Submitted:
09 December 2024
Posted:
11 December 2024
You are already at the latest version
Abstract
Degenerative proteinopathies constitute a set of molecular diseases that are caused by the misfolding of specific proteins, leading them to change their biochemical configuration and become toxic for entire systems of organs. Such protein toxicity induces the lysing of an increasing number of proteins that have a biochemically ‘wild-type’ version, gradually and eventually leading to a complete shift in the ratio between such ‘wild-type’ and ‘altered’ versions of such proteins, which directly precedes the clinical onset of such diseases. Proteinopathies not only involve neurodegenerative illnesses, but also a disease that leads to a progressive rate of blindness. Sadly, all such impairments that are neurodegenerative in nature may only receive palliative treatment, given that they are caused by aggregated proteins that start damaging and destroying entire neuronal systems, which leads to impairments in the neuro-muscular and ultimately to the inability of the patients to perform vital functions, like breathing and deglutition. There is neither a cure, nor a definitive method in which the progression of the illness can be stopped at the present time. Consequently, all neurodegenerative diseases have mortality rates of 100% and clinical approaches aim to reduce the suffering of such patients. Nonetheless, there seems to be a glimmer of hope regarding future prophylactic approaches that could delay the onset of many types of proteinopathies. Namely, an immune application could support efforts of clinical suffering delay and attenuation in an unprecedented manner. At the same time, it is necessary to emphasise upon realistic scenarios, that it remains virtually impossible to delay the onset of proteinopathies to the point of the patient reaching the average number of years in life expectancy without experiencing clinical symptoms yet. Initially, clinicians developed and tested a nasal spray containing a substance known as protollin, which stimulates a restricted extent of adaptive lymphocyte recruitment and transport to the central nervous system areas affected by initial stages of protein aggregation, activating a substantial number of microglial cells and preventing the lysis of numerous astrocytes, which in turn start lysing a number of beta-amyloid protein aggregates together without inducing pathophysiology, given the stage in which the patients have not experienced any clinical manifestation of the neurodegenerative disease yet. In case of an unsuccessful attempt to bring protollin above the threshold levels of clinical safety and efficacy, an immunostimulatory and immunomodulatory substance containing a low concentration of a mixture of recombinant Type I & III Interferons, innate and adaptive lymphocytes, perhaps themselves priorly treated with such IFN glycoproteins, would probably remain a vital candidate for an effective, yet probably still restricted delay of onset of various proteinopathies that could be neurodegenerative and optically degenerative. An existent success rate of the clinical test allows the opening of a window of opportunity regarding an increased efficacy of such adaptive lymphocyte approach, by including recombinant Type I and Type III Interferons into such a nasal spray, which could also enter adaptive lymphocyte and further improve their structural integrity and their multi-lateral functionality. Moreover, a low dose of protollin, Type I Interferons and Type III Interferons could be inserted in combination into adaptive T-Lymphocytes to optimise their defence mechanisms and immune functions, potentially bringing a considerable immunising effect against microbial diseases like HIV-induced, retroviral AIDS. Such an approach could create a stable and wide “highway bridge” of connection between innate and adaptive immunity, aiming for the best version of an immune contribution toward a considerable delay of proteinopathy clinical onset. Overall, there may be a requirement for a bi-lateral update of immunological research covering therapeutics and vaccine development; an immune system based optimisation that builds a stable and wide bridge of connection more directly between pre-cytokine and post-cytokine immune activation, and overall between innate and adaptive immune departments; and a pathogen-based optimisation that either eliminates or partially activates genes suppressive of Type I and Type III Interferon-encoding genes, helping enliven the concept of “United Immune System” as well, though less directly than the immune system-based potential approach.
Keywords:
Introduction
Discussion
Conclusion
References
- Scheltens, P. , De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & van der Flier, W. M. (2021). Alzheimer's disease. Lancet (London, England), 397(10284), 1577–1590. [CrossRef]
- Weller, J. , & Budson, A. (2018). Current understanding of Alzheimer's disease diagnosis and treatment. F1000Research, 7, F1000 Faculty Rev-1161. [CrossRef]
- Zhang, J. , Zhang, Y., Wang, J., Xia, Y., Zhang, J., & Chen, L. (2024). Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal transduction and targeted therapy, 9(1), 211. [CrossRef]
- Jiang, T. , Yu, J. T., & Tan, L. (2012). Novel disease-modifying therapies for Alzheimer's disease. Journal of Alzheimer's disease : JAD, 31(3), 475–492. [CrossRef]
- Zhu, J. , Wu, C., & Yang, L. (2024). Cellular senescence in Alzheimer's disease: from physiology to pathology. Translational neurodegeneration, 13(1), 55. [CrossRef]
- Frenkel, D. , Puckett, L., Petrovic, S., Xia, W., Chen, G., Vega, J., Dembinsky-Vaknin, A., Shen, J., Plante, M., Burt, D. S., & Weiner, H. L. (2008). A nasal proteosome adjuvant activates microglia and prevents amyloid deposition. Annals of neurology, 63(5), 591–601. [CrossRef]
- Frenkel, D., Maron, R., Burt, D. S., & Weiner, H. L. (2005). Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. The Journal of clinical investigation, 115(9), 2423–2433. [CrossRef]
- Frenkel, D. , Puckett, L., Petrovic, S., Xia, W., Chen, G., Vega, J., Dembinsky-Vaknin, A., Shen, J., Plante, M., Burt, D. S., & Weiner, H. L. (2008). A nasal proteosome adjuvant activates microglia and prevents amyloid deposition. Annals of neurology, 63(5), 591–601. [CrossRef]
- Lifshitz, V. , Weiss, R., Benromano, T., Kfir, E., Blumenfeld-Katzir, T., Tempel-Brami, C., Assaf, Y., Xia, W., Wyss-Coray, T., Weiner, H. L., & Frenkel, D. (2012). Immunotherapy of cerebrovascular amyloidosis in a transgenic mouse model. Neurobiology of aging, 33(2), 432.e1–432.e13. [CrossRef]
- Hjorth, E. , Frenkel, D., Weiner, H., & Schultzberg, M. (2010). Effects of immunomodulatory substances on phagocytosis of abeta(1-42) by human microglia. International journal of Alzheimer's disease, 2010, 798424. [CrossRef]
- Anwar, S. , & Rivest, S. (2020). Alzheimer's disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert opinion on therapeutic targets, 24(4), 331–344. [CrossRef]
- Sun, Z. , Zhang, X., So, K. F., Jiang, W., & Chiu, K. (2024). Targeting Microglia in Alzheimer's Disease: Pathogenesis and Potential Therapeutic Strategies. Biomolecules, 14(7), 833. [CrossRef]
- Cai, Y. , Liu, J., Wang, B., Sun, M., & Yang, H. (2022). Microglia in the Neuroinflammatory Pathogenesis of Alzheimer's Disease and Related Therapeutic Targets. Frontiers in immunology, 13, 856376. [CrossRef]
- AmeliMojarad, M. , & AmeliMojarad, M. (2024). The neuroinflammatory role of microglia in Alzheimer's disease and their associated therapeutic targets. CNS neuroscience & therapeutics, 30(7), e14856. [CrossRef]
- Harrington, E. P., Bergles, D. E., & Calabresi, P. A. (2020). Immune cell modulation of oligodendrocyte lineage cells. Neuroscience letters, 715, 134601. [CrossRef]
- Liu, W. , Liu, S., Li, P., & Yao, K. (2022). Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. International journal of molecular sciences, 23(9), 4883. [CrossRef]
- Zheng, A., Li, Y., & Tsang, S. H. (2015). Personalized therapeutic strategies for patients with retinitis pigmentosa. Expert opinion on biological therapy, 15(3), 391–402. [CrossRef]
- Bandurska, K. , Król, I., & Myga-Nowak, M. (2014). Interferony: między strukturą a funkcją [Interferons: between structure and function]. Postepy higieny i medycyny doswiadczalnej (Online), 68, 428–440. [CrossRef]
- Smits, H. H. , & Jochems, S. P. (2024). Diverging patterns in innate immunity against respiratory viruses during a lifetime: lessons from the young and the old. European respiratory review : an official journal of the European Respiratory Society, 33(172), 230266. [CrossRef]
- McNab, F., Mayer-Barber, K., Sher, A., Wack, A., & O'Garra, A. (2015). Type I interferons in infectious disease. Nature reviews. Immunology, 15(2), 87–103. [CrossRef]
- Anes, E. , Azevedo-Pereira, J. M., & Pires, D. (2024). Role of Type I Interferons during Mycobacterium tuberculosis and HIV Infections. Biomolecules, 14(7), 848. [CrossRef]
- Bergantz, L., Subra, F., Deprez, E., Delelis, O., & Richetta, C. (2019). Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells, 8(8), 922. [CrossRef]
- Chintala, K. , Mohareer, K., & Banerjee, S. (2021). Dodging the Host Interferon-Stimulated Gene Mediated Innate Immunity by HIV-1: A Brief Update on Intrinsic Mechanisms and Counter-Mechanisms. Frontiers in immunology, 12, 716927. [CrossRef]
- Itell, H. L. , Humes, D., & Overbaugh, J. (2023). Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4+ T cells. Cell reports, 42(6), 112556. [CrossRef]
- Cabral-Piccin, M. P. , Papagno, L., Lahaye, X., Perdomo-Celis, F., Volant, S., White, E., Monceaux, V., Llewellyn-Lacey, S., Fromentin, R., Price, D. A., Chomont, N., Manel, N., Saez-Cirion, A., & Appay, V. (2023). Primary role of type I interferons for the induction of functionally optimal antigen-specific CD8+ T cells in HIV infection. EBioMedicine, 91, 104557. [CrossRef]
- Roesmann, F. , Müller, L., Klaassen, K., Heß, S., & Widera, M. (2024). Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses, 16(6), 938. [CrossRef]
- Rasaiyaah, J., Tan, C. P., Fletcher, A. J., Price, A. J., Blondeau, C., Hilditch, L., Jacques, D. A., Selwood, D. L., James, L. C., Noursadeghi, M., & Towers, G. J. (2013). HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature, 503(7476), 402–405. [CrossRef]
- Thaney, V. E., & Kaul, M. (2019). Type I Interferons in NeuroHIV. Viral immunology, 32(1), 7–14. [CrossRef]
- Lazear, H. M., Schoggins, J. W., & Diamond, M. S. (2019). Shared and Distinct Functions of Type I and Type III Interferons. Immunity, 50(4), 907–923. [CrossRef]
- Dowling, J. W. , & Forero, A. (2022). Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. Journal of immunology (Baltimore, Md. : 1950), 208(2), 247–256. [CrossRef]
- Stanifer, M. L., Guo, C., Doldan, P., & Boulant, S. (2020). Importance of Type I and III Interferons at Respiratory and Intestinal Barrier Surfaces. Frontiers in immunology, 11, 608645. [CrossRef]
- Padayachee, Y. , Flicker, S., Linton, S., Cafferkey, J., Kon, O. M., Johnston, S. L., Ellis, A. K., Desrosiers, M., Turner, P., Valenta, R., & Scadding, G. K. (2021). Review: The Nose as a Route for Therapy. Part 2 Immunotherapy. Frontiers in allergy, 2, 668781. [CrossRef]
- Schuhenn, J. , Meister, T. L., Todt, D., Bracht, T., Schork, K., Billaud, J. N., Elsner, C., Heinen, N., Karakoese, Z., Haid, S., Kumar, S., Brunotte, L., Eisenacher, M., Di, Y., Lew, J., Falzarano, D., Chen, J., Yuan, Z., Pietschmann, T., Wiegmann, B., … Pfaender, S. (2022). Differential interferon-α subtype induced immune signatures are associated with suppression of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 119(8), e2111600119. [CrossRef]
- Lee, A. C. , Jeong, Y., Lee, S., Jang, H., Zheng, A., Kwon, S., & Repine, J. E. (2021). Nasopharyngeal type-I interferon for immediately available prophylaxis against emerging respiratory viral infections. Frontiers in Immunology, 12, 660298. [CrossRef]
- Zhou, J. , Chen, X., Lu, Y. et al. Interferon-α-2b Nasal Spray for Treating SARS-CoV-2 Omicron Variant-Infected Children. J Clin Immunol 43, 862–864 (2023). [CrossRef]
- Xu, N. , Pan, J., Sun, L., Zhou, C., Huang, S., Chen, M., Zhang, J., Zhu, T., Li, J., Zhang, H., & Gao, Y. (2022). Interferon α-2b spray shortened viral shedding time of SARS-CoV-2 Omicron variant: An open prospective cohort study. Frontiers in immunology, 13, 967716. [CrossRef]
- Yang, L. , Wang, J., Hui, P., Yarovinsky, T. O., Badeti, S., Pham, K., & Liu, C. (2021). Potential role of IFN-α in COVID-19 patients and its underlying treatment options. Applied microbiology and biotechnology, 105(10), 4005–4015. [CrossRef]
- Donnelly, R. P. , & Kotenko, S. V. (2010). Interferon-lambda: a new addition to an old family. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research, 30(8), 555–564. [CrossRef]
- Lopušná, K., Režuchová, I., Betáková, T., Skovranová, L., Tomašková, J., Lukáčiková, L., & Kabát, P. (2013). Interferons lambda, new cytokines with antiviral activity. Acta virologica, 57(2), 171–179. [CrossRef]
- Zhou, J. H. , Wang, Y. N., Chang, Q. Y., Ma, P., Hu, Y., & Cao, X. (2018). Type III Interferons in Viral Infection and Antiviral Immunity. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 51(1), 173–185. [CrossRef]
- Li, M. , Liu, X., Zhou, Y., & Su, S. B. (2009). Interferon-lambdas: the modulators of antivirus, antitumor, and immune responses. Journal of leukocyte biology, 86(1), 23–32. [CrossRef]
- Lind, K. , Richardson, S. J., Leete, P., Morgan, N. G., Korsgren, O., & Flodström-Tullberg, M. (2013). Induction of an antiviral state and attenuated coxsackievirus replication in type III interferon-treated primary human pancreatic islets. Journal of virology, 87(13), 7646–7654. [CrossRef]
- Plotnikova, M. , Lozhkov, A., Romanovskaya-Romanko, E., Baranovskaya, I., Sergeeva, M., Kаа, K., Klotchenko, S., & Vasin, A. (2021). IFN-λ1 Displays Various Levels of Antiviral Activity In Vitro in a Select Panel of RNA Viruses. Viruses, 13(8), 1602. [CrossRef]
- Jafarzadeh, A. , Nemati, M., Saha, B., Bansode, Y. D., & Jafarzadeh, S. (2021). Protective Potentials of Type III Interferons in COVID-19 Patients: Lessons from Differential Properties of Type I- and III Interferons. Viral immunology, 34(5), 307–320. [CrossRef]
- Madonov, P. G. , Svyatchenko, V. A., Legostaev, S. S., Kikhtenko, N. A., Kotlyarova, A. A., Oleinik, L. A., & Baikalov, G. I. (2021). Evaluation of the Anti-Viral Activity of Human Recombinant Interferon Lambda-1 against SARS-CoV-2. Bulletin of experimental biology and medicine, 172(1), 53–56. [CrossRef]
- Solstad, A. D. , Denz, P. J., Kenney, A. D., Mahfooz, N. S., Speaks, S., Gong, Q., Robinson, R. T., Long, M. E., Forero, A., Yount, J. S., & Hemann, E. A. (2024). IFN-λ uniquely promotes CD8 T cell immunity against SARS-CoV-2 relative to type I IFN. JCI insight, 9(13), e171830. [CrossRef]
- Li, Q. , Kawamura, K., Tada, Y., Shimada, H., Hiroshima, K., & Tagawa, M. (2013). Novel type III interferons produce anti-tumor effects through multiple functions. Frontiers in bioscience (Landmark edition), 18(3), 909–918. [CrossRef]
- Oleinik, L. A., Madonov, P. G., & Pykhtina, M. B. (2023). Molekuliarnaia biologiia, 57(2), 307–315.
- Waithman, J., & Mintern, J. D. (2012). Dendritic cells and influenza A virus infection. Virulence, 3(7), 603–608. [CrossRef]
- Bel, M. , Ocaña-Macchi, M., Liniger, M., McCullough, K. C., Matrosovich, M., & Summerfield, A. (2011). Efficient sensing of avian influenza viruses by porcine plasmacytoid dendritic cells. Viruses, 3(4), 312–330. [CrossRef]
- Mifsud, E. J., Kuba, M., & Barr, I. G. (2021). Innate Immune Responses to Influenza Virus Infections in the Upper Respiratory Tract. Viruses, 13(10), 2090. [CrossRef]
- Rowe, T., Fletcher, A., Svoboda, P., Pohl, J., Hatta, Y., Jasso, G., Wentworth, D. E., & Ross, T. M. (2024). Interferon as an immunoadjuvant to enhance antibodies following influenza B infection and vaccination in ferrets. NPJ vaccines, 9(1), 199. [CrossRef]
- Ye, L., Ohnemus, A., Ong, L. C., Gad, H. H., Hartmann, R., Lycke, N., & Staeheli, P. (2019). Type I and Type III Interferons Differ in Their Adjuvant Activities for Influenza Vaccines. Journal of virology, 93(23), e01262-19. [CrossRef]
- Ye, L. , Schnepf, D., Becker, J., Ebert, K., Tanriver, Y., Bernasconi, V., Gad, H. H., Hartmann, R., Lycke, N., & Staeheli, P. (2019). Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin. Nature immunology, 20(5), 593–601. [CrossRef]
- Ye, L. , Schnepf, D., Ohnemus, A., Ong, L. C., Gad, H. H., Hartmann, R., Lycke, N., & Staeheli, P. (2021). Interferon-λ Improves the Efficacy of Intranasally or Rectally Administered Influenza Subunit Vaccines by a Thymic Stromal Lymphopoietin-Dependent Mechanism. Frontiers in immunology, 12, 749325. [CrossRef]
- Hemann, E. A. , Green, R., Turnbull, J. B., Langlois, R. A., Savan, R., & Gale, M., Jr (2019). Interferon-λ modulates dendritic cells to facilitate T cell immunity during infection with influenza A virus. Nature immunology, 20(8), 1035–1045. [CrossRef]
- Chen, K. , Lai, C., Su, Y., Bao, W. D., Yang, L. N., Xu, P. P., & Zhu, L. Q. (2022). cGAS-STING-mediated IFN-I Response in Host Defense and Neuroinflammatory Diseases. Current neuropharmacology, 20(2), 362–371. [CrossRef]
- Huang, Y. , Liu, B., Sinha, S. C., Amin, S., & Gan, L. (2023). Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Molecular neurodegeneration, 18(1), 79. [CrossRef]
- Fritsch, L. E., Kelly, C., & Pickrell, A. M. (2023). The role of STING signaling in central nervous system infection and neuroinflammatory disease. WIREs mechanisms of disease, 15(3), e1597. [CrossRef]
- Govindarajulu, M. , Ramesh, S., Beasley, M., Lynn, G., Wallace, C., Labeau, S., Pathak, S., Nadar, R., Moore, T., & Dhanasekaran, M. (2023). Role of cGAS-Sting Signaling in Alzheimer's Disease. International journal of molecular sciences, 24(9), 8151. [CrossRef]
- Galizzi, G. , & Di Carlo, M. (2023). Mitochondrial DNA and Inflammation in Alzheimer's Disease. Current issues in molecular biology, 45(11), 8586–8606. [CrossRef]
- Wu, J. , Xu, W., Su, Y., Wang, G. H., & Ma, J. J. (2024). Targeting chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapeutic potential. Acta pharmacologica Sinica, 10.1038/s41401-024-01416-3. Advance online publication. [CrossRef]
- McManus, C. M., Liu, J. S., Hahn, M. T., Hua, L. L., Brosnan, C. F., Berman, J. W., & Lee, S. C. (2000). Differential induction of chemokines in human microglia by type I and II interferons. Glia, 29(3), 273–280.
- West, P. K. , Viengkhou, B., Campbell, I. L., & Hofer, M. J. (2019). Microglia responses to interleukin-6 and type I interferons in neuroinflammatory disease. Glia, 67(10), 1821–1841. [CrossRef]
- Sobue, A. , Komine, O., & Yamanaka, K. (2023). Neuroinflammation in Alzheimer's disease: microglial signature and their relevance to disease. Inflammation and regeneration, 43(1), 26. [CrossRef]
- Smith, S. C. , Diaz-Perez, J. A., Mochel, M. C., Billings, S. D., Fernandez, L., & Poklepovic, A. S. (2024). A High-grade PML::JAK1 Fusion Sarcoma. The American journal of surgical pathology, 10.1097/PAS.0000000000002326. Advance online publication. [CrossRef]
- Loh, J. S. , Mak, W. Q., Tan, L. K. S., Ng, C. X., Chan, H. H., Yeow, S. H., Foo, J. B., Ong, Y. S., How, C. W., & Khaw, K. Y. (2024). Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal transduction and targeted therapy, 9(1), 37. [CrossRef]
- Garland, E. F. , Hartnell, I. J., & Boche, D. (2022). Microglia and Astrocyte Function and Communication: What Do We Know in Humans?. Frontiers in neuroscience, 16, 824888. [CrossRef]
- Franklin, H. , Clarke, B. E., & Patani, R. (2021). Astrocytes and microglia in neurodegenerative diseases: Lessons from human in vitro models. Progress in neurobiology, 200, 101973. [CrossRef]
- Golzari-Sorkheh, M. , Weaver, D. F., & Reed, M. A. (2023). COVID-19 as a Risk Factor for Alzheimer's Disease. Journal of Alzheimer's disease : JAD, 91(1), 1–23. [CrossRef]
- Hsu, P. C. , & Shahed-Al-Mahmud, M. (2022). SARS-CoV-2 mediated neurological disorders in COVID-19: Measuring the pathophysiology and immune response. Life sciences, 308, 120981. [CrossRef]
- Rai, S. N. , Tiwari, N., Singh, P., Singh, A. K., Mishra, D., Imran, M., Singh, S., Hooshmandi, E., Vamanu, E., Singh, S. K., & Singh, M. P. (2022). Exploring the Paradox of COVID-19 in Neurological Complications with Emphasis on Parkinson's and Alzheimer's Disease. Oxidative medicine and cellular longevity, 2022, 3012778. [CrossRef]
- Navolokin, N. , Adushkina, V., Zlatogorskaya, D., Telnova, V., Evsiukova, A., Vodovozova, E., Eroshova, A., Dosadina, E., Diduk, S., & Semyachkina-Glushkovskaya, O. (2024). Promising Strategies to Reduce the SARS-CoV-2 Amyloid Deposition in the Brain and Prevent COVID-19-Exacerbated Dementia and Alzheimer's Disease. Pharmaceuticals (Basel, Switzerland), 17(6), 788. [CrossRef]
- Karlen, S. J., Miller, E. B., & Burns, M. E. (2020). Microglia Activation and Inflammation During the Death of Mammalian Photoreceptors. Annual review of vision science, 6, 149–169. [CrossRef]
- Yang, L. , Wu, C., Parker, E., Li, Y., Dong, Y., Tucker, L., Brann, D. W., Lin, H. W., & Zhang, Q. (2022). Non-invasive photobiomodulation treatment in an Alzheimer Disease-like transgenic rat model. Theranostics, 12(5), 2205–2231. [CrossRef]
- Berman, M. H. , & Nichols, T. W. (2019). Treatment of Neurodegeneration: Integrating Photobiomodulation and Neurofeedback in Alzheimer's Dementia and Parkinson's: A Review. Photobiomodulation, photomedicine, and laser surgery, 37(10), 623–634. [CrossRef]
- Park, J. O. , Hong, N., Lee, M. Y., & Ahn, J. C. (2024). Photobiomodulation regulates astrocyte activity and ameliorates scopolamine-induced cognitive behavioral decline. Frontiers in cellular neuroscience, 18, 1448005. [CrossRef]
- Lew, D. S., Mazzoni, F., & Finnemann, S. C. (2020). Microglia Inhibition Delays Retinal Degeneration Due to MerTK Phagocytosis Receptor Deficiency. Frontiers in immunology, 11, 1463. [CrossRef]
- Carp, T. N. (2024). Calibrating Human Immunity in the Context of Advanced Microbial Evolution and Self-Camouflaging. Preprints. [CrossRef]
- Carp, T. N. (2024). Potential Innovations in ModernDay Human and Animal Vaccine Development. Preprints.
- Carp, T. N. (2024). Development of computerised algorithms to statistically predict key mutations in polymorphic microbes. ResearchGate. https://www.researchgate.net/publication/386250967_Development_of_computerised_algorithms_to_statistically_predict_key_mutations_in_polymorphic_microbes.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
