Submitted:
02 December 2024
Posted:
03 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Materials and Software
2.2. Database Preparation
2.3. Shape Screening
2.4. Crystal Structures
2.5. Protein Preparation
2.6. Ligand Library Preparation
2.7. Validation of Molecular Docking
2.8. Virtual Screening
2.9. Docked Poses Filter
2.10. Molecular Dynamics
2.11. ADMET Profiling
3. Results and Discussion
3.1. Database Preparation for Virtual Screening
3.1.1. Physicochemical Parameters and Drug Likeness
3.1.2. Shape Screening
3.2. Virtual Screening
3.3. Molecular Dynamics
3.4. Literature Analysis
- 1-
- Sesquiterpenoids (Hit Numbers: 6,9,17,63), particularly drimane-type sesquiterpenoids from Zygogynum pancheri (PMID: 32603660), have demonstrated significant antidiabetic and lipid-lowering effects, including α-amylase and lipase inhibition, while sesquiterpenoids from Hieracium and Pilosella species (PMID: 34358652) and Cichorium species (PMID: 38900250) exhibit broad pharmacological activities such as anti-inflammatory, antioxidant, anti-obesity, and hepatoprotective properties, emphasizing their potential as therapeutic agents in managing metabolic and chronic diseases.
- 2-
- Steroidal hormones (Hit Numbers: 7, 24) like dehydroepiandrosterone (DHEA) (PMID: 31586606), phytochemicals from Broussonetia species (PMID: 36014582), Brassica oleracea var. capitata (white cabbage) (PMID: 33430729), Morus alba (PMID: 36877269), Cichorium species (PMID: 38900250), and endocrine therapies (PMID: 20210723), demonstrate significant antidiabetic, anti-obesity, antioxidant, and anti-inflammatory properties, with applications ranging from traditional medicine to modern pharmacological interventions, while highlighting safety considerations such as QTc prolongation in metabolic disease management.
- 3-
- Coumarins (Hit Numbers: 11, 12, 35, 66) found in Sophora species (PMID: 34907492), Ponciri Fructus (PMID: 36615447), Hieracium and Pilosella species (PMID: 34358652), and Cichorium species (PMID: 38900250) exhibit significant pharmacological activities, including antidiabetic, anti-inflammatory, anti-obesity, antioxidant, hepatoprotective, and anticancer effects, highlighting their potential as bioactive agents in traditional medicine and modern therapeutic applications.
- 4-
- Phenylpropanoids (Hit Numbers: 16, 35, 41, 50, 60 ) from the Broussonetia genus (PMID: 36014582), particularly isolated from Broussonetia papyrifera, Broussonetia kazinoki, and Broussonetia luzonica, exhibit diverse pharmacological activities, including antitumor, antioxidant, anti-inflammatory, antidiabetic, and anti-obesity effects, highlighting their significant therapeutic potential and the need for further research into their mechanisms of action and clinical applications.
- 5-
- Xanthones (Hit Number: 36) particularly from Garcinia mangostana and Garcinia cambogia (PMIDs: 28656594, 25732350), exhibit promising pharmacological activities, including anti-obesity, antidiabetic, anti-inflammatory, and antioxidant effects, while their isoprenylated derivatives target multiple signaling pathways involved in metabolic and degenerative diseases (α-mangostin, PMID: 35904170; Anthocleista species, PMID: 26432351), positioning them as valuable bioactive compounds for developing therapies against chronic conditions.
- 6-
- Phenolic compounds (Hit Number: 50) from diverse natural sources, including Piper species (PMID: 39277979), Vaccinium myrtillus leaves (PMID: 30052516), Hippophae rhamnoides fruit and seeds (PMID: 38358042), Prunus armeniaca leaves (PMID: 34942972), persimmon leaves (PMID: 36840285), elderberries (Sambucus nigra) (PMID: 38998923), Platycodon grandiflorum (PMID: 39072195), fermented soy products (PMID: 36014024), peanut seeds (PMID: 38000103), potatoes (Solanum tuberosum) (PMID: 35453288), fenugreek seeds (PMID: 31286789), and Origanum species (PMID: 32789910), exhibit significant antidiabetic, anti-obesity, anti-inflammatory, antioxidant, hepatoprotective, and cardioprotective effects, supporting their potential as bioactive agents in metabolic and chronic disease management through mechanisms such as enzyme inhibition, oxidative damage prevention, and modulation of inflammatory pathways.
- 7-
- Lignans (Hit Number: 60), particularly secoisolariciresinol diglucoside (SDG) from Linum usitatissimum (flaxseed) (PMID: 33535948), exhibit diverse pharmacological activities, including antioxidant, antidiabetic, anti-obesity, anti-inflammatory, anticancer, antimicrobial, hepatoprotective, and renoprotective effects, positioning them as potent therapeutic agents for managing chronic diseases, while further research is needed to fully understand their mechanisms of action and therapeutic potential.
- 8-
- The results also identified compounds for potential repurposing with β-lactam antibiotics being the most prominent. Valclavam (hit 2), Cyclothiocurvularin B (hit 3), Azidocillin (hit 25), Ampicillin (hit 44), Metampicillin (hit 46), Timocillin (hit 67) were found to be, and according to this study, GLP-1 positive allosteric ligands. This finding would represent a base for future research on this class of antibiotics to prove their preclinical and clinical effectiveness in this context as well as identifying molecular basis for their GIT related side effects and loss of appetite.
3.5. Scaffolds Identification for GLP-1 Allosteric Modulation
3.6. ADMET and Drug-Likeness Profiling
| Property | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|
| Physicochemical properties | ||||||||||
| Molecular Weight (g/mol) | 310.35 | 329.353 | 410.44 | 388.37 | 383.46 | 264.36 | 337.41 | 308.37 | 279.44 | 347.41 |
| LogP | 1.76 | -1.40 | 1.25 | 0.16 | 3.37 | 2.94 | 2.78 | 2.18 | 3.15 | 1.38 |
| #Acceptors | 6 | 6 | 8 | 8 | 4 | 3 | 3 | 3 | 1 | 4 |
| #Donors | 2 | 4 | 4 | 5 | 1 | 1 | 3 | 2 | 2 | 2 |
| #Heavy atoms | 22 |
23 | 28 | 28 | 27 | 19 | 25 | 23 | 19 | 25 |
| #Arom. heavy atoms | 0 | 0 | 6 | 10 | 12 | 0 | 5 | 6 | 0 | 6 |
| Fraction Csp3 | 0.80 | 0.79 | 0.53 | 0.35 | 0.33 | 0.81 | 0.57 | 0.42 | 0.73 | 0.61 |
| #Rotatable bonds | 5 | 7 | 1 | 3 | 5 | 2 | 1 | 1 | 3 | 6 |
| Molar refractivity | 80.13 | 81.92 | 101.34 | 97.02 | 109.12 | 74.14 | 93.61 | 95.75 | 86.24 | 97.55 |
| TPSA (Ų) | 109.93 | 142.19 | 166.66 | 136.68 | 92.14 | 46.53 | 73.32 | 52.57 | 82.50 | 91.64 |
| Drug-likeness | ||||||||||
| Lipinski alert | Yes; 0 violation |
Yes; 0 violation |
Yes; 0 violation |
Yes; 0 violation |
Yes; 0 violation |
Yes | Yes | Yes | Yes | Yes |
| Ghose | Yes | No; 1 violation: WLOGP<-0.4 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Veber | Yes | No; 1 violation: TPSA>140 |
No; 1 violation: TPSA>140 |
Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Egan | Yes | No; 1 violation: TPSA>131.6 | No; 1 violation: TPSA>131.6 | No; 1 violation: TPSA>131.6 | Yes | Yes | Yes | Yes | Yes | Yes |
| Muegge | No; 1 violation: XLOGP3<-2 | No; 1 violation: XLOGP3<-2 | No; 1 violation: TPSA>150 | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Bioavailability Score | 0.55 | 0.55 | 0.11 | 0.56 | 0.56 | 0.55 | 0.85 | 0.55 | 0.55 | 0.56 |
| Medicinal chemistry | ||||||||||
| PAINS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Brenk | 1 alert: phthalimide | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 0 |
| Leadlikeness | Yes | No; 1 violation: Rotors>7 | No; 1 violation: MW>350 | No; 1 violation: MW>350 | No; 2 violations: MW>350, XLOGP3>3.5 | Yes | Yes | Yes | Yes | Yes |
| Synthetic accessibility | 3.92 | 4.48 | 5.15 | 5.09 | 4.23 | 5.00 | 5.58 | 4.74 | 4.74 | |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes, A. Diagnosis and classification of diabetes mellitus. Diabetes care 2014, 37 (Supplement_1), S81-S90.
- Care, D. Care in diabetes—2022. Diabetes care 2022, 45, S17. [Google Scholar]
- Solis-Herrera, C.; Triplitt, C.; Reasner, C.; DeFronzo, R. A.; Cersosimo, E. Classification of diabetes mellitus. 2015.
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- Mathers, C.D.; Loncar, D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLOS Med. 2006, 3, e442. [Google Scholar] [CrossRef]
- Sarzani, R.; Landolfo, M.; Di Pentima, C.; Ortensi, B.; Falcioni, P.; Sabbatini, L.; Massacesi, A.; Rampino, I.; Spannella, F.; Giulietti, F. Adipocentric origin of the common cardiometabolic complications of obesity in the young up to the very old: pathophysiology and new therapeutic opportunities. Front. Med. 2024, 11, 1365183. [Google Scholar] [CrossRef]
- Song, X.; Qin, S.; Chen, S.; Zhang, C.; Lin, L.; Song, Z. Bibliometric analysis of vitamin D and obesity research over the period 2000 to 2023. Front. Pharmacol. 2024, 15, 1445061. [Google Scholar] [CrossRef]
- Althumiri, N.A.; Basyouni, M.H.; AlMousa, N.; AlJuwaysim, M.F.; Almubark, R.A.; BinDhim, N.F.; Alkhamaali, Z.; Alqahtani, S.A. Obesity in Saudi Arabia in 2020: Prevalence, Distribution, and Its Current Association with Various Health Conditions. Healthcare 2021, 9, 311. [Google Scholar] [CrossRef]
- Jarrar, M.; Abusalah, M.A.H.; Albaker, W.; Al-Bsheish, M.; Alsyouf, A.; Al-Mugheed, K.; Issa, M.R.; Alumran, A. Prevalence of Type 2 Diabetes Mellitus in the General Population of Saudi Arabia, 2000–2020: A systematic review and meta-analysis of observational studies. Saudi J. Med. Med Sci. 2023, 11, 1–10. [Google Scholar] [CrossRef]
- Salem, V.; AlHusseini, N.; Razack, H.I.A.; Naoum, A.; Sims, O.T.; Alqahtani, S.A. Prevalence, risk factors, and interventions for obesity in Saudi Arabia: A systematic review. Obes. Rev. 2022, 23, e13448. [Google Scholar] [CrossRef]
- Roglic, G. WHO Global report on diabetes: A summary. International Journal of Noncommunicable Diseases 2016, 1, 3–8. [Google Scholar] [CrossRef]
- Robert, A.A.; Al Dawish, M.A. The Worrying Trend of Diabetes Mellitus in Saudi Arabia: An Urgent Call to Action. Curr. Diabetes Rev. 2020, 16, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Philippe, J.; Raccah, D. Treating type 2 diabetes: how safe are current therapeutic agents? International Journal of Clinical Practice 2009, 63, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bhat, G. A.; Sharma, P. GLP-1 secretagogues potential of medicinal plants in management of diabetes. Journal of Pharmacognosy and Phytochemistry 2015, 4, 197–202. [Google Scholar]
- Smith, N.K.; Hackett, T.A.; Galli, A.; Flynn, C.R. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochemistry international 2019, 128, 94–105. [Google Scholar] [CrossRef]
- American Diabetes, A. 9. Pharmacologic approaches to glycemic treatment: Standards of Medical Care in Diabetes—2021. Diabetes care 2021, 44 (Supplement_1), S111-S124.
- Bell, G. I. patent is extended or adjusted under 35 29. 23. Sites. pancreas 1992, 267, 7402–7405. [Google Scholar]
- Lau, J.; Bloch, P.; Schäffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J.; Madsen, K.; Knudsen, L.B.; McGuire, J.; Steensgaard, D.B.; et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J. Med. Chem. 2015, 58, 7370–7380. [Google Scholar] [CrossRef]
- Jimenez-Solem, E.; Rasmussen, M.H.; Christensen, M.; Knop, F.K. Dulaglutide, a long-acting GLP-1 analog fused with an Fc antibody fragment for the potential treatment of type 2 diabetes. Curr Opin Mol Ther. 2010, 12, 790–7. [Google Scholar]
- Knudsen, L.; Agerso, H.; Bjenning, C.; Bregenholt, S.; Carr, R.; Godtfredsen, C.; Holst, J.; Huusfeldt, P.; Larsen, M.; Larsen, P.; et al. GLP-1 derivatives as novel compounds for the treatment of type 2 diabetes: Selection of NN2211 for clinical development. Drugs Futur. 2001, 26, 0677–685. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, S.; Deng, W.; Li, J.; Chen, J. Efficacy and Safety of Liraglutide and Semaglutide on Weight Loss in People with Obesity or Overweight: A Systematic Review. Clin. Epidemiology 2022, 14, 1463–1476. [Google Scholar] [CrossRef]
- Pi-Sunyer, X.; Astrup, A.; Fujioka, K.; Greenway, F.; Halpern, A.; Krempf, M.; Lau, D.C.W.; Le Roux, C.W.; Ortiz, R.V.; Jensen, C.B.; et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N. Engl. J. Med. 2015, 373, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Gogineni, P.; Melson, E.; Papamargaritis, D.; Davies, M. Oral glucagon-like peptide-1 receptor agonists and combinations of entero-pancreatic hormones as treatments for adults with type 2 diabetes: where are we now? Expert Opinion on Pharmacotherapy 2024, (just-accepted).
- Deacon, C.F.; Nauck, M.A.; Meier, J.; Hücking, K.; Holst, J.J. Degradation of Endogenous and Exogenous Gastric Inhibitory Polypeptide in Healthy and in Type 2 Diabetic Subjects as Revealed Using a New Assay for the Intact Peptide1. J. Clin. Endocrinol. Metab. 2000, 85, 3575–3581. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Pieber, T. R.; Hartoft-Nielsen, M.-L.; Hansen, O. K. H.; Jabbour, S.; Rosenstock, J. Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial. Jama 2017, 318(15), 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Thethi, T.K.; Pratley, R.; Meier, J.J. Efficacy, safety and cardiovascular outcomes of once-daily oral semaglutide in patients with type 2 diabetes: The PIONEER programme. Diabetes, Obesity and Metabolism 2020. [CrossRef]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef]
- Cowart, K. Oral Semaglutide: First-in-Class Oral GLP-1 Receptor Agonist for the Treatment of Type 2 Diabetes Mellitus. Ann. Pharmacother. 2019, 54, 478–485. [Google Scholar] [CrossRef]
- Kawai, T.; Sun, B.; Yoshino, H.; Feng, D.; Suzuki, Y.; Fukazawa, M.; Nagao, S.; Wainscott, D.B.; Showalter, A.D.; Droz, B.A.; et al. Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist. Proc. Natl. Acad. Sci. 2020, 117, 29959–29967. [Google Scholar] [CrossRef]
- Pratley, R.; Amod, A.; Hoff, S.T.; Kadowaki, T.; Lingvay, I.; Nauck, M.; Pedersen, K.B.; Saugstrup, T.; Meier, J.J. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. The Lancet 2019, 394, 39–50. [Google Scholar] [CrossRef]
- Wootten, D.; Savage, E.E.; Willard, F.S.; Bueno, A.B.; Sloop, K.W.; Christopoulos, A.; Sexton, P.M. Differential Activation and Modulation of the Glucagon-Like Peptide-1 Receptor by Small Molecule Ligands. Mol. Pharmacol. 2013, 83, 822–834. [Google Scholar] [CrossRef]
- Martinez, T.F.; Vaughan, J.; Saghatelian, A. Insights into GLP-1 Receptor Activation with a Nonpeptide Agonist. Biochemistry 2020, 59, 1549–1550. [Google Scholar] [CrossRef]
- Choe, H.J.; Cho, Y.M. Peptidyl and Non-Peptidyl Oral Glucagon-Like Peptide-1 Receptor Agonists. Endocrinol. Metab. 2021, 36, 22–29. [Google Scholar] [CrossRef]
- Chen, D.; Liao, J.; Li, N.; Zhou, C.; Liu, Q.; Wang, G.; Zhang, R.; Zhang, S.; Lin, L.; Chen, K.; et al. A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db / db mice. Proc. Natl. Acad. Sci. 2007, 104, 943–948. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, N.; Yuan, Y.; Lu, H.; Wu, X.; Zhou, C.; He, M.; Su, H.; Zhang, M.; Wang, J.; et al. Cyclobutane Derivatives As Novel Nonpeptidic Small Molecule Agonists of Glucagon-Like Peptide-1 Receptor. J. Med. Chem. 2012, 55, 250–267. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.A.; Edmonds, D.J.; Fortin, J.-P.; Kalgutkar, A.S.; Kuzmiski, J.B.; Loria, P.M.; Saxena, A.R.; Bagley, S.W.; Buckeridge, C.; Curto, J.M.; et al. A Small-Molecule Oral Agonist of the Human Glucagon-like Peptide-1 Receptor. J. Med. Chem. 2022, 65, 8208–8226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Liang, Y.-L.; Belousoff, M.J.; Deganutti, G.; Fletcher, M.M.; Willard, F.S.; Bell, M.G.; Christe, M.E.; Sloop, K.W.; Inoue, A.; et al. Activation of the GLP-1 receptor by a non-peptidic agonist. Nature 2020, 577, 432–436. [Google Scholar] [CrossRef]
- Wharton, S.; Blevins, T.; Connery, L.; Rosenstock, J.; Raha, S.; Liu, R.; Ma, X.; Mather, K.J.; Haupt, A.; Robins, D.; et al. Daily Oral GLP-1 Receptor Agonist Orforglipron for Adults with Obesity. New Engl. J. Med. 2023, 389, 877–888. [Google Scholar] [CrossRef]
- Pratt, E.; Ma, X.; Liu, R.; Robins, D.; Coskun, T.; Sloop, K. W.; Haupt, A.; Benson, C. Orforglipron (LY3502970), a novel, oral non-peptide glucagon-like peptide-1 receptor agonist: a Phase 1b, multicentre, blinded, placebo-controlled, randomized, multiple-ascending-dose study in people with type 2 diabetes. Diabetes, Obesity and Metabolism 2023, 25 (9), 2642-2649.
- Malik, F.; Li, Z. Non-peptide agonists and positive allosteric modulators of glucagon-like peptide-1 receptors: Alternative approaches for treatment of Type 2 diabetes. Br. J. Pharmacol. 2021, 179, 511–525. [Google Scholar] [CrossRef]
- Liu, J.; Nussinov, R. Allostery: An Overview of Its History, Concepts, Methods, and Applications. PLOS Comput. Biol. 2016, 12, e1004966. [Google Scholar] [CrossRef]
- Wootten, D.; Savage, E.E.; Valant, C.; May, L.T.; Sloop, K.W.; Ficorilli, J.; Showalter, A.D.; Willard, F.S.; Christopoulos, A.; Sexton, P.M. Allosteric Modulation of Endogenous Metabolites as an Avenue for Drug Discovery. Mol. Pharmacol. 2012, 82, 281–290. [Google Scholar] [CrossRef]
- Lazareno, S.; Doležal, V.; Popham, A.; Birdsall, N.J.M. Thiochrome Enhances Acetylcholine Affinity at Muscarinic M4Receptors: Receptor Subtype Selectivity via Cooperativity Rather than Affinity. Mol. Pharmacol. 2004, 65, 257–266. [Google Scholar] [CrossRef]
- Bueno, A.B.; Sun, B.; Willard, F.S.; Feng, D.; Ho, J.D.; Wainscott, D.B.; Showalter, A.D.; Vieth, M.; Chen, Q.; Stutsman, C.; et al. Structural insights into probe-dependent positive allosterism of the GLP-1 receptor. Nat. Chem. Biol. 2020, 16, 1105–1110. [Google Scholar] [CrossRef]
- Grover, J.; Yadav, S.; Vats, V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol. 2002, 81, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Akawa, A. B.; Oyinloye, B. E.; Ajiboye, B. O. Computer-aided Identification of Bioactive Compounds from Brachystegia eurycoma with Therapeutic Potential against Drug Targets of Type 2 Diabetes mellitus. Biointerface Res. Appl. Chem 2022, 13, 454. [Google Scholar]
- Ajiboye, B.O.; Iwaloye, O.; Owolabi, O.V.; Ejeje, J.N.; Okerewa, A.; Johnson, O.O.; Udebor, A.E.; Oyinloye, B.E. Screening of potential antidiabetic phytochemicals from Gongronema latifolium leaf against therapeutic targets of type 2 diabetes mellitus: multi-targets drug design. SN Appl. Sci. 2021, 4, 1–13. [Google Scholar] [CrossRef]
- Hussein, G.M.E.; Matsuda, H.; Nakamura, S.; Hamao, M.; Akiyama, T.; Tamura, K.; Yoshikawa, M. Mate Tea (Ilex paraguariensis) Promotes Satiety and Body Weight Lowering in Mice: Involvement of Glucagon-Like Peptide-1. Biol. Pharm. Bull. 2011, 34, 1849–1855. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Xing, H.-J.; Wang, B.; Fu, C.; Zhang, Y.-S.; Qiao, X.; Guo, C.; Zhang, X.-L.; Hu, B.; Zhao, X.; et al. Cinchonine, a Potential Oral Small-Molecule Glucagon-Like Peptide-1 Receptor Agonist, Lowers Blood Glucose and Ameliorates Non-Alcoholic Steatohepatitis. Drug Des. Dev. Ther. 2023, 17, 1417–1432. [Google Scholar] [CrossRef] [PubMed]
- Abiola, J.O.; Oluyemi, A.A.; Idowu, O.T.; Oyinloye, O.M.; Ubah, C.S.; Owolabi, O.V.; Somade, O.T.; Onikanni, S.A.; Ajiboye, B.O.; Osunsanmi, F.O.; et al. Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals 2024, 17, 736. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
- Kumar, A.; Zhang, K.Y.J. Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery. Front. Chem. 2018, 6, 315. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021, 49, D437–D451. [Google Scholar] [CrossRef]
- Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G.A.; Dahlgren, M.K.; Russell, E.; Von Bargen, C.D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17, 4291–4300. [Google Scholar] [CrossRef]
- Aldholmi, M.; Ahmad, R.; Shaikh, M.H.; Salem, A.M.; Alqurashi, M.; Alturki, M. Anti-Infective Activity of Momordica charantia Extract with Molecular Docking of Its Triterpenoid Glycosides. Antibiotics 2024, 13, 544. [Google Scholar] [CrossRef] [PubMed]
- Kwofie, S.K.; Dankwa, B.; Odame, E.A.; Agamah, F.E.; Doe, L.P.A.; Teye, J.; Agyapong, O.; Miller, W.A.; Mosi, L.; Wilson, M.D. In Silico Screening of Isocitrate Lyase for Novel Anti-Buruli Ulcer Natural Products Originating from Africa. Molecules 2018, 23, 1550. [Google Scholar] [CrossRef] [PubMed]
- Jaundoo, R.; Bohmann, J.; Gutierrez, G.E.; Klimas, N.; Broderick, G.; Craddock, T.J.A. Using a Consensus Docking Approach to Predict Adverse Drug Reactions in Combination Drug Therapies for Gulf War Illness. Int. J. Mol. Sci. 2018, 19, 3355. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lagorce, D.; Sperandio, O.; Galons, H.; A Miteva, M.; O Villoutreix, B. FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinform. 2008, 9, 396. [Google Scholar] [CrossRef]
- Chandrasekhar, V.; Rajan, K.; Kanakam, S.R.S.; Sharma, N.; Weißenborn, V.; Schaub, J.; Steinbeck, C. COCONUT 2.0: a comprehensive overhaul and curation of the collection of open natural products database. Nucleic Acids Res. 2024. [Google Scholar] [CrossRef]
- Sorokina, M.; Merseburger, P.; Rajan, K.; Yirik, M.A.; Steinbeck, C. COCONUT online: Collection of Open Natural Products database. J. Cheminform. 2021, 13, 2. [Google Scholar] [CrossRef]
- Li, B.; Wang, Z.; Liu, Z.; Tao, Y.; Sha, C.; He, M.; Li, X. DrugMetric: quantitative drug-likeness scoring based on chemical space distance. Briefings Bioinform. 2024, 25. [Google Scholar] [CrossRef]
- Rose, P.W.; Prlić, A.; Altunkaya, A.; Bi, C.; Bradley, A.R.; Christie, C.H.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; et al. The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res. 2016, 45, D271–D281. [Google Scholar] [CrossRef]
- Alves, M.J.; Froufe, H.J.C.; Costa, A.F.T.; Santos, A.F.; Oliveira, L.G.; Osório, S.R.M.; Abreu, R.M.V.; Pintado, M.; Ferreira, I.C.F.R. Docking Studies in Target Proteins Involved in Antibacterial Action Mechanisms: Extending the Knowledge on Standard Antibiotics to Antimicrobial Mushroom Compounds. Molecules 2014, 19, 1672–1684. [Google Scholar] [CrossRef]















| Hit No.* | Structure | NP Class | Coconut Id | XP Score | MM-BBSA dG Bind |
|---|---|---|---|---|---|
| 1 | ![]() |
Alkaloid | CNP0091415.1 | -9.628 | -40.12 |
| 2 | ![]() |
β-lactams | CNP0549010.1 | -9.525 | -38.18 |
| 3 | ![]() |
Macrolides | CNP0086660.2 | -9.194 | -39.22 |
| 4 | ![]() |
Polyketides | CNP0314849.0 | -8.384 | -40.01 |
| 5 | ![]() |
NA | CNP0039190.2 | -8.23 | -48.15 |
| 6 | ![]() |
Sesquiterpenoids | CNP0261672.2 | -8.121 | -46.68 |
| 7 | ![]() |
Steroids | CNP0336856.1 | -7.958 | -32.37 |
| 8 | ![]() |
Alkaloids | CNP0380974.1 | -7.921 | -50.75 |
| 9 | ![]() |
Sesquiterpenoids | CNP0565205.1 | -7.698 | -46.76 |
| 10 | ![]() |
Alkaloids | CNP0306101.2 | -7.57 | -46.42 |
| Hit No.* | Key binding residues and binding interactions with GLP-1 Receptor** | Key binding residues and binding interactions with GLP-1 Peptide** | Additional binding residues and binding interactions with GLP-1 Receptor** | ||||||
| Leu 142 | Tyr 145 | Lys 202 | Phe 12 | Val 16 | Leu 20 | Ser 206 | Glu 138 | Asp 198 | |
| 1 | V | V | S | V | V | V | H | S | V |
| 2 | V | V | S | V | V | V | H | S | V |
| 3 | V | H | H | V | V | V | V | V | H |
| 4 | V | H | S | V | V | V | V | V | H |
| 5 | V | V | S | V | V | V | H | V | V |
| 6 | V | V | V | V | V | V | V | V | H |
| 7 | V | V | S | V | V | V | V | V | V |
| 8 | V | C | V | V | V | V | V | - | H |
| 9 | V | V | V | V | V | V | V | H | V |
| 10 | V | H | S | V | V | V | V | V | V |
| Hit No.* | Coconut ID | Key binding residues and binding interactions with GLP-1 Receptor** | Key binding residues and binding interactions with GLP-1 Peptide** | Binding calculations | |||||
|---|---|---|---|---|---|---|---|---|---|
| Leu 142 | Tyr 145 | Lys 202 | Phe 12 | Val 16 | Leu 20 | XP score | MM-BBSA dG Bind | ||
| 11 | CNP0106755.1 | V | H | H | V | V | V | -7.361 | -37.91 |
| 12 | CNP0374155.0 | V | P | S | V | V | V | -7.314 | -42.18 |
| 13 | CNP0589516.7 | V | H | H | V | V | V | -7.285 | -39.36 |
| 14 | CNP0397387.1 | V | V | H | V | V | V | -7.224 | -52.77 |
| 15 | CNP0459806.1 | V | V | H | V | V | V | -7.177 | -40.16 |
| 16 | CNP0189210.0 | V | H | H, S | V | V | V | -7.128 | -33.88 |
| 17 | CNP0128412.1 | V | V | H, S | V | V | V | -7.01 | -36.1 |
| 18 | CNP0322671.0 | V | P | H, S | V | V | V | -6.974 | -39.96 |
| 19 | CNP0568544.1 | V | H | H | V | V | V | -6.928 | -30.82 |
| 20 | CNP0601342.1 | V | V | H, S | V | V | V | -6.896 | -36.72 |
| 21 | CNP0550130.1 | V | P | H | V | V | V | -6.745 | -50 |
| 22 | CNP0373056.1 | V | P | H | V | V | V | -6.673 | -38.72 |
| 23 | CNP0199757.0 | V | V | H, S | V | V | V | -6.661 | -43.63 |
| 24 | CNP0147599.0 | V | P | H, S | V | V | V | -6.582 | -38.88 |
| 25 | CNP0500018.1 | V | H | H, S | V | V | V | -6.548 | -37.05 |
| 26 | CNP0398016.0 | V | P | V | V | V | V | -6.444 | -40.23 |
| 27 | CNP0406443.1 | V | C | S | V | V | V | -6.417 | -35.03 |
| 28 | CNP0479169.0 | V | C | H, S | V | V | V | -6.387 | -48.67 |
| 29 | CNP0397485.1 | V | V | H | V | V | V | -6.383 | -28.54 |
| 30 | CNP0503600.0 | V | C | S | V | V | V | -6.353 | -46.59 |
| 31 | CNP0509516.1 | V | P | H | V | V | V | -6.294 | -43.08 |
| 32 | CNP0396587.1 | V | V | S | V | V | V | -6.29 | -33.45 |
| 33 | CNP0356955.1 | V | V | H, S | V | V | V | -6.288 | -30.24 |
| 34 | CNP0267548.6 | V | P | H, S | V | V | V | -6.279 | -42.9 |
| 35 | CNP0333128.1 | V | H | H | V | V | V | -6.21 | -40.1 |
| 36 | CNP0291690.0 | V | V | V | V | V | V | -6.2 | -35.25 |
| 37 | CNP0215663.1 | V | V | S | V | V | V | -6.111 | -30.42 |
| 38 | CNP0356563.1 | V | P | S | V | V | V | -6.09 | -43.02 |
| 39 | CNP0497470.1 | V | V | H, S | V | V | V | -6.09 | -33.34 |
| 40 | CNP0222232.2 | V | V | S | V | V | V | -6.075 | -37.67 |
| 41 | CNP0010878.1 | V | P | S | V | V | V | -6.069 | -44.52 |
| 42 | CNP0576443.0 | V | P | S | V | V | V | -5.952 | -29.69 |
| 43 | CNP0228837.0 | V | V | S | V | V | V | -5.911 | -34.97 |
| 44 | CNP0336583.6 | V | H | S | V | V | V | -5.839 | -31.27 |
| 45 | CNP0545924.1 | V | V | C | V | V | V | -5.815 | -38.99 |
| 46 | CNP0534848.0 | V | P | H, S | V | V | V | -5.804 | -45.32 |
| 47 | CNP0322292.3 | V | V | H, S | V | V | V | -5.742 | -44.64 |
| 48 | CNP0429573.0 | V | V | S | V | V | V | -5.644 | -13.02 |
| 49 | CNP0137202.1 | V | V | H, S | V | V | V | -5.617 | -26.19 |
| 50 | CNP0447500.2 | V | V | S | V | V | V | -5.548 | -30.9 |
| 51 | CNP0082143.1 | V | V | S | V | V | V | -5.521 | -23.5 |
| 52 | CNP0494492.1 | V | V | H | V | V | V | -5.438 | -34.27 |
| 53 | CNP0072475.0 | V | H | H, S | V | V | V | -5.437 | -24.42 |
| 54 | CNP0230498.0 | V | V | C | V | V | V | -5.423 | -31.45 |
| 55 | CNP0593935.1 | V | V | S | V | V | V | -5.401 | -41.93 |
| 56 | CNP0584646.1 | V | V | V | V | V | V | -5.306 | -26.65 |
| 57 | CNP0426972.1 | V | V | S | V | V | V | -5.271 | -28.24 |
| 58 | CNP0527671.1 | V | P | S | V | V | V | -5.231 | -29.94 |
| 59 | CNP0409130.2 | V | H | H | V | V | V | -5.205 | -47.38 |
| 60 | CNP0132892.1 | V | V | V | V | V | V | -5.107 | -35.67 |
| 61 | CNP0342805.1 | V | V | S | V | V | V | -5.047 | -21.43 |
| 62 | CNP0402166.0 | V | P | H, C | V | V | V | -4.929 | -45.77 |
| 63 | CNP0026895.0 | V | H | S | V | V | V | -4.734 | -33.7 |
| 64 | CNP0495360.0 | V | P | S | V | V | V | -4.643 | -26.87 |
| 65 | CNP0369082.2 | V | V | H | V | V | V | -4.49 | -30.31 |
| 66 | CNP0028540.0 | V | V | V | V | V | V | -4.4 | -27.38 |
| 67 | CNP0496673.2 | V | P | S | V | V | V | -3.917 | -25.68 |
| 68 | CNP0390445.1 | V | P | H, S | V | V | V | -3.685 | -33.48 |
| ADMET Parameters | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|---|---|---|---|---|---|---|---|---|---|---|
| Absorption | ||||||||||
| Water solubility (log mol/L) | -1.88 | -2.24 | -3.1 | -2.01 | -4.12 | -3.561 | -2.929 | -3.808 | -4.441 | -2.97 |
| Caco2 permeability (log Papp in 10-6 cm/s) | 0.14 | -0.31 | -0.17 | -0.49 | 0.67 | 1.337 | 1.027 | 1.21 | 1.376 | 0.108 |
| Intestinal absorption (human) (% Absorbed) | 42.81 | 32.3 | 45 | 25.50 | 93.15 | 95.325 | 96.606 | 96.34 | 91.364 | 61.309 |
| P-glycoprotein substrate (Yes/No) | NO | Yes | Yes | Yes | Yes | No | No | Yes | No | No |
| Distribution | ||||||||||
| BBB permeability (log BB) | -0.71 | -1.007 | -1.38 | -1.09 | -0.04 | -0.007 | -0.313 | 0.142 | 0.098 | -0.953 |
| CNS permeability (log PS) | -3.18 | -4.15 | -3.80 | -3.92 | -2.132 | -2.176 | -2.333 | -2.135 | -3.22 | -3.414 |
| Metabolism | ||||||||||
| CYP2D6 substrate (Yes/No) | No | No | No | No | No | No | No | Yes | No | No |
| CYP3A4 substrate (Yes/No) | No | No | No | No | Yes | Yes | Yes | Yes | No | No |
| CYP1A2 inhibitior (Yes/No) | No | No | No | No | Yes | No | No | No | No | No |
| CYP2C19 inhibitior (Yes/No) | No | No | No | No | No | No | No | No | Yes | No |
| CYP2C9 inhibitior (Yes/No) | No | No | No | No | No | No | No | No | No | No |
| CYP2D6 inhibitior (Yes/No) | No | No | No | No | No | No | No | No | No | No |
| CYP3A4 inhibitior (Yes/No) | No | No | No | No | No | No | No | No | No | No |
| Excretion | ||||||||||
| Total Clearance (log ml/min/kg) | 0.93 | 1.04 | 0.225 | 0.524 | 0.196 | 1.101 | 0.506 | 0.762 | -0.374 | 1.05 |
| Renal OCT2 substrate (Yes/No) | No | No | No | No | No | Yes | No | Yes | No | No |
| Toxicity | ||||||||||
| AMES toxicity (Yes/No) | No | No | No | No | No | No | No | No | No | No |
| Max. tolerated dose (human) (log mg/kg/day) | 0.89 | 1.50 | 0.847 | -0.224 | 0.039 | -0.465 | 0.2 | -0.741 | 0.171 | 0.906 |
| hERG I inhibitor (Yes/No) | No | No | No | No | No | No | No | No | No | No |
| Hepatotoxicity (Yes/No) | Yes | Yes | Yes | No | Yes | No | No | No | No | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).










