Submitted:
03 December 2024
Posted:
04 December 2024
You are already at the latest version
Abstract
As European forests face increasing threats from climate change and disturbances, diversifying tree species can be a crucial strategy to safeguard their ecological functions and climate mitigation potential. European beech is a valuable tree species with a wide distribution across Central and Western Europe. While the current natural distribution of European beech does not extend to the Baltic states, climate change models indicate a potential northward range expansion. This raises the intriguing possibility of introducing beech to Baltic forests as a climate adaptation strategy. Beech’s ability to adapt to changing climate conditions, coupled with its potential to enhance biodiversity and provide high-quality timber, makes it an attractive option for forest managers. However, successful establishment and growth of beech in the Baltic region will depend on various factors, including competition with native species, soil conditions, and microclimate. To fully assess the potential benefits and risks of beech introduction, further research is needed to understand its ecological interactions with local species and its response to specific site conditions. By carefully considering these factors, forest managers can develop effective strategies to promote beech’s establishment and growth, ultimately contributing to the resilience and sustainability of Baltic forests in the face of climate change.
Keywords:
1. Introduction
2. Spread of European Beach Population and Its Constraining Factors
3. The Future of the Beech Under Climate Change
4. Ecosystem Services of Beach Forest
5. Productivity and Management Practices
6. Modeling the Future Distribution of Beech Along the East Baltic Coast
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fossil CO2 Emissions at Record High in 2023. Available online: https://globalcarbonbudget.org/fossil-co2-emissions-at-record-high-in-2023/ (assessed on 02.12.2024).
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [CrossRef]
- Desprez-Loustau, M.-L.; Aguayo, J.; Dutech, C.; Hayden, K.J.; Husson, C.; Jakushkin, B.; Marçais, B.; Piou, D.; Robin, C.; Vacher, C. An Evolutionary Ecology Perspective to Address Forest Pathology Challenges of Today and Tomorrow. Ann. For. Sci. 2016, 73, 45–67. [CrossRef]
- Weed, A.S.; Ayres, M.P.; Hicke, J.A. Consequences of Climate Change for Biotic Disturbances in North American Forests. Ecol. Monogr. 2013, 83, 441–470. [CrossRef]
- Hanewinkel, M.; Cullmann, D.A.; Schelhaas, M.-J.; Nabuurs, G.-J.; Zimmermann, N.E. Climate Change May Cause Severe Loss in the Economic Value of European Forest Land. Nat. Clim. Change 2013, 3, 203–207. [CrossRef]
- Buras, A.; Menzel, A. Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios. Front. Plant Sci. 2019, 9, 1986. [CrossRef]
- Silva Pedro, M.; Rammer, W.; Seidl, R. Tree Species Diversity Mitigates Disturbance Impacts on the Forest Carbon Cycle. Oecologia 2015, 177, 619–630. [CrossRef]
- Dickie, I.A.; Bennett, B.M.; Burrows, L.E.; Nuñez, M.A.; Peltzer, D.A.; Porté, A.; Richardson, D.M.; Rejmánek, M.; Rundel, P.W.; Van Wilgen, B.W. Conflicting Values: Ecosystem Services and Invasive Tree Management. Biol. Invasions 2014, 16, 705–719. [CrossRef]
- Pötzelsberger, E.; Spiecker, H.; Neophytou, C.; Mohren, F.; Gazda, A.; Hasenauer, H. Growing Non-Native Trees in European Forests Brings Benefits and Opportunities but Also Has Its Risks and Limits. Curr. For. Rep. 2020, 6, 339–353. [CrossRef]
- Fischer, A.; Fischer, H. Restoration of Temperate Forests: An European Approach. In Restoration Ecology; Van Andel, J., Aronson, J., Eds.; Wiley, 2012; pp. 145–160 ISBN 978-1-4443-3635-1.
- Von Wühlisch, G. EUFORGEN Technical Guidelines for Genetic Conservation and Use for European Beech (Fagus Sylvatica).; Bioversity International,: Rome, Italy, 2008; p. 6;.
- Czajkowski, T.; Kompa, T.; Bolte, A. Zur Verbreitungsgrenze Der Buche (Fagus Sylvatica L.) Im Nordöstlichen Mitteleuropa [The Distribution Boundary of European Beech (Fagus Sylvatica L.) in North-Eastern Europe]. Forstarchiv 2006, 77, 203–216.
- Falk, W.; Hempelmann, N. Species Favourability Shift in Europe Due to Climate Change: A Case Study for Fagus Sylvatica L. and Picea Abies (L.) Karst. Based on an Ensemble of Climate Models. J. Climatol. 2013, 787250. [CrossRef]
- Dreimanis, A. Europäische Wurzeln Der Forstwirtschaft in Lettland. AFZDer Wald 2004, 59, 514–515.
- Pilkauskas, M.; Augustaitis, A.; Marozas, V. Growth Peculiarities of European Beech Trees Outside Their Natural Distribution Range in Lithuania. Rural development 2011: 5th international scientific conference, 24-25 November, 2011, Akademija: proceedings. Akademija: Aleksandras Stulginskis University, 2011, 106-110.
- Sakss, K. Exotic Tree Planting Experiments in the Latvian SSR. Mežsaimniecības Problēmu Institūta Raksti 1949, 1, 7–36.
- Dreimanis, A. Productivity of Beech Stands in Skede Forest District. Latv. Lauksaimn. Univ.-Raksti 2006, 94–100.
- Jansone, D.; Diena, L.; Rieksts-Riekstiņš, R.; Jansons, Ā. Stem Quality of European Beech in Latvia and Its Effect on Tree and Stand Monetary Value. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2021, 75, 292–298. [CrossRef]
- Jansone, D.; Matisons, R.; Kārše, V.; Bāders, E.; Kaupe, D.; Jansons, Ā. Structural Heterogeneity of European Beech (Fagus Sylvatica L.) Stands at Its Northernmost Limits. Sustainability 2023, 15, 14681. [CrossRef]
- Matisons, R.; Šņepsts, G.; Puriņa, L.; Donis, J.; Janosns, Ā. Dominant Height Growth of European Beech at the Northeasternmost Stands in Europe. Silva Fenn. 2018, 52. [CrossRef]
- Puriņa, L.; Matisons, R.; Jansons, Ā.; Šēnhofa, S. Survival of European Beech in the Central Part of Latvia 33 Years since the Plantation. Silva Fenn. 2016, 50. [CrossRef]
- Magri, D. Patterns of Post-Glacial Spread and the Extent of Glacial Refugia of European Beech (Fagus Sylvatica). In Proceedings of the Journal of Biogeography; March 2008; Vol. 35, pp. 450–463.
- Postolache, D.; Oddou-Muratorio, S.; Vajana, E.; Bagnoli, F.; Guichoux, E.; Hampe, A.; Le Provost, G.; Lesur, I.; Popescu, F.; Scotti, I.; et al. Genetic Signatures of Divergent Selection in European Beech ( Fagus Sylvatica L.) Are Associated with the Variation in Temperature and Precipitation across Its Distribution Range. Mol. Ecol. 2021, 30, 5029–5047. [CrossRef]
- Tinner, W.; Lotter, A. Holocene Expansions of Fagus Silvatica and Abies Alba in Central Europe: Where Are We after Eight Decades of Debate? Quat. Sci. Rev. 2006, 25, 526–549. [CrossRef]
- Lindbladh, M.; Niklasson, M.; Karlsson, M.; Björkman, L.; Churski, M. Close Anthropogenic Control of Fagus Sylvatica Establishment and Expansion in a Swedish Protected Landscape – Implications for Forest History and Conservation. J. Biogeogr. 2008, 35, 682–697. [CrossRef]
- Lestienne, M.; Jamrichová, E.; Kuosmanen, N.; Diaconu, A.; Schafstall, N.; Goliáš, V.; Kletetschka, G.; Šulc, V.; Kuneš, P. Development of High Diversity Beech Forest in the Eastern Carpathians. J. Biogeogr. 2023, 50, 699–714. [CrossRef]
- Giesecke, T.; Hickler, T.; Kunkel, T.; Sykes, M.T.; Bradshaw, R.H.W. Towards an Understanding of the Holocene Distribution of Fagus Sylvatica L. J. Biogeogr. 2007, 34, 118–131. [CrossRef]
- Bolte, A.; Czajkowski, T.; Kompa, T. The North-Eastern Distribution Range of European Beech—a Review. For. Int. J. For. Res. 2007, 80, 413–429. [CrossRef]
- Weigel, R.; Muffler, L.; Klisz, M.; Kreyling, J.; Van Der Maaten-Theunissen, M.; Wilmking, M.; Van Der Maaten, E. Winter Matters: Sensitivity to Winter Climate and Cold Events Increases towards the Cold Distribution Margin of European Beech (Fagus Sylvatica L.). J. Biogeogr. 2018, 45, 2779–2790. [CrossRef]
- Lenz, A.; Hoch, G.; Vitasse, Y. Fast Acclimation of Freezing Resistance Suggests No Influence of Winter Minimum Temperature on the Range Limit of European Beech. Tree Physiol. 2016, 36, 490–501. [CrossRef]
- Muffler, L.; Weigel, R.; Hacket-Pain, A.J.; Klisz, M.; Van Der Maaten, E.; Wilmking, M.; Kreyling, J.; Van Der Maaten-Theunissen, M. Lowest Drought Sensitivity and Decreasing Growth Synchrony towards the Dry Distribution Margin of European Beech. J. Biogeogr. 2020, 47, 1910–1921. [CrossRef]
- Bradshaw, R.H.W.; Lindbladh, M. Regional Spread and Stand-Scale Establishment of Fagus Sylvatica and Picea Abies in Scandinavia. Ecology 2005, 86, 1679–1686.
- Capdevielle-Vargas, R.; Estrella, N.; Menzel, A. Multiple-Year Assessment of Phenological Plasticity within a Beech (Fagus Sylvatica L.) Stand in Southern Germany. Agric. For. Meteorol. 2015, 211–212, 13–22. [CrossRef]
- Augustaitis, A.; Kliučius, A.; Marozas, V.; Pilkauskas, M.; Augustaitiene, I.; Vitas, A.; Staszewski, T.; Jansons, A.; Dreimanis, A. Sensitivity of European Beech Trees to Unfavorable Environmental Factors on the Edge and Outside of Their Distribution Range in Northeastern Europe. IForest - Biogeosciences For. 2016, 9, 259–269. [CrossRef]
- Roibu, C.-C.; Popa, I.; Kirchhefer, A.J.; Palaghianu, C. Growth Responses to Climate in a Tree-Ring Network of European Beech (Fagus Sylvatica L.) from the Eastern Limit of Its Natural Distribution Area. Dendrochronologia 2017, 42, 104–116. [CrossRef]
- Dittmar, C.; Zech, W.; Elling, W. Growth Variations of Common Beech (Fagus Sylvatica L.) under Different Climatic and Environmental Conditions in Europe - a Dendroecological Study. For. Ecol. Manag. 2003, 173, 63-78. [CrossRef]
- Michelot, A.; Bréda, N.; Damesin, C.; Dufrêne, E. Differing Growth Responses to Climatic Variations and Soil Water Deficits of Fagus Sylvatica, Quercus Petraea and Pinus Sylvestris in a Temperate Forest. For. Ecol. Manag. 2012, 265, 161–171. [CrossRef]
- Hacket-Pain, A.J.; Cavin, L.; Friend, A.D.; Jump, A.S. Consistent Limitation of Growth by High Temperature and Low Precipitation from Range Core to Southern Edge of European Beech Indicates Widespread Vulnerability to Changing Climate. Eur. J. For. Res. 2016, 135, 897–909. [CrossRef]
- Hart, J.L.; Van De Gevel, S.L.; Sakulich, J.; Grissino-Mayer, H.D. Influence of Climate and Disturbance on the Growth of Tsuga Canadensis at Its Southern Limit in Eastern North America. Trees 2010, 24, 621–633. [CrossRef]
- Augustaitis, A.; Jasineviciene, D.; Girgzdiene, R.; Kliucius, A.; Marozas, V. Sensitivity of Beech Trees to Global Environmental Changes at Most North-Eastern Latitude of Their Occurrence in Europe. Sci. World J. 2012, 1–12. [CrossRef]
- Linkevičius, E.; Junevičiūtė, G. Effect of Competition and Climatic Conditions on the Growth of Beech in the Mixed Pine Beech Stand: Lithuanian Case Study. In Proceedings of the The 1st International Electronic Conference on Forests—Forests for a Better Future: Sustainability, Innovation, Interdisciplinarity; MDPI, November 12 2020; p. 49.
- Matisons, R.; Puriņa, L.; Adamovičs, A.; Robalte, L.; Jansons, Ā. European Beech in Its Northeasternmost Stands in Europe: Varying Climate-Growth Relationships among Generations and Diameter Classes. Dendrochronologia 2017, 45, 123–131. [CrossRef]
- Farahat, E.; Linderholm, H.W. Growth–Climate Relationship of European Beech at Its Northern Distribution Limit. Eur. J. For. Res. 2018, 137, 619–629. [CrossRef]
- Dolar, N.Š.; Castillo, E.M.D.; Serrano-Notivoli, R.; Arrillaga, M.D.L.; Novak, K.; Merela, M.; Čufar, K. Spatial and Temporal Variation of Fagus Sylvatica Growth in Marginal Areas under Progressive Climate Change. Dendrochronologia 2023, 81, 126135. [CrossRef]
- Kramer, K.; Degen, B.; Buschbom, J.; Hickler, T.; Thuiller, W.; Sykes, M.T.; de Winter, W. Modelling Exploration of the Future of European Beech (Fagus Sylvatica L.) under Climate Change—Range, Abundance, Genetic Diversity and Adaptive Response. For. Ecol. Manag. 2010, 259, 2213–2222. [CrossRef]
- Dulamsuren, C.; Hauck, M.; Kopp, G.; Ruff, M.; Leuschner, C. European Beech Responds to Climate Change with Growth Decline at Lower, and Growth Increase at Higher Elevations in the Center of Its Distribution Range (SW Germany). Trees 2017, 31, 673–686. [CrossRef]
- Czúcz, B.; Gálhidy, L.; Mátyás, C. Present and Forecasted Xeric Climatic Limits of Beech and Sessile Oak Distribution at Low Altitudes in Central Europe. Ann. For. Sci. 2011, 68, 99–108. [CrossRef]
- Lefèvre, F.; Boivin, T.; Bontemps, A.; Courbet, F.; Davi, H.; Durand-Gillmann, M.; Fady, B.; Gauzere, J.; Gidoin, C.; Karam, M.-J.; et al. Considering Evolutionary Processes in Adaptive Forestry. Ann. For. Sci. 2014, 71, 723–739. [CrossRef]
- Plomion, C.; Scotti, I.; Delzon, S.; Gion, J.-M. Adaptation of Forest Trees to Climate Change. BMC Proc. 2011, 5, I13. [CrossRef]
- Spiecker, H. Silvicultural Management in Maintaining Biodiversity and Resistance of Forests in Europe—Temperate Zone. J. Environ. Manage. 2003, 67, 55–65. [CrossRef]
- Jevšenak, J.; Tychkov, I.; Gričar, J.; Levanič, T.; Tumajer, J.; Prislan, P.; Arnič, D.; Popkova, M.; Shishov, V.V. Growth-Limiting Factors and Climate Response Variability in Norway Spruce (Picea Abies L.) along an Elevation and Precipitation Gradients in Slovenia. Int. J. Biometeorol. 2021, 65, 311–324. [CrossRef]
- Krejza, J.; Cienciala, E.; Světlík, J.; Bellan, M.; Noyer, E.; Horáček, P.; Štěpánek, P.; Marek, M.V. Evidence of Climate-Induced Stress of Norway Spruce along Elevation Gradient Preceding the Current Dieback in Central Europe. Trees 2021, 35, 103–119. [CrossRef]
- Ammer, C.; Bickel, E.; Kölling, C. Converting Norway Spruce Stands with Beech - A Review of Arguments and Techniques. Austrian J. For. Sci. 2008, 125, 3–26.
- Bosela, M.; Tumajer, J.; Cienciala, E.; Dobor, L.; Kulla, L.; Marčiš, P.; Popa, I.; Sedmák, R.; Sedmáková, D.; Sitko, R.; et al. Climate Warming Induced Synchronous Growth Decline in Norway Spruce Populations across Biogeographical Gradients since 2000. Sci. Total Environ. 2021, 752, 141794. [CrossRef]
- De Groot, M.; Diaci, J.; Ogris, N. Forest Management History Is an Important Factor in Bark Beetle Outbreaks: Lessons for the Future. For. Ecol. Manag. 2019, 433, 467–474. [CrossRef]
- Felton, A.; Lindbladh, M.; Brunet, J.; Fritz, Ö. Replacing Coniferous Monocultures with Mixed-Species Production Stands: An Assessment of the Potential Benefits for Forest Biodiversity in Northern Europe. For. Ecol. Manag. 2010, 260, 939–947. [CrossRef]
- Grundmann, B.M.; Bolte, A.; Bonn, S.; Roloff, A. Impact of Climatic Variation on Growth of Fagus Sylvatica and Picea Abies in Southern Sweden. Scand. J. For. Res. 2011, 26, 64–71. [CrossRef]
- Ciais, Ph.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, Chr.; Carrara, A.; et al. Europe-Wide Reduction in Primary Productivity Caused by the Heat and Drought in 2003. Nature 2005, 437, 529–533. [CrossRef]
- Gessler, A.; Keitel, C.; Kreuzwieser, J.; Matyssek, R.; Seiler, W.; Rennenberg, H. Potential Risks for European Beech (Fagus Sylvatica L.) in a Changing Climate. Trees 2007, 21, 1–11. [CrossRef]
- Vitasse, Y.; Bottero, A.; Cailleret, M.; Bigler, C.; Fonti, P.; Gessler, A.; Lévesque, M.; Rohner, B.; Weber, P.; Rigling, A.; et al. Contrasting Resistance and Resilience to Extreme Drought and Late Spring Frost in Five Major European Tree Species. Glob. Change Biol. 2019, 25, 3781–3792. [CrossRef]
- Leuschner, C. Drought Response of European Beech (Fagus Sylvatica L.)—A Review. Perspect. Plant Ecol. Evol. Syst. 2020, 47, 125576. [CrossRef]
- Köcher, P.; Gebauer, T.; Horna, V.; Leuschner, C. Leaf Water Status and Stem Xylem Flux in Relation to Soil Drought in Five Temperate Broad-Leaved Tree Species with Contrasting Water Use Strategies. Ann. For. Sci. 2009, 66, 101–101. [CrossRef]
- Di Filippo, A.; Biondi, F.; Maugeri, M.; Schirone, B.; Piovesan, G. Bioclimate and Growth History Affect Beech Lifespan in the I Talian A Lps and A Pennines. Glob. Change Biol. 2012, 18, 960–972. [CrossRef]
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A First Assessment of the Impact of the Extreme 2018 Summer Drought on Central European Forests. Basic Appl. Ecol. 2020, 45, 86–103. [CrossRef]
- Gribbe, S.; Enderle, L.; Weigel, R.; Hertel, D.; Leuschner, C.; Muffler, L. Recent Growth Decline and Shifts in Climatic Growth Constraints Suggest Climate Vulnerability of Beech, Douglas Fir, Pine and Oak in Northern Germany. For. Ecol. Manag. 2024, 566, 122022. [CrossRef]
- Obladen, N.; Dechering, P.; Skiadaresis, G.; Tegel, W.; Keßler, J.; Höllerl, S.; Kaps, S.; Hertel, M.; Dulamsuren, C.; Seifert, T.; et al. Tree Mortality of European Beech and Norway Spruce Induced by 2018-2019 Hot Droughts in Central Germany. Agric. For. Meteorol. 2021, 307, 108482. [CrossRef]
- Bosela, M.; Lukac, M.; Castagneri, D.; Sedmák, R.; Biber, P.; Carrer, M.; Konôpka, B.; Nola, P.; Nagel, T.A.; Popa, I.; et al. Contrasting Effects of Environmental Change on the Radial Growth of Co-Occurring Beech and Fir Trees across Europe. Sci. Total Environ. 2018, 615, 1460–1469. [CrossRef]
- Diers, M.; Weigel, R.; Leuschner, C. Both Climate Sensitivity and Growth Trend of European Beech Decrease in the North German Lowlands, While Scots Pine Still Thrives, despite Growing Sensitivity. Trees 2023, 37, 523–543. [CrossRef]
- Kolář, T.; Čermák, P.; Trnka, M.; Žid, T.; Rybníček, M. Temporal Changes in the Climate Sensitivity of Norway Spruce and European Beech along an Elevation Gradient in Central Europe. Agric. For. Meteorol. 2017, 239, 24–33. [CrossRef]
- Vacek, Z.; Vacek, S.; Slanař, J.; Bílek, L.; Bulušek, D.; Štefančík, I.; Králíček, I.; Vančura, K. Adaption of Norway Spruce and European Beech Forests under Climate Change: From Resistance to Close-to-Nature Silviculture. Cent. Eur. For. J. 2019, 65, 129–144. [CrossRef]
- Petrik, P.; Petek-Petrik, A.; Kurjak, D.; Mukarram, M.; Klein, T.; Gömöry, D.; Střelcová, K.; Frýdl, J.; Konôpková, A. Interannual Adjustments in Stomatal and Leaf Morphological Traits of European Beech ( Fagus Sylvatica L.) Demonstrate Its Climate Change Acclimation Potential. Plant Biol. 2022, 24, 1287–1296. [CrossRef]
- Rukh, S.; Sanders, T.G.M.; Krüger, I.; Schad, T.; Bolte, A. Distinct Responses of European Beech (Fagus Sylvatica L.) to Drought Intensity and Length—A Review of the Impacts of the 2003 and 2018–2019 Drought Events in Central Europe. Forests 2023, 14, 248. [CrossRef]
- Langer, G.J.; Bußkamp, J. Vitality Loss of Beech: A Serious Threat to Fagus Sylvatica in Germany in the Context of Global Warming. J. Plant Dis. Prot. 2023, 130, 1101–1115. [CrossRef]
- Müller, M.; Kempen, T.; Finkeldey, R.; Gailing, O. Low Population Differentiation but High Phenotypic Plasticity of European Beech in Germany. Forests 2020, 11, 1354. [CrossRef]
- Wang, F.; Israel, D.; Ramírez-Valiente, J.-A.; Sánchez-Gómez, D.; Aranda, I.; Aphalo, P.J.; Robson, T.M. Seedlings from Marginal and Core Populations of European Beech (Fagus Sylvatica L.) Respond Differently to Imposed Drought and Shade. Trees 2021, 35, 53–67. [CrossRef]
- Czajkowski, T.; Bolte, A. Unterschiedliche Reaktion Deutscher Und Polnischer Herkünfte Der Buche (Fagus Sylvatica L.) Auf Trockenheit (Different Reaction of Beech (Fagus Sylvatica L.) Provenances from Germany and Poland to Drought). Allg. FORST Jagdztg. 2006, 177, 30–40.
- Aitken, S.N.; Bemmels, J.B. Time to Get Moving: Assisted Gene Flow of Forest Trees. Evol. Appl. 2016, 9, 271–290. [CrossRef]
- Prieto-Benítez, S.; Morente-López, J.; Rubio Teso, M.L.; Lara-Romero, C.; García-Fernández, A.; Torres, E.; Iriondo, J.M. Evaluating Assisted Gene Flow in Marginal Populations of a High Mountain Species. Front. Ecol. Evol. 2021, 9, 638837. [CrossRef]
- Young, D.J.N.; Blush, T.D.; Landram, M.; Wright, J.W.; Latimer, A.M.; Safford, H.D. Assisted Gene Flow in the Context of Large-scale Forest Management in California, USA. Ecosphere 2020, 11, e03001. [CrossRef]
- Müller, J.; Mitesser, O.; Cadotte, M.W.; Van Der Plas, F.; Mori, A.S.; Ammer, C.; Chao, A.; Scherer-Lorenzen, M.; Baldrian, P.; Bässler, C.; et al. Enhancing the Structural Diversity between Forest Patches—A Concept and Real-world Experiment to Study Biodiversity, Multifunctionality and Forest Resilience across Spatial Scales. Glob. Change Biol. 2023, 29, 1437–1450. [CrossRef]
- Tudoran, G.-M.; Cicșa, A.; Cicșa (Boroeanu), M.; Dobre, A.-C. Management of Recreational Forests in the Romanian Carpathians. Forests 2022, 13, 1369. [CrossRef]
- Jovanović, I.; Dragišić, A.; Ostojić, D.; Krsteski, B. Beech Forests as World Heritage in Aspect to the next Extension of the Ancient and Primeval Beech Forests of the Carpathians and Other Regions of Europe World Heritage Site. Zastita Prir. 2019, 69, 15–32. [CrossRef]
- Vološčuk, I. Joint Slovak-Ukraine-Germany Beech Ecosystems as the World Natural Heritage. Ekologia 2014, 33. [CrossRef]
- Solár, J.; Janiga, M. World Heritage Beech Forests and RegionalSocio-Economic Policy Atthe Slovak-Ukrainian Border. Pol. J. Environ. Stud. 2020, 29, 1869–1878. [CrossRef]
- Knapp, H.; Nelle, O.; Kirleis, W. Charcoal Usage in Medieval and Modern Times in the Harz Mountains Area, Central Germany: Wood Selection and Fast Overexploitation of the Woodlands. Quat. Int. 2015, 366, 51–69. [CrossRef]
- Brunet, J.; Fritz, Ö.; Richnau, G. Biodiversity in European Beech Forests – a Review with Recommendations for Sustainable Forest Management. Ecol. Bull. 2010, 53, 77–94.
- Deforce, K.; Vanmontfort, B.; Vandekerkhove, K. Early and High Medieval (c. 650 AD–1250 AD) Charcoal Production and Its Impact on Woodland Composition in the Northwest-European Lowland: A Study of Charcoal Pit Kilns from Sterrebeek (Central Belgium). Environ. Archaeol. 2021, 26, 168–178. [CrossRef]
- Nelle, O. Woodland History of the Last 500 Years Revealed by Anthracological Studies of Charcoal Kiln Sites in the Bavarian Forest, Germany. Phytocoenologia 2003, 33, 667–682. [CrossRef]
- Brunet, J.; Felton, A.; Lindbladh, M. From Wooded Pasture to Timber Production – Changes in a European Beech (Fagus Sylvatica) Forest Landscape between 1840 and 2010. Scand. J. For. Res. 2012, 27, 245–254. [CrossRef]
- Pramreiter, M.; Grabner, M. The Utilization of European Beech Wood (Fagus Sylvatica L.) in Europe. Forests 2023, 14. [CrossRef]
- Brenci, L.-M.; Gurău, L. A Stratified Characterization of Surface Quality of Beech Processed by Profile Milling. Appl. Sci. 2023, 14, 129. [CrossRef]
- Čufar, K.; Gorišek, Ž.; Merela, M.; Kropivšek, J.; Gornik Bučar, D.; Straže, A. Lastnosti Bukovine in Njena Raba: Properties of Beechwood and Its Use. Les/Wood 2017, 66, 27–39. [CrossRef]
- Brunetti, M.; Nocetti, M.; Pizzo, B.; Aminti, G.; Cremonini, C.; Negro, F.; Zanuttini, R.; Romagnoli, M.; Scarascia Mugnozza, G. Structural Products Made of Beech Wood: Quality Assessment of the Raw Material. Eur. J. Wood Wood Prod. 2020, 78, 961–970. [CrossRef]
- Aicher, S.; Hirsch, M.; Christian, Z. Hybrid Cross-Laminated Timber Plates with Beech Wood Cross-Layers. Constr. Build. Mater. 2016, 124, 1007–1018. [CrossRef]
- Toksoy, D.; Çolakoğlu, G.; Aydin, I.; Çolak, S.; Demirkir, C. Technological and Economic Comparison of the Usage of Beech and Alder Wood in Plywood and Laminated Veneer Lumber Manufacturing. Build. Environ. 2006, 41, 872–876. [CrossRef]
- Regestein, L.; Klement, T.; Grande, P.; Kreyenschulte, D.; Heyman, B.; Maßmann, T.; Eggert, A.; Sengpiel, R.; Wang, Y.; Wierckx, N.; et al. From Beech Wood to Itaconic Acid: Case Study on Biorefinery Process Integration. Biotechnol. Biofuels 2018, 11, 279. [CrossRef]
- Fišerová, M.; Gigac, J.; Pulp and Paper Research Institute, Dúbravská cesta 14, 841 04 Bratislava, Slovak Republic; Stankovská, M.; Pulp and Paper Research Institute, Dúbravská cesta 14, 841 04 Bratislava, Slovak Republic; Opálená, E.; Pulp and Paper Research Institute, Dúbravská cesta 14, 841 04 Bratislava, Slovak Republic Influence of Bleached Softwood and Hardwood Kraft Pulps on Tissue Paper Properties. Cellul. Chem. Technol. 2019, 53, 469–477. [CrossRef]
- Stankovská, M.; Fišerová, M.; Gigac, J.; Opálená, E. Blending Impact of Hardwood Pulps with Softwood Pulp on Tissue Paper Properties. Wood Res. 2020, 65, 447–458. [CrossRef]
- Augustynczik, A.L.D.; Yousefpour, R. Assessing the Synergistic Value of Ecosystem Services in European Beech Forests. Ecosyst. Serv. 2021, 49, 101264. [CrossRef]
- Holzwarth, F.M.; Daenner, M.; Flessa, H. Effects of Beech and Ash on Small-scale Variation of Soil Acidity and Nutrient Stocks in a Mixed Deciduous Forest. J. Plant Nutr. Soil Sci. 2011, 174, 799–808. [CrossRef]
- Kooch, Y.; Bayranvand, M. Composition of Tree Species Can Mediate Spatial Variability of C and N Cycles in Mixed Beech Forests. For. Ecol. Manag. 2017, 401, 55–64. [CrossRef]
- Ilek, A.; Kucza, J.; Szostek, M. The Effect of the Bulk Density and the Decomposition Index of Organic Matter on the Water Storage Capacity of the Surface Layers of Forest Soils. Geoderma 2017, 285, 27–34. [CrossRef]
- Schwärzel, K.; Menzer, A.; Clausnitzer, F.; Spank, U.; Häntzschel, J.; Grünwald, T.; Köstner, B.; Bernhofer, C.; Feger, K.-H. Soil Water Content Measurements Deliver Reliable Estimates of Water Fluxes: A Comparative Study in a Beech and a Spruce Stand in the Tharandt Forest (Saxony, Germany). Agric. For. Meteorol. 2009, 149, 1994–2006. [CrossRef]
- Krug, J.H.A. How Can Forest Management Increase Biomass Accumulation and CO2 Sequestration? A Case Study on Beech Forests in Hesse, Germany. Carbon Balance Manag. 2019, 14, 17. [CrossRef]
- Budde, S.; Schmidt, W.; Weckesser, M. Impact of the Admixture of European Beech (Fagus Sylvatica L.) on Plant Species Diver- Sity and Naturalness of Conifer Stands in Lower Saxony. Biodiversitäts-Forschung 2011.11, 49-61.
- Marozas, V.; Augustaitis, A.; Armolaitis, K.; Kliucius, A.; Pilkauskas, M. Effects of Planted European Beech on the Understory in Scots Pine Forests of Lithuania. IForest - Biogeosciences For. 2014, 7, 12–18. [CrossRef]
- Stajić, S.; Cvjetićanin, R.; Čokeša, V.; Miletić, Z.; Novaković-Vuković, M.; Eremija, S.; Rakonjac, L.J. PLANT SPECIES RICHNESS AND DIVERSITY IN NATURAL BEECH AND OAK DOMINATED FORESTS OF KOSMAJ PROTECTED AREA (SERBIA). Appl. Ecol. Environ. Res. 2021, 19, 2617–2628. [CrossRef]
- Schneider, A.; Blick, T.; Köhler, F.; Pauls, S.U.; Römbke, J.; Zub, P.; Dorow, W.H.O. Animal Diversity in Beech Forests – An Analysis of 30 Years of Intense Faunistic Research in Hessian Strict Forest Reserves. For. Ecol. Manag. 2021, 499, 119564. [CrossRef]
- Schall, P.; Gossner, M.M.; Heinrichs, S.; Fischer, M.; Boch, S.; Prati, D.; Jung, K.; Baumgartner, V.; Blaser, S.; Böhm, S.; et al. The Impact of Even-aged and Uneven-aged Forest Management on Regional Biodiversity of Multiple Taxa in European Beech Forests. J. Appl. Ecol. 2018, 55, 267–278. [CrossRef]
- Oka, T.; Miura, S.; Masaki, T.; Suzuki, W.; Osumi, K.; Saitoh, S. Relationship between Changes in Beechnut Production and Asiatic Black Bears in Northern Japan. J. Wildl. Manag. 2004, 68, 979–986. [CrossRef]
- Schley, L.; Roper, T.J. Diet of Wild Boar Sus Scrofa in Western Europe, with Particular Reference to Consumption of Agricultural Crops. Mammal Rev. 2003, 33, 43–56. [CrossRef]
- Perea, R.; Miguel, A.S.; Gil, L. Flying vs. Climbing: Factors Controlling Arboreal Seed Removal in Oak–Beech Forests. For. Ecol. Manag. 2011, 262, 1251–1257. [CrossRef]
- Williams, C.E. Why Are There So Few Insect Predators of Nuts of American Beech (Fagus Grandifolia)? Gt. Lakes Entomol. 2018, 40. [CrossRef]
- Standovár, T. A Review on Natural Stand Dynamics in Beechwoods of East and Central Europe. Appl. Ecol. Environ. Res. 2003, 1, 19–46. [CrossRef]
- Jaworski, A.; Kołodziej, Zb. Natural Loss of Trees, Recruitment and Increment in Stands of Primeval Character in Selected Areas of the Bieszczady Mountains National Park (South-Eastern Poland). J. For. Sci. 2002, 48, 141–149. [CrossRef]
- Kucbel, S.; Saniga, M.; Jaloviar, P.; Vencurik, J. Stand Structure and Temporal Variability in Old-Growth Beech-Dominated Forests of the Northwestern Carpathians: A 40-Years Perspective. For. Ecol. Manag. 2012, 264, 125–133. [CrossRef]
- Stillhard, J.; Hobi, M.; Hülsmann, L.; Brang, P.; Ginzler, C.; Kabal, M.; Nitzsche, J.; Projer, G.; Shparyk, Y.; Commarmot, B. Stand Inventory Data from the 10-ha Forest Research Plot in Uholka: 15 Yr of Primeval Beech Forest Development. Ecology 2019, 100, e02845. [CrossRef]
- Matović, B.; Stjepanović, S.; Kneginjić, I.; Stojanović, D.; Kisin, B.; Koprivica, M. Comparison of Stand Structure in Managed and Virgin European Beech Forests in Serbia. Šumar. List 2018, 142, 57–57. [CrossRef]
- Pretzsch, H.; Del Río, M.; Ammer, Ch.; Avdagic, A.; Barbeito, I.; Bielak, K.; Brazaitis, G.; Coll, L.; Dirnberger, G.; Drössler, L.; et al. Growth and Yield of Mixed versus Pure Stands of Scots Pine (Pinus Sylvestris L.) and European Beech (Fagus Sylvatica L.) Analysed along a Productivity Gradient through Europe. Eur. J. For. Res. 2015, 134, 927–947. [CrossRef]
- Thurm, E.A.; Pretzsch, H. Improved Productivity and Modified Tree Morphology of Mixed versus Pure Stands of European Beech (Fagus Sylvatica) and Douglas-Fir (Pseudotsuga Menziesii) with Increasing Precipitation and Age. Ann. For. Sci. 2016, 73, 1047–1061. [CrossRef]
- Pretzsch, H.; Schütze, G. Transgressive Overyielding in Mixed Compared with Pure Stands of Norway Spruce and European Beech in Central Europe: Evidence on Stand Level and Explanation on Individual Tree Level. Eur. J. For. Res. 2009, 128, 183–204. [CrossRef]
- Cicșa, A.; Tudoran, G.-M.; Cicșa (Boroeanu), M.; Dobre, A.-C.; Spârchez, G. Effect of Species Composition on Growth and Yield in Mixed Beech–Coniferous Stands. Forests 2022, 13, 1651. [CrossRef]
- Janík, D.; Král, K.; Adam, D.; Hort, L.; Samonil, P.; Unar, P.; Vrska, T.; McMahon, S. Tree Spatial Patterns of Fagus Sylvatica Expansion over 37 Years. For. Ecol. Manag. 2016, 375, 134–145. [CrossRef]
- Jaworski, A.; Kołodziej, Z. Beech (Fagus Sylvatica L.) Forests of a Selection Structure in the Bieszczady Mountains (Southeastern Poland). J. For. Sci. 2004, 50, 301–312. [CrossRef]
- Leuschner, C.; Weithmann, G.; Bat-Enerel, B.; Weigel, R. The Future of European Beech in Northern Germany—Climate Change Vulnerability and Adaptation Potential. Forests 2023, 14. [CrossRef]
- Sperlich, D.; Hanewinkel, M.; Yousefpour, R. Aiming at a Moving Target: Economic Evaluation of Adaptation Strategies under the Uncertainty of Climate Change and CO2 Fertilization of European Beech (Fagus Sylvatica L.) and Silver Fir (Abies Alba Mill.). Ann. For. Sci. 2024, 81, 4. [CrossRef]
- Bosela, M.; Štefančík, I.; Petráš, R.; Vacek, S. The Effects of Climate Warming on the Growth of European Beech Forests Depend Critically on Thinning Strategy and Site Productivity. Agric. For. Meteorol. 2016, 222, 21–31. [CrossRef]
- Hilmers, T.; Avdagić, A.; Bartkowicz, L.; Bielak, K.; Binder, F.; Bončina, A.; Dobor, L.; Forrester, D.I.; Hobi, M.L.; Ibrahimspahić, A.; et al. The Productivity of Mixed Mountain Forests Comprised of Fagus Sylvatica, Picea Abies, and Abies Alba across Europe. For. Int. J. For. Res. 2019, 92, 512–522. [CrossRef]
- Nocentini, S. Structure and Management of Beech (Fagus Sylvatica L.) Forests in Italy. IForest - Biogeosciences For. 2009, 2, 105–113. [CrossRef]
- Madsen, P.; Hahn, K. Natural Regeneration in a Beech-Dominated Forest Managed by Close-to-Nature Principles - A Gap Cutting Based Experiment. Can. J. For. Res. 2008, 38, 1716–1729. [CrossRef]
- Stiers, M.; Willim, K.; Seidel, D.; Ammer, C.; Kabal, M.; Stillhard, J.; Annighöfer, P. Analyzing Spatial Distribution Patterns of European Beech (Fagus Sylvatica L.) Regeneration in Dependence of Canopy Openings. Forests 2019, 10, 637. [CrossRef]
- Barna, M. The Effects of Cutting Regimes on Natural Regeneration in Submountain Beech Forests: Species Diversity and Abundance. J. For. Sci. 2008, 54, 533–544. [CrossRef]
- Övergaard, R. Seed Production and Natural Regeneration of Beech (Fagus Sylvatica L.) in Southern Sweden; Southern Swedish Forest Research Centre, Swedish University of Agricultural …, 2010; ISBN 91-576-7489-2.
- Petrovska, R.; Brang, P.; Gessler, A.; Bugmann, H.; Hobi, M.L. Grow Slowly, Persist, Dominate—Explaining Beech Dominance in a Primeval Forest. Ecol. Evol. 2021, 11, 10077–10089. [CrossRef]
- Szwagrzyk, J.; Szewczyk, J.; Maciejewski, Z. Shade-Tolerant Tree Species from Temperate Forests Differ in Their Competitive Abilities: A Case Study from Roztocze, South-Eastern Poland. For. Ecol. Manag. 2012, 282, 28–35. [CrossRef]
- Gavranović, A.; Bogdan, S.; Lanšćak, M.; Čehulić, I.; Ivanković, M.; Croatian Forest Research Institute, Division for Genetics, Forest Tree Breeding and Seed Husbandry, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia; University of Zagreb, Faculty of Forestry, Department of Forest Genetics, Dendrology and Botany, Svetošimunska 25, HR-10000 Zagreb, Croatia; Croatian Forest Research Institute, Division for Genetics, Forest Tree Breeding and Seed Husbandry, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia; Croatian Forest Research Institute, Department of Nursery Production, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia; Croatian Forest Research Institute, Division for Genetics, Forest Tree Breeding and Seed Husbandry, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia Seed Yield and Morphological Variations of Beechnuts in Four European Beech (Fagus Sylvatica L.) Populations in Croatia. South-East Eur. For. 2018, 9. [CrossRef]
- Millerón, M.; López De Heredia, U.; Lorenzo, Z.; Alonso, J.; Dounavi, A.; Gil, L.; Nanos, N. Assessment of Spatial Discordance of Primary and Effective Seed Dispersal of E Uropean Beech ( F Agus Sylvatica L .) by Ecological and Genetic Methods. Mol. Ecol. 2013, 22, 1531–1545. [CrossRef]
- Foest, J.J.; Bogdziewicz, M.; Pesendorfer, M.B.; Ascoli, D.; Cutini, A.; Nussbaumer, A.; Verstraeten, A.; Beudert, B.; Chianucci, F.; Mezzavilla, F.; et al. Widespread Breakdown in Masting in European Beech Due to Rising Summer Temperatures. Glob. Change Biol. 2024, 30, e17307. [CrossRef]
- Harmer, R. Natural Regeneration of Broadleaved Trees in Britain: II Seed Production and Predation. Forestry 1994, 67, 275–286. [CrossRef]
- Nielsen, B.O. Beech Seeds as an Ecosystem Component. Oikos 1977, 29, 268. [CrossRef]
- Axer, M.; Martens, S.; Schlicht, R.; Wagner, S. Modelling Natural Regeneration of European Beech in Saxony, Germany: Identifying Factors Influencing the Occurrence and Density of Regeneration. Eur. J. For. Res. 2021, 140, 947–968. [CrossRef]
- Olesen, C.R.; Madsen, P. The Impact of Roe Deer (Capreolus Capreolus), Seedbed, Light and Seed Fall on Natural Beech (Fagus Sylvatica) Regeneration. For. Ecol. Manag. 2008, 255, 3962–3972. [CrossRef]
- Gazol, A.; Camarero, J.J.; Colangelo, M.; De Luis, M.; Martínez Del Castillo, E.; Serra-Maluquer, X. Summer Drought and Spring Frost, but Not Their Interaction, Constrain European Beech and Silver Fir Growth in Their Southern Distribution Limits. Agric. For. Meteorol. 2019, 278, 107695. [CrossRef]
- Madsen, P.; Larsen, J.B. Natural Regeneration of Beech (Fagus Sylvatica L.) with Respect to Canopy Density, Soil Moisture and Soil Carbon Content. For. Ecol. Manag. 1997, 97, 95–105. [CrossRef]
- Muffler, L.; Weigel, R.; Beil, I.; Leuschner, C.; Schmeddes, J.; Kreyling, J. Winter and Spring Frost Events Delay Leaf-out, Hamper Growth and Increase Mortality in European Beech Seedlings, with Weaker Effects of Subsequent Frosts. Ecol. Evol. 2024, 14, e70028. [CrossRef]
- Wagner, S.; Collet, C.; Madsen, P.; Nakashizuka, T.; Nyland, R.D.; Sagheb-Talebi, K. Beech Regeneration Research: From Ecological to Silvicultural Aspects. For. Ecol. Manag. 2010, 259, 2172–2182. [CrossRef]
- Calvaruso, C.; Kirchen, G.; Saint-André, L.; Redon, P.-O.; Turpault, M.-P. Relationship between Soil Nutritive Resources and the Growth and Mineral Nutrition of a Beech ( Fagus Sylvatica ) Stand along a Soil Sequence. CATENA 2017, 155, 156–169. [CrossRef]
- Walthert, L.; Graf Pannatier, E.; Meier, E.S. Shortage of Nutrients and Excess of Toxic Elements in Soils Limit the Distribution of Soil-Sensitive Tree Species in Temperate Forests. For. Ecol. Manag. 2013, 297, 94–107. [CrossRef]
- Tavankar, F.; Kivi, A.R.; Naghdi, R.; Latterini, F.; Venanzi, R.; Picchio, R. Growth and Architectural Response of Beech Seedlings to Canopy Removal and Soil Compaction from Selective Logging. Sustainability 2024, 16, 6162. [CrossRef]
- Schmull, M.; Thomas, F.M. Morphological and Physiological Reactions of Young Deciduous Trees (Quercus Robur L., Q. Petraea [Matt.] Liebl., Fagus Sylvatica L.) to Waterlogging. Plant Soil 2000, 225, 227–242. [CrossRef]
- Jarčuška, B.; Barna, M. Plasticity in Above-Ground Biomass Allocation in Fagus Sylvatica L. Saplings in Response to Light Availability. Ann. For. Res. 2011, 54, 151–160.
- Madsen, P. Growth and Survival of Fagus Sylvatica Seedlings in Relation to Light Intensity and Soil Water Content. Scand. J. For. Res. 1994, 9, 316–322. [CrossRef]
- Löf, M.; Bolte, A.; Welander, N.T. Interacting Effects of Irradiance and Water Stress on Dry Weight and Biomass Partitioning in Fagus Sylvatica Seedlings. Scand. J. For. Res. 2005, 20, 322–328. [CrossRef]
- Gemmel, P.; Nilsson, U.; Welander, T. Development of Oak and Beech Seedlings Planted under Varying Shelterwood Densities and with Different Site Preparation Methods in Southern Sweden. New For. 1996, 12, 141–161. [CrossRef]
- Petritan, I.C.; Lüpke, B.V.; Petritan, A.M. Influence of Shelterwood and Ground Vegetation on Late Spring Frost Damages of Planted Beech (Fagus Sylvatica) and Douglas-Fir (Pseudotsuga Menziesii) Saplings. Balt. For. 2011, 17.
- Löf, M. Establishment and Growth in Seedlings of Fagus Sylvatica and Quercus Robur : Influence of Interference from Herbaceous Vegetation. Can. J. For. Res. 2000, 30, 855–864. [CrossRef]
- Balandier, P.; Sinoquet, H.; Frak, E.; Giuliani, R.; Vandame, M.; Descamps, S.; Coll, L.; Adam, B.; Prevosto, B.; Curt, T. Six-Year Time Course of Light-Use Efficiency, Carbon Gain and Growth of Beech Saplings (Fagus Sylvatica) Planted under a Scots Pine (Pinus Sylvestris) Shelterwood. Tree Physiol. 2007, 27, 1073–1082. [CrossRef]
- Matisone, I.; Jaunslaviete, I.; Adamovičs, A.; Matisons, R.; Jansons, Ā. Response of Underplanted European Beech to Shelterwood Thinning at the Northeasternmost Forpost Plantation in Europe. New For. 2024, 55, 1267–1281. [CrossRef]
- Prevosto, B.; Balandier, P. Influence of Nurse Birch and Scots Pine Seedlings on Early Aerial Development of European Beech Seedlings in an Open-Field Plantation of Central France. Forestry 2007, 80, 253–264. [CrossRef]
- Wagner, S.; Lundqvist, L. Regeneration Techniques and the Seedling Environment from a European Perspective. In Restoration of boreal and temperate forests. Edited by J. Stanturf and P. Madsen. CRC Press, Boca Raton, Fla. Integrative Stud. Water Manage. Land Dev; 2005; Vol. 3, pp. 153–171.
- Gömöry, D.; Paule, L.; Longauer, R. European Beech (Fagus Sylvatica L.) Genetic Resources in Slovakia. Communicationes Instituti Forestalis Bohemicae 2010; 25, 220-224.
- Jurásek, A.; Bartoš, J.; Nárovcová, J. Intensively Fertilised Seedlings of the Beech (Fagus sylvaticaL.) for Artificial Regeneration of the Spruce Stands in the Process of Conversion. J. For. Sci. 2008, 54, 452–458. [CrossRef]
- Madsen, P.; Bentsen, N.; Madsen, T.L.; Olesen, C.R. Artificial Beech Regeneration in Denmark-Development of Direct Seeding and Planting Methods. Beech Silvic. Eur. Larg. Beech Ctry. Proc. 2006, 64–66.
- Ammer, C.; Mosandl, R. Which Grow Better under the Canopy of Norway Spruce Planted or Sown Seedlings of European Beech? Forestry 2007, 80, 385–395. [CrossRef]
- Baumhauer, H.; Stanturf, J.; Madsen, P. Regeneration by Direct Seeding — a Way to Reduce Costs of Conversion. In Restoration of Boreal and Temperate Forests; Stanturf, J., Madsen, P., Eds.; Integrative Studies in Water Management & Land Deve; CRC Press, 2004; Vol. 20047067, pp. 349–354 ISBN 978-1-56670-635-3.
- Ammer, C.; Mosandl, R.; Kateb, H.E. Direct Seeding of Beech (Fagus Sylvatica L.) in Norway Spruce (Picea Abies [L.] Karst.) Stands—Effects of Canopy Density and Fine Root Biomass on Seed Germination. For. Ecol. Manag. 2002, 159, 59–72. [CrossRef]
- Birkedal, M.; Löf, M.; Olsson, G.E.; Bergsten, U. Effects of Granivorous Rodents on Direct Seeding of Oak and Beech in Relation to Site Preparation and Sowing Date. For. Ecol. Manag. 2010, 259, 2382–2389. [CrossRef]
- Löf, M.; Welander, N.T. Influence of Herbaceous Competitors on Early Growth in Direct Seeded Fagus Sylvatica L. and Quercus Robur L. Ann. For. Sci. 2004, 61, 781–788. [CrossRef]
- Ozolinčius, R.; Lekevičius, E.; Stakėnas, V.; Galvonaitė, A.; Samas, A.; Valiukas, D. Lithuanian Forests and Climate Change: Possible Effects on Tree Species Composition. Eur. J. For. Res. 2014, 133, 51–60. [CrossRef]
- Bolte, A.; Hilbrig, L.; Grundmann, B.; Kampf, F.; Brunet, J.; Roloff, A. Climate Change Impacts on Stand Structure and Competitive Interactions in a Southern Swedish Spruce–Beech Forest. Eur. J. For. Res. 2010, 129, 261–276. [CrossRef]
- Dyderski, M.K.; Paź, S.; Frelich, L.E.; Jagodziński, A.M. How Much Does Climate Change Threaten European Forest Tree Species Distributions? Glob. Change Biol. 2018, 24, 1150–1163. [CrossRef]
- Bradshaw, R.H.W.; Kito, N.; Giesecke, T. Factors Influencing the Holocene History of Fagus. For. Ecol. Manag. 2010, 259, 2204–2212. [CrossRef]
- Gömöry, D.; Paule, L. Trade-off between Height Growth and Spring Flushing in Common Beech (Fagus Sylvatica L.). Ann. For. Sci. 2011, 68, 975–984. [CrossRef]
- Lamichhane, J.R. Rising Risks of Late-Spring Frosts in a Changing Climate. Nat. Clim. Change 2021, 11, 554–555. [CrossRef]
- Zohner, C.M.; Mo, L.; Renner, S.S.; Svenning, J.-C.; Vitasse, Y.; Benito, B.M.; Ordonez, A.; Baumgarten, F.; Bastin, J.-F.; Sebald, V.; et al. Late-Spring Frost Risk between 1959 and 2017 Decreased in North America but Increased in Europe and Asia. Proc. Natl. Acad. Sci. 2020, 117, 12192–12200. [CrossRef]
- Meier, E.S.; Edwards Jr, T.C.; Kienast, F.; Dobbertin, M.; Zimmermann, N.E. Co-Occurrence Patterns of Trees along Macro-Climatic Gradients and Their Potential Influence on the Present and Future Distribution of Fagus Sylvatica L.: Influence of Co-Occurrence Patterns on Fagus Sylvatica. J. Biogeogr. 2011, 38, 371–382. [CrossRef]
- Svenning, J.; Skov, F. Limited Filling of the Potential Range in European Tree Species. Ecol. Lett. 2004, 7, 565–573. [CrossRef]
- Lindbladh, M.; Axelsson, A.-L.; Hultberg, T.; Brunet, J.; Felton, A. From Broadleaves to Spruce – the Borealization of Southern Sweden. Scand. J. For. Res. 2014, 29, 686–696. [CrossRef]
- Girdziušas, S.; Löf, M.; Hanssen, K.H.; Lazdiņa, D.; Madsen, P.; Saksa, T.; Liepiņš, K.; Fløistad, I.S.; Metslaid, M. Forest Regeneration Management and Policy in the Nordic–Baltic Region since 1900. Scand. J. For. Res. 2021, 36, 513–523. [CrossRef]
- Jones, A.; Montanarella, L.; Jones, R. Soil Atlas of Europe.; A. Jones, L.M., R. Joneseditors, Ed.; European Commission, 2005; ISBN 92-894-8120-X.
- Nilsson, S.G. Ecological and Evolutionary Interactions between Reproduction of Beech Fagus Silvatica and Seed Eating Animals. Oikos 1985, 44, 157–164.
- Bialozyt, R.; Bradley, L.R.; Bradshaw, R.H.W. Modelling the Spread of Fagus Sylvatica and Picea Abies in Southern Scandinavia during the Late Holocene. J. Biogeogr. 2012, 39, 665–675. [CrossRef]
- Axer, M.; Schlicht, R.; Kronenberg, R.; Wagner, S. The Potential for Future Shifts in Tree Species Distribution Provided by Dispersal and Ecological Niches: A Comparison between Beech and Oak in Europe. Sustainability 2021, 13, 13067. [CrossRef]
- Žiogas, A.; Juronis, V.; Snieškiene, V.; Gabrilavičius, R. Pathological Condition of Introduced Broadleaves in the Forests of South-Western and Western Lithuania. Balt. For. 2007, 13.
- Carroll, D.; Boa, E. Ash Dieback: From Asia to Europe. Plant Pathol. 2024, 73, 741–759. [CrossRef]
- Peterson, D.L.; Pecori, F.; Luchi, N.; Migliorini, D.; Santini, A.; Kyle, K.E.; Rutledge, C.; Sallé, A.; Kaya, S.O.; Ramsfield, T.; et al. Development of Novel LAMP and qPCR Assays for Rapid and Specific Identification of Bronze Birch Borer (Agrilus Anxius). Environ. DNA 2023, 5, 1177–1190. [CrossRef]
- Kembrytė, R.; Danusevičius, D.; Buchovska, J.; Baliuckas, V.; Kavaliauskas, D.; Fussi, B.; Kempf, M. DNA-Based Tracking of Historical Introductions of Forest Trees: The Case of European Beech (Fagus Sylvatica L.) in Lithuania. Eur. J. For. Res. 2021, 140, 435–449. [CrossRef]
- Jansone, L. Regeneration and Growth of European Beech (Fagus Sylvatica L.) Stands in Latvia. PhD Thesis, Latvia University of Life Sciences and Technologies: Jelgava (Latvia), 2019.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
