Research 2003, vol. 39(no. 8), 1–8. [Google Scholar] [CrossRef]
- Caeiro, F.; Mateus, A. A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution. Mathematics 2023, vol. 11(no. 5), 1076. [Google Scholar] [CrossRef]
- Wang, Q. J. Estimation of the GEV distribution from censored samples by method of partial probability weighted moments. Journal of Hydrology 1990, vol. 120(no. 1–4), 103–114. [Google Scholar] [CrossRef]
- Caeiro, F.; Mateus, A. A Log Probability Weighted Moments Method for Pareto distribution. In Proceedings of the 17th Applied Stochastic Models and Data Analysis International Conference with 6th Demographics Workshop; London, UK, Skiadas, C.H., Ed.; 6-9 June 2017; pp. 211–218. [Google Scholar]
- F. Caeiro and D. Prata Gomes, A Log Probability Weighted Moment Estimator of Extreme Quantiles, in Theory and Practice of Risk Assessment, vol. 136, C. P. Kitsos, T. A. Oliveira, A. Rigas, and S. Gulati, Eds., Springer Proceedings in Mathematics & Statistics, vol. 136. Cham: Springer International Publishing, 2015, pp. 293–303. Springer International Publishing: Cham. [CrossRef]
- Caeiro, F.; Gomes, M. I.; Vandewalle, B. Semi-Parametric Probability-Weighted Moments Estimation Revisited. Methodology and Computing in Applied Probability 2014, vol. 16(no. 1), 1–29. [Google Scholar] [CrossRef]
- Caeiro, F.; Gomes, M. I. Semi-parametric tail inference through probability-weighted moments. Journal of Statistical Planning and Inference 2011, vol. 141(no. 2), 937–950. [Google Scholar] [CrossRef]
- Caeiro, F.; Gomes, M. I. A Class of Semi-parametric Probability Weighted Moment Estimators. In Recent Developments in Modeling and Applications in Statistics; Oliveira, P. E., Da Graça Temido, M., Henriques, C., Vichi, M., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp. 139–147. [Google Scholar] [CrossRef]
- Munir, Rizwan; Saleem, Muhammad; Aslam, Muhammad; Ali, Sajid. Comparison of different methods of parameters estimation for Pareto Model. Caspian Journal of Applied Sciences Research 2013, vol. 2(no. 1), 45–56. [Google Scholar]
- Chen, H.; Cheng, W.; Zhao, J.; Zhao, X. Parameter estimation for generalized Pareto distribution by generalized probability weighted moment-equations. Communications in Statistics - Simulation and Computation 2017, vol. 46(no. 10), 7761–7776. [Google Scholar] [CrossRef]
- Vogel, R. M.; McMahon, T. A.; Chiew, F. H. S. Floodflow frequency model selection in Australia. Journal of Hydrology 1993, vol. 146, 421–449. [Google Scholar] [CrossRef]
- Hosking, J.R.M. L-moment: analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society 1990, vol. 52(no. 1), 105–124. [Google Scholar] [CrossRef]
- Hosking, J.R.M. The theory of probability weighted moments, Research Report, RC12210, IBM Thomas J. Watson Research Center, New York, 1986.
- Rasmussen, P. F. Generalized probability weighted moments: Application to the generalized Pareto Distribution. Water Resources Research 2001, vol. 37(no. 6), 1745–1751. [Google Scholar] [CrossRef]
- Jing, D.; Dedun, S.; Ronfu, Y.; Yu, H. Expressions relating probability weighted moments to parameters of several distributions inexpressible in inverse form. Journal of Hydrology 1989, vol. 110, 259–270. [Google Scholar] [CrossRef]
- Landwehr, J. M.; Matalas, N. C.; Wallis, J. R. Probability weighted moments compared with some traditional techniques in estimating Gumbel Parameters and quantiles. Water Resources Research 1979, vol. 15(no. 5), 1055–1064. [Google Scholar] [CrossRef]
- Landwehr, J. M.; Matalas, N. C.; Wallis, J. R. Estimation of parameters and quantiles of Wakeby Distributions: 1. Known lower bounds. Water Resources Research 1979, vol. 15(no. 6), 1361–1372. [Google Scholar] [CrossRef]
- Chernoff, H.; Gastwirth, J. L.; Johns, M. V. Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation. Annals of Mathematical Statistics 1967, vol. 38, 52–72. [Google Scholar] [CrossRef]
- Rao, C.R. Linear Statistical Inference and Its Applications, 2nd ed.; John Wiley: New York, NY, 1973. [Google Scholar]



| Statistical indices | MLE | MOM | PWM M101,M110 | PWM M102,M120 | |
|---|---|---|---|---|---|
| Mean() | 0.5055,(0.0842) | 0.4943,(0.1113) | 0.4975,(0.1007) | 0.4978,(0.0985) | |
| Mean() | 0.5963,(0.1077) | 0.6298,(0.0812) | 0.6014,(0.0581) | 0.6013,(0.0569) | |
| AAB() | 0.0647 | 0.0878 | 0.0798 | 0.0778 | |
| AAB() | 0.0794 | 0.0648 | 0.0461 | 0.0454 | |
| MSE() | 0.0071 | 0.0124 | 0.0101 | 0.0096 | |
| MSE() | 0.0116 | 0.0075 | 0.0034 | 0.0032 | |
| MRE() | 0.1293 | 0.1756 | 0.1596 | 0.1559 | |
| MRE() | 0.1324 | 0.1079 | 0.0768 | 0.0751 | |
| Quantile() | (0.3653,0.7004) | (0.2838,0.7266) | (0.3008,0.7042) | (0.2961,0.6909) | |
| Quantile() | (0.3366,0.7596) | (0.4767,0.8019) | (0.4821,0.7151) | (0.4897,0.7177) | |
| Number of valid samples | 1000 of 1000 | 987 out of 1000 | 999 out of 1000 | 999 out of 1000 | |
|
|
Mean() | 0.5000 (0.0372) | 0.4441 (0.0648) | 0.4955 (0.0580) | 0.4954 (0.0578) |
| Mean() | 1.3210,(0.0963) | 1.1365 (0.0724) | 1.3012 (0.0155) | 1.3102 (0.0154) | |
| AAB() | 0.02297 | 0.0706 | 0.0467 | 0.0468 | |
| AAB() | 0.0800 | 0.1637 | 0.0124 | 0.0125 | |
| MSE() | 0.0014 | 0.0073 | 0.0034 | 0.0034 | |
| MSE() | 0.0097 | 0.0320 | 2.4062e-4 | 2.3897e-4 | |
| MRE() | 0.0593 | 0.1412 | 0.0934 | 0.0934 | |
| MRE() | 0.0615 | 0.1259 | 0.0096 | 0.0096 | |
| Quantile() | (0.4281,0.5786) | (0.2679,0.6069) | (0.3815,0.6117) | (0.3837,0.6118) | |
| Quantile() | (1.1111,1.5046) | (1.0330,1.3073) | (1.2702,1.3316) | (1.2702,1.3310) | |
| Number of valid samples | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | |
|
|
Mean() | 1.1056 (0.2651) | 1.1772 (0.3668) | 1.0920 (0.2883) | 1.0942 (0.2586) |
| Mean() | 0.6509 (0.0407) | 0.4717 (0.2795) | 0.5986 (0.0504) | 0.5990 (0.0542) | |
| AAB() | 0.2153 | 0.2933 | 0.2287 | 0.2052 | |
| AAB() | 0.0518 | 0.2534 | 0.0400 | 0.0359 | |
| MSE() | 0.0702 | 0.1371 | 0.0831 | 0.0668 | |
| MSE() | 0.0043 | 0.0926 | 0.0025 | 0.0020 | |
| MRE() | 0.1958 | 0.2666 | 0.2079 | 0.1865 | |
| MRE() | 0.0864 | 0.4224 | 0.0666 | 0.0598 | |
| Quantile() | (0.6824,1.7008) | (0.5143,1.8809) | (0.5476,1.6682) | (0.6037,1.5896) | |
| Quantile() | (0.5945,0.7521) | (0.0074,0.8971) | (0.5035,0.6993) | (0.5133,0.6856) | |
| Number of valid samples | 1000 of 1000 | 40 out of 1000 | 1000 of 1000 | 1000 of 1000 | |
|
|
Mean() | 1.0928 (0.1050) | 1.0979 (0.0172) | 1.0983 (0.1139) | |
| Mean() | 1.6595 (0.0546) | 1.5999 (0.0011) | 1.5999 (0.0075) | ||
| AAB() | 0.0860 | 0.0959 | 0.0927 | ||
| AAB() | 0.0646 | 0.0063 | 0.0061 | ||
| MSE() | 0.0111 | 0.0138 | 0.0130 | ||
| MSE() | 0.0065 | 5.9109e-5 | 5.5617e-5 | ||
| MRE() | 0.0782 | 0.0128 | 0.0843 | ||
| MRE() | 0.0403 | 5.7592e-4 | 0.0038 | ||
| Quantile() | (0.8940,1.2883) | (0.8661,1.13024) | (0.8700,1.3045) | ||
| Quantile() | (1.5711,1.7822) | (1.5847,1.6133) | (1.5849,1.6134) | ||
| Number of valid samples | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | ||
| Statistical indices | MLE | MOM | PWM M101,M110 | PWM M102,M120 | |
|---|---|---|---|---|---|
| Mean() | 0.5052 (0.0533) | 0.4988 (0.074) | 0.5002 (0.0666) | 0.5001 (0.0645) | |
| Mean() | 0.6012 (0.0652) | 0.6135 (0.0417) | 0.5999 (0.0385) | 0.5999 (0.0373) | |
| AAB() | 0.04427 | 0.0585 | 0.0540 | 0.0522 | |
| AAB() | 0.0520 | 0.0348 | 0.0312 | 0.0301 | |
| MSE() | 0.0029 | 0.0055 | 0.0044 | 0.0042 | |
| MSE() | 0.0042 | 0.0019 | 0.0015 | 0.0014 | |
| MRE() | 0.0854 | 0.1170 | 0.1080 | 0.1043 | |
| MRE() | 0.0866 | 0.0579 | 0.0520 | 0.0502 | |
| Quantile() | (0.4097,0.6114) | (0.3495,0.6400) | (0.3693,0.6242) | (0.3718,0.6231) | |
| Quantile() | (0.4535,0.7133) | (0.5302,0.6930) | (0.5283,0.6755) | (0.5289,0.6740) | |
| Number of valid samples | 999 out of 1000 | 999 out of 1000 | 1000 of 1000 | 999 out of 1000 | |
| Mean() | 0.5049 (0.0237) | 0.4699 (0.041) | 0.5015 (0.0374) | 0.5016 (0.0375) | |
| Mean() | 1.3136 (0.0652) | 1.1947 (0.0546) | 1.2996 (0.0100) | 1.2996 (0.0100) | |
| AAB() | 0.0192 | 0.0415 | 0.0301 | 0.0302 | |
| AAB() | 0.0537 | 0.1057 | 0.0080 | 0.0081 | |
| MSE() | 5.8625e-4 | 0.0026 | 0.0014 | 0.0014 | |
| MSE() | 0.0044 | 0.0141 | 9.9379e-5 | 1.0005e-4 | |
| MRE() | 0.0384 | 0.0830 | 0.0602 | 0.0605 | |
| MRE() | 0.0413 | 0.0813 | 0.0062 | 0.0062 | |
| Quantile() | (0.4540,0.5486) | (0.3916,0.5492) | (0.4313,0.5756) | (0.4286,0.5769) | |
| Quantile() | (1.1705,1.4177) | (1.1100,1.3013) | (1.2798,1.3183) | (1.2795,1.3190) | |
| Number of valid samples | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | |
| Mean() | 1.1094 (0.1773) | 1.1040 (0.1804) | 1.1034 (0.1610) | ||
| Mean() | 0.6336 (0.0282) | 0.6007 (0.0315) | 0.6006 (0.0281) | ||
| AAB() | 0.1439 | 0.1444 | 0.1292 | ||
| AAB() | 0.0351 | 0.0252 | 0.0226 | ||
| MSE() | 0.0315 | 0.0325 | 0.0259 | ||
| MSE() | 0.0019 | 9.9281e-4 | 7.9139e-4 | ||
| MRE() | 0.1308 | 0.1312 | 0.1175 | ||
| MRE() | 0.0584 | 0.0420 | 0.0376 | ||
| Quantile() | (0.8060,1.4720) | (0.7622,1.4710) | (0.7980,1.4223) | ||
| Quantile() | (0.5924,0.6997) | (0.5410,0.6648) | (0.5472,0.6563) | ||
| Number of valid samples | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | ||
| Mean() | 1.0989 (0.0687) | 1.1014 (0.0747) | 1.1012 (0.0726) | ||
| Mean() | 1.6399 (0.0394) | 1.6001 (0.0049) | 1.6001 (0.0048) | ||
| AAB() | 0.0557 | 0.0597 | 0.0581 | ||
| AAB() | 0.0458 | 0.0039 | 0.0038 | ||
| MSE() | 0.0047 | 0.0056 | 0.0053 | ||
| MSE() | 0.0031 | 2.3924e-5 | 2.2608e-5 | ||
| MRE() | 0.0506 | 0.0543 | 0.0528 | ||
| MRE() | 0.0286 | 0.0024 | 0.0024 | ||
| Quantile() | (0.9697,1.2345) | (0.9606,1.2525) | (0.9610,1.2454) | ||
| Quantile() | (1.5658,1.7226) | (1.5909,1.6100) | (1.5909,1.6095) | ||
| Number of valid samples | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | ||
| Statistical indices | MLE | MOM | PWM M101,M110 | PWM M102,M120 | |
|---|---|---|---|---|---|
| Mean() | 0.5043 (0.0353) | 0.5027 (0.0484) | 0.5005 (0.0449) | 0.5001 (0.0434) | |
| Mean() | 0.6042 (0.0433) | 0.6106 (0.0274) | 0.5997 (0.0259) | 0.5999 (0.0251) | |
| AAB() | 0.0282 | 0.0383 | 0.0359 | 0.0347 | |
| AAB() | 0.0349 | 0.0232 | 0.0207 | 0.0200 | |
| MSE() | 0.0013 | 0.0023 | 0.0020 | 0.0019 | |
| MSE() | 0.0019 | 8.6160e-4 | 6.7061e-4 | 6.2760e-4 | |
| MRE() | 0.0564 | 0.0767 | 0.0718 | 0.0694 | |
| MRE() | 0.0581 | 0.0387 | 0.0345 | 0.0334 | |
| Quantile() | (0.4332,0.5752) | (0.4059,0.5999) | (0.4118,0.5884) | (0.4110,0.5851) | |
| Quantile() | (0.5107,0.6776) | (0.5577,0.6669) | (0.5490,0.6509) | (0.5509,0.6514) | |
| Number of valid samples | 1000 of 1000 | 1000 of 1000 | 1000 out of 1000 | 1000 of 1000 | |
| Mean() | 0.5048 (0.0164) | 0.4845 (0.0277) | 0.5000 (0.0256) | 0.5002 (0.0253) | |
| Mean() | 1.3183 (0.0441) | 1.247 (0.0330) | 1.3000 (0.0068) | 1.2999 (0.0067) | |
| AAB() | 0.0137 | 0.0254 | 0.0207 | 0.0204 | |
| AAB() | 0.0379 | 0.0534 | 0.0055 | 0.0054 | |
| MSE() | 2.9281e-4 | 0.001 | 6.5674e-4 | 6.4032e-4 | |
| MSE() | 0.0023 | 0.0039 | 4.6676e-5 | 4.5509e-5 | |
| MRE() | 0.0273 | 0.0508 | 0.0414 | 0.0407 | |
| MRE() | 0.0292 | 0.0411 | 0.0042 | 0.0042 | |
| Quantile() | (0.4731,0.5354) | (0.4322,0.5397) | (0.4503,0.5508) | (0.4507,0.5494) | |
| Quantile() | (1.2219,1.3884) | (1.1916,1.3021) | (1.2865,1.3132) | (1.2868,1.3131) | |
| Number of valid samples | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | |
| Mean() | 1.1025 (0.122) | 1.2234 (0.4310) | 1.1006 (0.1254) | 1.1014 (0.1114) | |
| Mean() | 0.6232 (0.0216) | 0.2910 (0.2066) | 0.6001 (0.0219) | 0.6002 (0.0195) | |
| AAB() | 0.0974 | 0.3368 | 0.0999 | 0.0888 | |
| AAB() | 0.0248 | 0.3267 | 0.0175 | 0.0155 | |
| MSE() | 0.0149 | 0.2005 | 0.0157 | 0.0124 | |
| MSE() | 0.0010 | 0.1381 | 4.7959e-4 | 3.7833e-4 | |
| MRE() | 0.0885 | 0.3062 | 0.0908 | 0.0807 | |
| MRE() | 0.0413 | 0.5445 | 0.0291 | 0.0259 | |
| Quantile() | (0.8780,1.3561) | (0.2606,2.1869) | (0.8532,1.3501) | (0.8829,1.3176) | |
| Quantile() | (0.5907,0.6774) | (0.0076,0.7279) | (0.5569,0.6437) | (0.5621,0.6380) | |
| Number of valid samples | 1000 of 1000 | 409 out of 1000 | 1000 of 1000 | 1000 of 1000 | |
| Mean() | 1.0989 (0.0474) | 1.3354 (0.1711) | 1.1010 (0.0505) | 1.1008 (0.0492) | |
| Mean() | 1.6365 (0.0318) | 0.6937 (0.3946) | 1.6001 (0.0033) | 1.6001 (0.0032) | |
| AAB() | 0.0379 | 0.2446 | 0.0409 | 0.0398 | |
| AAB() | 0.0405 | 0.9064 | 0.0027 | 0.0026 | |
| MSE() | 0.0022 | 0.0847 | 0.0026 | 0.0024 | |
| MSE() | 0.0023 | 0.9770 | 1.0953e-5 | 1.0394e-5 | |
| MRE() | 0.0345 | 0.2224 | 0.0372 | 0.0362 | |
| MRE() | 0.0253 | 0.5665 | 0.0017 | 0.0016 | |
| Quantile() | (1.0089,1.1856) | (1.0331,1.6236) | (1.0036,1.1972) | (1.0056,1.1941) | |
| Quantile() | (1.5761,1.6994) | (0.2126,1.5451) | (1.5937,1.6064) | (1.5938,1.6062) | |
| Number of valid samples | 1000 of 1000 | 997 out of 1000 | 1000 of 1000 | 1000 of 1000 | |
| Statistical indices | MLE | MOM | PWM M101,M110 | PWM M102,M120 | |
|---|---|---|---|---|---|
| Mean() | 0.5044 (0.0162) | 0.5011 (0.0214) | 0.4988 (0.0202) | 0.4989 (0.0197) | |
| Mean() | 0.6097 (0.0201) | 0.6066 (0.0123) | 0.6007 (0.0117) | 0.6006 (0.0114) | |
| AAB() | 0.0131 | 0.0171 | 0.0161 | 0.0156 | |
| AAB() | 0.0177 | 0.0110 | 0.0093 | 0.0090 | |
| MSE() | 2.8252e-4 | 4.5718e-4 | 4.1113e-4 | 3.8840e-4 | |
| MSE() | 4.9920e-4 | 1.9447e-4 | 1.3717e-4 | 1.2959e-4 | |
| MRE() | 0.0261 | 0.0341 | 0.0322 | 0.0312 | |
| MRE() | 0.0294 | 0.0184 | 0.0155 | 0.0150 | |
| Quantile() | (0.4731,0.5360) | (0.4590,0.5431) | (0.4581,0.5388) | (0.4578,0.5380) | |
| Quantile() | (0.5659,0.6457) | (0.5819,0.6303) | (0.5776,0.6242) | (0.5781,0.6244) | |
| Number of valid samples | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | |
| Mean() | 0.5051 (0.0073) | 0.4971 (0.0118) | 0.5000 (0.0113) | 0.4999 (0.0113) | |
| Mean() | 1.3195 (0.0242) | 1.2894 (0.0068) | 1.3000 (0.003) | 1.3000 (0.0030) | |
| AAB() | 0.0068 | 0.0098 | 0.0092 | 0.0092 | |
| AAB() | 0.0237 | 0.0108 | 0.0024 | 0.0024 | |
| MSE() | 7.9362e-5 | 1.4693e-4 | 1.2707e-4 | 1.2682e-4 | |
| MSE() | 9.6674e-4 | 1.5855e-4 | 9.0313e-6 | 9.0134e-6 | |
| MRE() | 0.0137 | 0.0197 | 0.0183 | 0.0183 | |
| MRE() | 0.0182 | 0.0083 | 0.0019 | 0.0019 | |
| Quantile() | (0.4932,0.5216) | (0.4753,0.5205) | (0.4795,0.5223) | (0.4793,0.5219) | |
| Quantile() | (1.2824,1.3668) | (1.2766,1.3018) | (1.2940,1.3055) | (1.2942,1.3055) | |
| Number of valid samples | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | |
| Mean() | 1.0978 (0.0556) | 1.2494 (0.0868) | 1.1001 (0.0548) | 1.1000 (0.0488) | |
| Mean() | 0.6137 (0.0126) | 0.2754 (0.1023) | 0.6000 (0.0096) | 0.6000 (0.0085) | |
| AAB() | 0.0453 | 0.1532 | 0.0444 | 0.0396 | |
| AAB() | 0.0155 | 0.3247 | 0.0077 | 0.0069 | |
| MSE() | 0.0031 | 0.0299 | 0.0030 | 0.0024 | |
| MSE() | 3.4713e-4 | 0.1158 | 9.1734e-5 | 7.2737e-5 | |
| MRE() | 0.0412 | 0.1393 | 0.0403 | 0.0360 | |
| MRE() | 0.0258 | 0.5412 | 0.0129 | 0.0115 | |
| Quantile() | (0.9962,1.2096) | (1.075,1.4236) | (0.9952,1.2103) | (1.0074,1.1972) | |
| Quantile() | (0.5904,0.6388) | (0.0953,0.5332) | (0.5817,0.6193) | (0.5838,0.6170) | |
| Number of valid samples | 1000 of 1000 | 675 out of 1000 | 1000 of 1000 | 1000 of 1000 | |
| Mean() | 1.0976 (0.0213) | 1.1300 (0.0454) | 1.1001 (0.0227) | 1.1000 (0.0220) | |
| Mean() | 1.6352 (0.0279) | 1.3005 (0.2355) | 1.6000 (0.0015) | 1.6000 (0.0014) | |
| AAB() | 0.0171 | 0.0388 | 0.0183 | 0.0178 | |
| AAB() | 0.0384 | 0.2995 | 0.0012 | 0.0012 | |
| MSE() | 4.5729e-4 | 0.0030 | 5.1549e-4 | 4.8480e-4 | |
| MSE() | 0.0020 | 0.1451 | 2.2133e-6 | 2.0816e-6 | |
| MRE() | 0.0155 | 0.0353 | 0.0167 | 0.0162 | |
| MRE() | 0.0240 | 0.1872 | 7.5140e-4 | 7.3023e-4 | |
| Quantile() | (1.0584,1.1414) | (1.0631,1.248) | (1.0564,1.1454) | (1.0584,1.1441) | |
| Quantile() | (1.5789,1.6842) | (0.6479,1.600) | (1.5971,1.603) | (1.5973,1.6029) | |
| Number of valid samples | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | 1000 of 1000 | |
| n |
PWM: |
PWM: |
PWM: |
PWM: |
|||||
|---|---|---|---|---|---|---|---|---|---|
| 500 | Var_cov | 4.1004e-4 | -2.368e-4 | 1.272e-4 | -3.391e-5 | 0.003 | 5.255e-4 | 5.1600e-4 | 3.3811e-5 |
| -2.368e-4 | 1.3681e-4 | -3.391e-5 | 9.0404e-6 | 5.255e-4 | 9.1825e-5 | 3.3811e-5 | 2.2155e-6 | ||
| Corr | -1 | -1 | 1 | 1 | |||||
| Cond num. Eigen_val | Cond. num=1.395e+16 Eigen_val=-1.3553e-20, 5.4685e-4 |
Cond_num=9.0086e+16 Eigen_val=1.6941e-21, 1.3624e-4 |
Cond_num=2.2935e+17 Eigen_val=0, 0.0031 |
Cond_num=6.6920e+17 Eigen_val=0, 5.1822e-4 |
|||||
| 100 | Var_cov | 0.0020 | -0.0012 | 6.574e-4 | -1.7526e-4 | 0.0157 | 0.0027 | 0.0026 | 1.6725e-4 |
| -0.0012 | 6.7119e-4 | -1.7526e-4 | 4.6723e-5 | 0.0027 | 4.8006e-4 | 1.6725e-4 | 1.0959e-5 | ||
| Corr | -1 | -1 | 1 | 1 | |||||
| Cond num. Eigen_val | Cond. num=1.632e+16 Eigen_val=1.0842e-19, 0.0027 |
Cond. num=5.8349e+16 Eigen_val=0, 7.0412e-4 |
Cond. num=1.2587e+17 Eigen_val=0.0162, 2.1684e-19 |
Cond. num=2.0801e+18 Eigen_val=0.0026, 3.3881e-21 |
|||||
| 50 | Var_cov | 0.0044 | -0.0026 | 0.0014 | -3.7257e-4 | 0.0325 | 0.0057 | 0.0056 | 3.6534e-4 |
| -0.0026 | 0.0015 | -3.7257e-4 | 9.9325e-5 | 0.0057 | 9.9332e-4 | 3.6534e-4 | 2.3939e-5 | ||
| Corr | -1 | -1 | 1 | 1 | |||||
| Cond num. Eigen_val | Cond. num=2.548e+16 Eigen_val=0, 0.0059 |
Cond. num=5.654e+16 Eigen_val=0.0015, 1.3551e-20 |
Cond. num=5.2012e+16 Eigen_val=0.0335, 4.3368e-19 |
Cond. num=6.3331e+17 Eigen_val=0.0056, -6.7763e-21 |
|||||
| 20 | Var_cov | 0.0101 | -0.0059 | 0.0034 | -8.9798e-4 | 0.0831 | 0.0145 | 0.0138 | 9.0267e-4 |
| -0.0059 | 0.0034 | -8.9798e-4 | 2.3940e-4 | 0.0145 | 0.0025 | 9.0267e-4 | 5.9148e-5 | ||
| Corr | -1 | -1 | 1 | 1 | |||||
| Cond num. Eigen_val | Cond.num=2.7699e+16 Eigen.val=0.0135, 4.3368e-19 |
Cond.num=1.0764e+17 Eigen.val=0.0036, 5.4210e-20 |
Cond.num=9.2362e+16 Eigen.val=0.0856, 4.3368e-20 |
Cond.num=1.328e+18 Eigen.val=0.0138, -1.3553e-20 |
|||||
| n |
PWM: |
PWM: |
PWM: |
PWM: |
|||||
|---|---|---|---|---|---|---|---|---|---|
| 500 | Var_cov | 3.8765e-4 | -2.2390e-4 | 1.2694e-4 | -3.3840e-5 | 0.0024 | 4.1669e-4 | 4.8529e-4 | 3.1799e-5 |
| -2.2390e-4 | 1.2934e-4 | -3.3840e-5 | 9.0221e-6 | 4.1669e-4 | 7.2810e-5 | 3.1799e-5 | 2.0836e-6 | ||
| Corr | -1 | -1 | 1 | 1 | |||||
| Cond num. Eigen_val | Cond.num=4.1394e+17 Eigen_val=-4.0658e-20, 5.1700e-4 |
Cond.num=2.7053e+17 Eigen_val=3.3881e-21, 1.3596e-4 |
Cond.num=1.3574e+17 Eigen_val=1.3553e-20, 0.0025 |
Cond.num=7.5123e+17 Eigen_val=1.2705e-21, 4.8727e-4 |
|||||
| 100 | Var_cov | 0.0019 | -0.0011 | 6.4091e-4 | -1.7086e-4 | 0.0124 | 0.0022 | 0.0024 | 1.5875e-4 |
| -0.0011 | 6.2822e-4 | -1.7086e-4 | 4.5552e-5 | 0.0022 | 3.7865e-4 | 1.5875e-4 | 1.0402e-5 | ||
| Corr | -1 | -1 | 1 | 1 | |||||
| Cond num. Eigen_val | Cond.num=1.4424e+16 Eigen_val=1.0842e-19, 0.0025 |
Cond.num=1.0285e+17 Eigen_val=-1.3553e-20, 6.8647e-4 |
Cond.num=1.2979e+17 Eigen_val=-2.1684e-19, 0.0128 |
Cond.num=8.5287e+17 Eigen_val=-5.0822e-21, 0.0024 |
|||||
| 50 | Var_cov | 0.0042 | -0.0024 | 0.0014 | -3.7490e-4 | 0.0259 | 0.0045 | 0.0053 | 3.4528e-4 |
| -0.0024 | 0.0014 | -3.7490e-4 | 9.9962e-5 | 0.0045 | 7.9183e-4 | 3.4528e-4 | 2.2625e-5 | ||
| Corr | -1 | -1 | 1 | 1 | |||||
| Cond num. Eigen_val | Cond.num=1.8731e+16 Eigen_val=0, 0.0055 |
Cond.num=4.3350e+16 Eigen_val=-4.0658e-20, 0.0015 |
Cond.num=2.0248e+17 Eigen_val=1.0842e-19, 0.0267 |
Cond.num=4.8561e+17 Eigen_val=1.3553e-20, 0.0053 |
|||||
| 20 | Var_cov | 0.0096 | -0.0056 | 0.0033 | -8.9170e-4 | 0.0668 | 0.0117 | 0.0130 | 8.4944e-4 |
| -0.0056 | 0.0032 | -8.9170e-4 | 2.3772e-4 | 0.0117 | 0.0020 | 8.4944e-4 | 5.5660e-5 | ||
| Corr | -1 | -1 | 1 | 1 | |||||
| Cond num. Eigen_val | Cond.num=2.0154e+16 Eigen_val=8.6736e-19, 0.0128 |
Cond.num=3.6958e+17 Eigen_val=0.0036, 6.8647e-4 |
Cond.num=1.1993e+17 Eigen_val=8.6736e-19, 0.0689 |
Cond.num=6.3129e+17 Eigen_val=-2.7105e-20, 0.0130 |
|||||
| n |
MLE |
MLE |
MLE |
MLE |
|||||
|---|---|---|---|---|---|---|---|---|---|
| 500 | Var_cov | 2.6310e-4 | -2.9000e-4 | 5.3680e-5 | -9.9890e-5 | 0.0031 | 1.6830e-4 | 4.5220e-4 | -7.0280e-5 |
| -2.9000e-4 | 4.0480e-4 | -9.9890e-5 | 5.8690e-4 | 1.6830e-4 | 1.5960e-4 | -7.0280e-5 | 7.7790e-4 | ||
| Corr | -0.8887(p=0) | -0.5628(p=1.26e-84) | 0.2395(p=1.644e-14) | -0.1185(p=1.729e-4) | |||||
| Cond num. Eigen_val | Cond.num=17.8648 Eigen_val=3.5402e-05, 6.3245e-4 |
Cond.num=17.0047 Eigen_val=3.5578e-05, 6.0499e-4 |
Cond.num=20.6931 Eigen_val=1.5003e-04, 0.0031 |
Cond.num=1.8107 Eigen_val=4.3764e-04, 7.9246e-4 |
|||||
| 100 | Var_cov | 0.0012 | -0.0015 | 2.6990e-4 | -6.4590e-4 | 0.0149 | -6.4070e-4 | 0.0022 | 1.6973e-4 |
| -0.0015 | 0.0019 | -6.4590e-4 | 0.0019 | -6.4070e-4 | 4.6760e-4 | 1.6973e-4 | 0.0010 | ||
| Corr | -0.9670(p=0) | -0.8917(p=0) | -0.2429(p=6.8e-15) | 0.1128(p=3.7e-4) | |||||
| Cond num. Eigen_val | Cond.num=62.3364 Eigen_val=4.9263e-05, 0.0031 |
Cond.num=43.5652 Eigen_val=4.9688e-05, 0.0022 |
Cond.num=33.9381 Eigen_val=4.3920e-04, 0.0149 |
Cond.num=2.3023 Eigen_val=9.8549e-04, 0.0023 |
|||||
| 50 | Var_cov | 0.0028 | -0.0034 | 5.6260e-4 | -0.0014 | 0.0315 | -0.0013 | 0.0047 | -2.8410e-4 |
| -0.0034 | 0.0042 | -0.0014 | 0.0043 | -0.0013 | 7.9280e-4 | -2.8410e-4 | 0.0016 | ||
| Corr | -0.9823(p=0) | -0.9326(p=0) | -0.2514(p=7e-16) | 0.1050(p=0.0009) | |||||
| Cond num. Eigen_val | Cond.num=116.3342 Eigen_val=6.0377e-05, 0.0070 |
Cond.num=72.3631 Eigen_val=6.5640e-05, 0.0047 |
Cond.num=42.4821 Eigen_val=7.4153e-04, 0.0315 |
Cond.num=3.1071 Eigen_val=0.0015, 0.0047 |
|||||
| 20 | Var_cov | 0.0071 | -0.0089 | 0.0014 | -0.0035 | 0.0703 | -0.0044 | 0.011 | -0.0013 |
| -0.0089 | 0.0116 | -0.0035 | 0.0093 | -0.0044 | 0.0017 | -0.0013 | 0.0030 | ||
| Corr | -0.9788(p=0) | -0.9683(p=0) | -0.4087(p=0) | -0.2297(p=0) | |||||
| Cond num. Eigen_val | Cond.num=99.0764 Eigen_val=0.0185, 1.8665e-4 |
Cond.num=139.9554 Eigen_val=0.0106, 7.5630e-5 |
Cond.num=51.2278 Eigen_val=0.0014, 0.0705 |
Cond.num=4.0477 Eigen_val=0.0028, 0.0112 |
|||||
| n |
MOM |
MOM |
MOM |
MOM |
|||||
|---|---|---|---|---|---|---|---|---|---|
| 500 | Var_cov | 4.5650e-4 | -2.5350e-4 | 1.3850e-5 | -2.4080e-5 | 0.0075 | 0.0038 | 0.0021 | -0.0071 |
| -2.5350e-4 | 1.5150e-4 | -2.4080e-5 | 4.6150e-5 | 0.0038 | 0.0105 | -0.0071 | 0.0555 | ||
| Corr | -0.964(p=0) | -0.3011(p=2.09e-22) | 0.4323(p=4.0974e-32) | -0.662(p=4.0381e-127) | |||||
| Cond num. Eigen_val | Cond.num=73.6573 Eigen_val=8.1441e-06, 5.9988e-4 |
Cond.num=3.5871 Eigen_val=4.0254e-5, 1.4440e-4 |
Cond.num=2.6805 Eigen_val=0.0049, 0.0131 |
Cond.num=49.5788 Eigen_val=0.0011, 0.0564 |
|||||
| 100 | Var_cov | 0.0023 | -0.0013 | 7.6600e-4 | 4.6600e-5 | 0.1857 | 0.0101 | 0.0293 | -0.0396 |
| -0.0013 | 7.5020e-4 | 4.6600e-5 | 0.0011 | 0.0101 | 0.0427 | -0.0396 | 0.1557 | ||
| Corr | -0.9846(p=0) | 0.0511(p=0.1065) | 0.1138(p=0.0214) | -0.587(p=2.2243e-93) | |||||
| Cond num. Eigen_val | Cond.num=176.1722 Eigen_val=1.7454e-5, 0.0031 |
Cond.num=1.4435 Eigen_val=7.5939e-4, 0.0011 |
Cond.num=4.4403 Eigen_val=0.042, 0.1864 |
Cond.num=9.3439 Eigen_val=0.0179, 0.1671 |
|||||
| 50 | Var_cov | 0.0055 | -0.0030 | 0.0017 | 3.2350e-4 | ||||
| -0.0030 | 0.0017 | 3.2350e-4 | 0.0030 | ||||||
| Corr | -0.9600(p=0) | 0.1444(p=4.525e-6) | |||||||
| Cond num. Eigen_val | Cond.num=67.5162 Eigen_val=1.0526e-4, 0.0071 |
Cond.num=1.8992 Eigen_val=0.0016, 0.0031 |
|||||||
| 20 | Var_cov | 0.0124 | -0.0041 | 0.0042 | 5.1310e-4 | 0.1345 | 0.0016 | ||
| -0.0041 | 0.0066 | 5.1310e-4 | 0.0052 | 0.0016 | 0.0781 | ||||
| Corr | -0.4506(p=1.619e-50) | 0.1093(p=-5.333e-4) | 0.0153(p=0.9255) | ||||||
| Cond num. Eigen_val | Cond.num=3.2243 Eigen_val=0.0045, 0.0145 |
Cond.num=1.3664 Eigen_val=0.0040, 0.0055 |
Cond.num=1.724 Eigen_val=0.0781, 0.1246 |
||||||
|
PWM: M101,M110 & |
PWM: M101,M110 & |
PWM: M101,M110 & |
PWM: M101,M110 & |
|
|---|---|---|---|---|
| Slope for | ||||
| Slope for | ||||
|
PWM: M102,M120 & |
PWM: M102,M120 & |
PWM: M102,M120 & |
PWM: M102,M120 & |
|
| Slope for | ||||
| Slope for | ||||
|
MLE & |
MLE & |
MLE & |
MLE & |
|
| Slope for | ||||
| Slope for | ||||
|
MOM & |
MOM & |
MOM & |
MOM & |
|
| Slope for | ||||
| Slope for |
![]() |
![]() |
![]() |
![]() |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






