Submitted:
28 November 2024
Posted:
29 November 2024
You are already at the latest version
Abstract
Keywords:
1. Phenomenon of Life
1.1. Algorithm of Life
2. Energy Metabolism as a Basis of Life
2.1. Metabolites of Life
2.2. Role of Insulin and Insulin-Like Growth Factor in Energy Metabolism
2.3. Oxidative Phosphorylation
2.4. Beta-Oxidation
2.5. Glucose-Fatty Acid Interactions
3. Cellular Turnover
4. Environmental Adaptation
5. Information Metabolism
6. Senescence and Death
Funding
Conflicts of Interest
References
- Chaudhry R., Varacallo M. Biochemistry., Glycolysis. [Updated 2023 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482303/.
- Talley JT., Mohiuddin SS. Biochemistry., Fatty Acid Oxidation. [Updated 2023 Jan 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK556002/.
- Błaszczyk JW. Metabolites of Life: Phosphate. Metabolites. 2023 Jul 19;13(7):860. [CrossRef]
- De la Fuente IM. (2010) Quantitative analysis of cellular metabolic dissipative., self-organized structures. Int J Mol Sci. 2010; 11: 3540–3599.
- De la Fuente IM., Cortés JM., Valero E., Desroches M., Rodrigues S., Malaina I., Martínez L. On the dynamics of the adenylate energy system: homeorhesis vs homeostasis. PLoS One. 2014 Oct 10;9(10):e108676. [CrossRef]
- Hochachka PW., McClelland GB. Cellular metabolic homeostasis during large-scale change in ATP turnover rates in muscles. J Exp Biol. 1997; 200: 381–386.
- Nguyen BY., Ruiz-Velasco A., Bui T., Collins L., Wang X., Liu W. Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials. Br J Pharmacol. 2019 Nov;176(22):4302-4318. [CrossRef]
- Murphy E., Ardehali H., Balaban RS., DiLisa F., Dorn GW 2nd., Kitsis RN., Otsu K., Ping P., Rizzuto R., Sack MN., Wallace D., Youle RJ; American Heart Association Council on Basic Cardiovascular Sciences., Council on Clinical Cardiology., and Council on Functional Genomics and Translational Biology. Mitochondrial Function., Biology., and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res. 2016 Jun 10;118(12):1960-91. [CrossRef]
- Törnroth-Horsefield S., Neutze R. Opening and closing the metabolite gate. Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19565-6. [CrossRef]
- Rodríguez-Rivera NS., Barrera-Oviedo D. Exploring the Pathophysiology of ATP-Dependent Potassium Channels in Insulin Resistance. Int J Mol Sci. 2024 Apr 6;25(7):4079. [CrossRef]
- Fatherazi S., Matsa-Dunn D., Foster BL., Rutherford RB., Somerman MJ., Presland RB. Phosphate regulates osteopontin gene transcription. J Dent Res. 2009 Jan;88(1):39-44. [CrossRef]
- Martin GM., Patton BL., Shyng SL. KATP channels in focus: Progress toward a structural understanding of ligand regulation. Curr Opin Struct Biol. 2023 Apr;79:102541. [CrossRef]
- Crawford RM, Jovanović S, Budas GR, Davies AM, Lad H, Wenger RH, Robertson KA, Roy DJ, Ranki HJ, Jovanović A. Chronic mild hypoxia protects heart-derived H9c2 cells against acute hypoxia/reoxygenation by regulating expression of the SUR2A subunit of the ATP-sensitive K+ channel. J Biol Chem. 2003;278(33):31444-55. [CrossRef]
- Jensen J., Rustad PI., Kolnes AJ., Lai YC. The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Front Physiol. 2011 Dec 30;2:112. [CrossRef]
- Dienel GA. Brain Glucose Metabolism: Integration of Energetics with Function. Physiol Rev 99: 949–1045., 2019. Published December 19., 2018;. [CrossRef]
- Błaszczyk JW. Energy Metabolism Decline in the Aging Brain-Pathogenesis of Neurodegenerative Disorders. Metabolites. 2020;10(11):450. [CrossRef]
- Wasserman DH. Four grams of glucose. Am J Physiol Endocrinol Metab. 2009 Jan;296(1):E11-21. [CrossRef]
- Brooks GA. The Precious Few Grams of Glucose During Exercise. Int J Mol Sci. 2020 Aug 10;21(16):5733. [CrossRef]
- Hue L., Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009 Sep;297(3):E578-91. [CrossRef]
- Schweiger M., Eichmann TO., Taschler U., Zimmermann R., Zechner R., Lass A. Measurement of lipolysis. Methods Enzymol. 2014;538:171-93.
- Engin AB. What Is Lipotoxicity? Adv Exp Med Biol. 2017;960:197-220. [CrossRef]
- Item F., Konrad D. Visceral fat and metabolic inflammation: the portal theory revisited. Obesity Reviews : an Official Journal of the International Association for the Study of Obesity. 2012 Dec;13 Suppl 2:30-39. [CrossRef]
- O'Hearn LA. Signals of energy availability in sleep: consequences of a fat-based metabolism. Front Nutr. 2024 Aug 29;11:1397185. [CrossRef]
- Anton SD., Moehl K., Donahoo WT., Marosi K., Lee SA., Mainous AG 3rd., Leeuwenburgh C., Mattson MP. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting. Obesity (Silver Spring). 2018 Feb;26(2):254-268. [CrossRef]
- Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011 Aug 1;3(8):a003947. [CrossRef]
- Jankowski V., van der Giet M., Mischak H., Morgan M., Zidek W., Jankowski J. Dinucleoside polyphosphates: strong endogenous agonists of the purinergic system. Br J Pharmacol. 2009 Aug;157(7):1142-53. [CrossRef]
- Vaughn BP., Robson SC., Longhi MS. Purinergic signaling in liver disease. Dig Dis. 2014;32(5):516-24. [CrossRef]
- Hu MC., Shiizaki K., Kuro-o M., Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75:503-33. [CrossRef]
- Kaebisch C., Schipper D., Babczyk P., Tobiasch E. The role of purinergic receptors in stem cell differentiation. Comput Struct Biotechnol J. 2014;13:75–84. [CrossRef]
- Burnstock G. Short- and long-term (trophic) purinergic signalling. Phil Trans R Soc B. 2016;371(1700):20150422. [CrossRef]
- Adamiak M., Ciechanowicz A., Skoda M., Cymer M., Tracz M., Xu B., Ratajczak MZ. Novel evidence that purinergic signaling - Nlrp3 inflammasome axis regulates circadian rhythm of hematopoietic stem/progenitor cells circulation in peripheral blood. Stem Cell Rev Rep. 2020;16(2):335–343. [CrossRef]
- Ratajczak MZ., Adamiak M., Bujko K., Thapa A., Pensato V., Kucia M., Ratajczak J., Ulrich H. Innate immunity orchestrates the mobilization and homing of hematopoietic stem/progenitor cells by engaging purinergic signaling-an update. Purinergic Signalling. 2020;16(2):153–166. [CrossRef]
- Abbracchio MP., Burnstock G., Verkhratsky A., Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009 Jan;32(1):19-29. [CrossRef]
- Schwarzbaum PJ., Schachter J., Bredeston LM. The broad range di- and tri-nucleotide exchanger SLC35B1 displays asymmetrical affinities for ATP transport across the ER membrane. J Biol Chem. 2022 Apr;298(4):101537. [CrossRef]
- Yong J., Bischof H., Burgstaller S., Siirin M., Murphy A., Malli R., Kaufman RJ. Mitochondria supply ATP to the ER through a mechanism antagonized by cytosolic Ca2. Elife. 2019 Sep 9;8:e49682. [CrossRef]
- Blaine J., Chonchol M., Levi M. Renal control of calcium., phosphate., and magnesium homeostasis. Clin J Am Soc Nephrol. 2015 Jul 7;10(7):1257-72. Epub 2014 Oct 6. Erratum in: Clin J Am Soc Nephrol. 2015 Oct 7;10(10):1886-7. https://doi.org/10.2215/CJN.08840815 . [CrossRef]
- Kuro-O M. Calcium phosphate microcrystallopathy as a paradigm of chronic kidney disease progression. Curr Opin Nephrol Hypertens. 2023 Jul 1;32(4):344-351. [CrossRef]
- von Molitor E., Riedel K., Krohn M., Hafner M., Rudolf R., Cesetti T. Sweet Taste Is Complex: Signaling Cascades and Circuits Involved in Sweet Sensation. Front Hum Neurosci. 2021 Jun 22;15:667709. [CrossRef]
- Lee AA., Owyang C. Sugars., Sweet Taste Receptors., and Brain Responses. Nutrients. 2017 Jun 24;9(7):653. [CrossRef]
- von Holstein-Rathlou S, BonDurant LD, Peltekian L, Naber MC, Yin TC, Claflin KE, Urizar AI, Madsen AN, Ratner C, Holst B, Karstoft K, Vandenbeuch A, Anderson CB, Cassell MD, Thompson AP, Solomon TP, Rahmouni K, Kinnamon SC, Pieper AA, Gillum MP, Potthoff MJ. FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver. Cell Metab. 2016 Feb 9;23(2):335-43. [CrossRef]
- Lee NK., Sowa H., Hinoi E., Ferron M., Ahn JD., Confavreux C., Dacquin R., Mee PJ., McKee MD., Jung DY., Zhang Z., Kim JK., Mauvais-Jarvis F., Ducy P., Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007; 130(3):456-69. [CrossRef]
- Polonsky KS., Given BD., Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest. 1988;81:442–8. [CrossRef]
- Arnolds S., Kuglin B., Kapitza C., Heise T. How pharmacokinetic and pharmacodynamic principles pave the way for optimal basal insulin therapy in type 2 diabetes. Int J Clin Pract. 2010 Sep;64(10):1415-24. [CrossRef]
- Tahimic CG., Wang Y., Bikle DD. Anabolic effects of IGF-1 signaling on the skeleton. Front Endocrinol (Lausanne). 2013 Feb 4;4:6. [CrossRef]
- Sharples AP., Hughes DC., Deane CS., Saini A., Selman C., Stewart CE. Longevity and skeletal muscle mass: the role of IGF signalling., the sirtuins., dietary restriction and protein intake. Aging Cell. 2015;14(4):511-523. [CrossRef]
- Xie N., Zhang L., Gao W., Huang C., Huber PE., Zhou X., Li C., Shen G., Zou B. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther. 2020 Oct 7;5(1):227. [CrossRef]
- Braidy N., Berg J., Clement J., Khorshidi F., Poljak A., Jayasena T., Grant R., Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale., Biochemistry., Pharmacokinetics., and Outcomes. Antioxid Redox Signal. 2019 Jan 10;30(2):251-294. [CrossRef]
- Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021 Feb;22(2):119-141. [CrossRef]
- Strømland Ø., Diab J., Ferrario E., Sverkeli LJ., Ziegler M. The balance between NAD+ biosynthesis and consumption in ageing. Mech Ageing Dev. 2021;199:111569. [CrossRef]
- Yang Y., Sauve AA. NAD(+) metabolism: Bioenergetics., signaling and manipulation for therapy. Biochim Biophys Acta. 2016 Dec;1864(12):1787-1800. [CrossRef]
- Chini CCS, Tarragó MG, Chini EN. NAD and the aging process: Role in life, death and everything in between. Mol Cell Endocrinol. 2017 Nov 5;455:62-74. [CrossRef]
- Andrabi SA., Kim NS., Yu SW., Wang H., Koh DW., Sasaki M., Klaus JA., Otsuka T., Zhang Z., Koehler RC., Hurn PD., Poirier GG., Dawson VL., Dawson TM. Poly(ADP-ribose) (PAR) polymer is a death signal. Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18308-13. [CrossRef]
- Katsyuba E, Mottis A, Zietak M, De Franco F, van der Velpen V, Gariani K, Ryu D, Cialabrini L, Matilainen O, Liscio P, Giacchè N, Stokar-Regenscheit N, Legouis D, de Seigneux S, Ivanisevic J, Raffaelli N, Schoonjans K, Pellicciari R, Auwerx J. De novo NAD+ synthesis enhances mitochondrial function and improves health. Nature. 2018 Nov;563(7731):354-359. [CrossRef]
- Gomes AP., Price NL., Ling AJ., Moslehi JJ., Montgomery MK., Rajman L., et al. Declining NAD(+) Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication During Aging. Cell. 2013; 155(7):1624–38. [CrossRef]
- Rendina-Ruedy E., Rosen CJ. Lipids in the Bone Marrow: An Evolving Perspective. Cell Metab. 2020 Feb 4;31(2):219-231. [CrossRef]
- Schmiedeknecht K., Kaufmann A., Bauer S., Venegas Solis F. L-lactate as an indicator for cellular metabolic status: An easy and cost-effective colorimetric L-lactate assay. PLoS One. 2022 Jul 22;17(7):e0271818. [CrossRef]
- Lunt SY., Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441-64. [CrossRef]
- Luo M., Zhao Z., Yi J. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne). 2023 Jun 21;14:1150068. [CrossRef]
- Semba RD., Ferrucci L., Sun K., Beck J., Dalal M., Varadhan R., Walston J., Guralnik JM., Fried LP. Advanced glycation end products and their circulating receptors predict cardiovascular disease mortality in older community-dwelling women. Aging Clin Exp Res. 2009 Apr;21(2):182-90. [CrossRef]
- Haus JM., Carrithers JA., Trappe SW., Trappe TA. Collagen., cross-linking., and advanced glycation end products in aging human skeletal muscle. J Appl Physiol (1985). 2007 Dec;103(6):2068-76. [CrossRef]
- Houten SM., Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis. 2010 Oct;33(5):469-77. [CrossRef]
- Morigny P., Boucher J., Arner P., Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol. 2021 May;17(5):276-295. [CrossRef]
- Zhang P., He Y., Wu S., Li X., Lin X., Gan M., Chen L., Zhao Y., Niu L., Zhang S., Li X., Zhu L., Shen L. Factors Associated with White Fat Browning: New Regulators of Lipid Metabolism. Int J Mol Sci. 2022;23(14):7641. [CrossRef]
- Palacios-Marin I., Serra D., Jimenez-Chillarón J., Herrero L., Todorčević M. Adipose Tissue Dynamics: Cellular and Lipid Turnover in Health and Disease. Nutrients. 2023;15(18):3968. Published 2023 Sep 14. [CrossRef]
- Kulbacka J., Choromańska A., Rossowska J., Weżgowiec J., Saczko J., Rols MP. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes. Adv Anat Embryol Cell Biol. 2017;227:39-58. [CrossRef]
- Zeisel SH. Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr. 2006;26:229-50. [CrossRef]
- Vance DE. Physiological roles of phosphatidylethanolamine N-methyltransferase. Biochim Biophys Acta. 2013 Mar;1831(3):626-32. [CrossRef]
- Zeisel SH., Blusztajn JK. Choline and human nutrition. Annu Rev Nutr. 1994;14:269-96. PMID: 7946521. [CrossRef]
- Etienne Q., Lebrun V., Komuta M., et al. Fetuin-A in Activated Liver Macrophages Is a Key Feature of Non-Alcoholic Steatohepatitis. Metabolites. 2022;12(7):625. Published 2022 Jul 7. [CrossRef]
- Lanthier N., Lebrun V., Molendi-Coste O., van Rooijen N., Leclercq IA. Liver Fetuin-A at Initiation of Insulin Resistance. Metabolites. 2022;12(11):1023. Published 2022 Oct 25. [CrossRef]
- Song Z., Xiaoli AM., Yang F. Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients. 2018 Sep 29;10(10):1383. [CrossRef]
- Panov A., Mayorov VI., Dikalov S. Metabolic Syndrome and β-Oxidation of Long-Chain Fatty Acids in the Brain., Heart., and Kidney Mitochondria. Int J Mol Sci. 2022 Apr 6;23(7):4047. [CrossRef]
- Ameer F., Scandiuzzi L., Hasnain S., Kalbacher H., Zaidi N. De novo lipogenesis in health and disease. Metabolism. 2014;63(7):895-902. [CrossRef]
- Gugliucci A. The chylomicron saga: time to focus on postprandial metabolism. Front Endocrinol (Lausanne). 2024;14:1322869. Published 2024 Jan 18. [CrossRef]
- Quinville BM., Deschenes NM., Ryckman AE., Walia JS. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int J Mol Sci. 2021 May 28;22(11):5793. [CrossRef]
- Pouwels S., Sakran N., Graham Y., Leal A., Pintar T., Yang W., Kassir R., Singhal R., Mahawar K., Ramnarain D. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology., clinical management and effects of weight loss. BMC Endocr Disord. 2022 Mar 14;22(1):63. [CrossRef]
- Roderburg C., Krieg S., Krieg A., et al. Non-alcoholic fatty liver disease (NAFLD) is associated with an increased incidence of chronic kidney disease (CKD). Eur J Med Res. 2023;28(1):153. Published 2023 Apr 17. [CrossRef]
- Frayn KN. The glucose-fatty acid cycle: a physiological perspective. Biochem Soc Trans. 2003 Dec;31(Pt 6):1115-9. [CrossRef]
- Abdul-Ghani MA., Muller FL., Liu Y., Chavez AO., Balas B., Zuo P., Chang Z., Tripathy D., Jani R., Molina-Carrion M., Monroy A., Folli F., Van Remmen H., DeFronzo RA. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity., mitochondrial dysfunction., and insulin resistance. Am J Physiol Endocrinol Metab. 2008 Sep;295(3):E678-85. [CrossRef]
- Kayagaki N., Webster JD., Newton K. Control of Cell Death in Health and Disease. Annu Rev Pathol. 2024;19:157-180. [CrossRef]
- Sender R., Milo R. The distribution of cellular turnover in the human body. Nat Med. 2021 Jan;27(1):45-48. [CrossRef]
- Dudley AC., Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis. 2023 Aug;26(3):313-347. [CrossRef]
- Miyajima A., Tanaka M., Itoh T. Stem/progenitor cells in liver development., homeostasis., regeneration., and reprogramming. Cell Stem Cell. 2014 May 1;14(5):561-74. [CrossRef]
- Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011 Feb;26(2):229-38. [CrossRef]
- Kitase Y., Vallejo JA., Gutheil W., Vemula H., Jähn K., Yi J., Zhou J., Brotto M., Bonewald LF. β-aminoisobutyric Acid., l-BAIBA., Is a Muscle-Derived Osteocyte Survival Factor. Cell Rep. 2018 Feb 6;22(6):1531-1544. [CrossRef]
- Confavreux CB., Levine RL., Karsenty G. A paradigm of integrative physiology., the crosstalk between bone and energy metabolisms. Mol Cell Endocrinol. 2009 Oct 30;310(1-2):21-9. [CrossRef]
- Hoffman CM., Han J., Calvi LM. Impact of aging on bone., marrow and their interactions. Bone. 2019 Feb;119:1-7. [CrossRef]
- Hawkes CP., Mostoufi-Moab S. Fat-bone interaction within the bone marrow milieu: Impact on hematopoiesis and systemic energy metabolism. Bone. 2019 Feb;119:57-64. [CrossRef]
- Lv Z., Shi W., Zhang Q. Role of Essential Amino Acids in Age-Induced Bone Loss. Int J Mol Sci. 2022;23(19):11281.
- Severinsen MCK., Pedersen BK. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr Rev. 2020 Aug 1;41(4):594–609. . Erratum in: Endocr Rev. 2021 Jan 28;42(1):97-99. https://doi.org/10.1210/endrev/bnaa024. [CrossRef]
- Ratnayake CBB., Escott ABJ., Phillips ARJ., Windsor JA. The anatomy and physiology of the terminal thoracic duct and ostial valve in health and disease: potential implications for intervention. J Anat. 2018 Jul;233(1):1-14. [CrossRef]
- Marahleh A., Kitaura H., Ohori F., Noguchi T., Mizoguchi I. The osteocyte and its osteoclastogenic potential. Front Endocrinol (Lausanne). 2023 May 24;14:1121727. [CrossRef]
- Wherry SJ., Swanson CM., Kohrt WM. Acute catabolic bone metabolism response to exercise in young and older adults: A narrative review. Exp Gerontol. 2022 Jan;157:111633. [CrossRef]
- Vasquez-Sancho F., Abdollahi A., Damjanovic D., Catalan G. Flexoelectricity in Bones. Adv Mater. 2018 Mar;30(9). [CrossRef]
- Yang C., Ji J., Lv Y., Li Z., Luo D. Application of Piezoelectric Material and Devices in Bone Regeneration. Nanomaterials (Basel). 2022 Dec 9;12(24):4386. [CrossRef]
- Nie X., Chung MK. Piezo channels for skeletal development and homeostasis: Insights from mouse genetic models. Differentiation. 2022 Jul-Aug;126:10-15. [CrossRef]
- Pop TL., Sîrbe C., Benţa G., Mititelu A., Grama A. The Role of Vitamin D and Vitamin D Binding Protein in Chronic Liver Diseases. Int J Mol Sci. 2022 Sep 14;23(18):10705. [CrossRef]
- Chau YY., Kumar J. Vitamin D in chronic kidney disease. Indian J Pediatr. 2012 Aug;79(8):1062-8. [CrossRef]
- Puchacz E., Stumpf WE., Stachowiak EK., Stachowiak MK. Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells. Brain Res Mol Brain Res. 1996 Feb;36(1):193-6. [CrossRef]
- Błaszczyk JW. Sleep disorders contribute to the development of dementia and Alzheimer’s disease. Explor Neurosci. 2023;2:212–223. [CrossRef]
- Tran LT., Park S., Kim SK., Lee JS., Kim KW., Kwon O. Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med. 2022 Apr;54(4):358-369. [CrossRef]
- Knapska E., Nikolaev E., Boguszewski P., Walasek G., Blaszczyk J., Kaczmarek L., Werka T. Between-subject transfer of emotional information evokes specific pattern of amygdala activation. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3858-62. [CrossRef]
- Li M., Zhou L., Sun X., Yang Y., Zhang C., Wang T., Fu F. Dopamine, a co-regulatory component, bridges the central nervous system and the immune system. Biomed Pharmacother. 2022 Jan;145:112458. [CrossRef]
- Lambert EV., St Clair Gibson A., Noakes TD. Complex systems model of fatigue: integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br J Sports Med. 2005 Jan;39(1):52-62. [CrossRef]
- Rochat P. Five levels of self-awareness as they unfold early in life. Conscious Cogn. 2003 Dec;12(4):717-31. [CrossRef]
- Azañón E., Haggard P. Somatosensory processing and body representation. Cortex. 2009 Oct;45(9):1078-84. [CrossRef]
- Hinman JR., Chapman GW., Hasselmo ME. Neuronal representation of environmental boundaries in egocentric coordinates. Nat Commun. 2019 Jun 24;10(1):2772. [CrossRef]
- MacLean PD. Psychosomatic disease and the visceral brain; recent developments bearing on the Papez theory of emotion. Psychosom Med. 1949 Nov-Dec;11(6):338-53. [CrossRef]
- Wismer Fries AB., Ziegler TE., Kurian JR., Jacoris S., Pollak SD. Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17237-40. [CrossRef]
- Shen K., Pender CL., Bar-Ziv R., Zhang H., Wickham K., Willey E., Durieux J., Ahmad Q., Dillin A. Mitochondria as Cellular and Organismal Signaling Hubs. Annu Rev Cell Dev Biol. 2022 Oct 6;38:179-218. [CrossRef]
- Toussaint B., Heinzle J., Stephan KE. A computationally informed distinction of interoception and exteroception. Neurosci Biobehav Rev. 2024 Apr;159:105608. [CrossRef]
- Malezieux M., Klein AS., Gogolla N. Neural Circuits for Emotion. Annu Rev Neurosci. 2023 Jul 10;46:211-231. [CrossRef]
- Lennie P. The cost of cortical computation. Curr Biol. 2003 Mar 18;13(6):493-7. [CrossRef]
- Błaszczyk JW. Parkinson's Disease and Neurodegeneration: GABA-Collapse Hypothesis. Front Neurosci. 2016 Jun 9;10:269. [CrossRef]
- Karsenty G., Khosla S. The crosstalk between bone remodeling and energy metabolism: A translational perspective. Cell Metab. 2022 Jun 7;34(6):805-817. [CrossRef]
- Berridge KC., Kringelbach ML. Pleasure systems in the brain. Neuron. 2015; 86(3):646–64.
- Andersen RA., Buneo CA. Intentional maps in posterior parietal cortex. Annu Rev Neurosci. 2002;25:189-220. [CrossRef]
- Karemaker JM. How the vagus nerve produces beat-to-beat heart rate variability; experiments in rabbits to mimic in vivo vagal patterns. J Clin Transl Res. 2015 Dec 20;1(3):190-204.
- Bonaz B., Sinniger V., Pellissier S. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J Intern Med. 2017 Jul;282(1):46-63. Epub 2017 Apr 18. PMID: 28421634. [CrossRef]
- Karsenty G., Olson EN. Bone and Muscle Endocrine Functions: Unexpected Paradigms of Inter-organ Communication. Cell. 2016 Mar 10;164(6):1248-1256. [CrossRef]
- Obri A., Khrimian L., Karsenty G., Oury F. Osteocalcin in the brain: from embryonic development to age-related decline in cognition. Nat Rev Endocrinol. 2018 Mar;14(3):174-182. [CrossRef]
- Saade MC., Clark AJ., Parikh SM. States of quinolinic acid excess in urine: A systematic review of human studies. Front Nutr. 2022 Dec 16;9:1070435. [CrossRef]
- Jamwal S., Singh S., Gill JS., Kumar P. L-theanine prevent quinolinic acid induced motor deficit and striatal neurotoxicity: Reduction in oxido-nitrosative stress and restoration of striatal neurotransmitters level. Eur J Pharmacol. 2017 Sep 15;811:171-179. [CrossRef]
- Vega-Naredo I., Poeggeler B., Sierra-Sánchez V., Caballero B., Tomás-Zapico C., Alvarez-García O., Tolivia D., Rodríguez-Colunga MJ., Coto-Montes A. Melatonin neutralizes neurotoxicity induced by quinolinic acid in brain tissue culture. J Pineal Res. 2005 Oct;39(3):266-75. [CrossRef]
- Guimarães-Ferreira L. Role of the phosphocreatine system on energetic homeostasis in skeletal and cardiac muscles. Einstein (Sao Paulo). 2014 Jan-Mar;12(1):126-31. [CrossRef]
- Del Franco A., Ambrosio G., Baroncelli L., Pizzorusso T., Barison A., Olivotto I., Recchia FA., Lombardi CM., Metra M., Ferrari Chen YF., Passino C., Emdin M., Vergaro G. Creatine deficiency and heart failure. Heart Fail Rev. 2022 Sep;27(5):1605-1616. [CrossRef]
- Pike JW., Christakos S. Biology and Mechanisms of Action of the Vitamin D Hormone. Endocrinol Metab Clin North Am. 2017 Dec;46(4):815-843. [CrossRef]
- Giudice ML., Mihalik B., Dinnyés A., Kobolák J. The Nervous System Relevance of the Calcium Sensing Receptor in Health and Disease. Molecules. 2019 Jul 12;24(14):2546. [CrossRef]
- Felsenfeld AJ., Levine BS. Calcitonin., the forgotten hormone: does it deserve to be forgotten? Clin Kidney J. 2015;8(2):180–187.
- Srinivasan A., Wong FK., Karponis D. Calcitonin: A useful old friend. J Musculoskelet Neuronal Interact. 2020 Dec 1;20(4):600-609.
- Horne WC., Shyu JF., Chakraborty M., Baron R. Signal transduction by calcitonin Multiple ligands, receptors, and signaling pathways. Trends Endocrinol Metab. 1994 Dec;5(10):395-401. [CrossRef]
- Llorente-Folch I, Rueda CB, Pardo B, Szabadkai G, Duchen MR, Satrustegui J. The regulation of neuronal mitochondrial metabolism by calcium. J Physiol. 2015 Aug 15;593(16):3447-62. [CrossRef]
- Clapham DE. Calcium signaling. Cell. 2007 Dec 14;131(6):1047-58. [CrossRef]
- Mera P., Laue K., Ferron M., Confavreux C., Wei J., Galán-Díez M., Lacampagne A., Mitchell SJ., Mattison JA., Chen Y., Bacchetta J., Szulc P., Kitsis RN., de Cabo R., Friedman RA., Torsitano C., McGraw TE., Puchowicz M., Kurland I., Karsenty G. Osteocalcin Signaling in Myofibers Is Necessary and Sufficient for Optimum Adaptation to Exercise. Cell Metab. 2016 Jun 14;23(6):1078-1092. [CrossRef]
- Zaidi M., Kim SM., Mathew M., Korkmaz F., Sultana F., Miyashita S., Gumerova AA., Frolinger T., Moldavski O., Barak O., Pallapati A., Rojekar S., Caminis J., Ginzburg Y., Ryu V., Davies TF., Lizneva D., Rosen CJ., Yuen T. Bone circuitry and interorgan skeletal crosstalk. Elife. 2023 Jan 19;12:e83142. [CrossRef]
- Fernandes TAP., Gonçalves LML., Brito JAA. Relationships between Bone Turnover and Energy Metabolism. J Diabetes Res. 2017;2017:9021314. [CrossRef]
- Ghoshal K.., Chatterjee T.., Chowdhury S.., Sengupta S.., Bhattacharyya M. Adiponectin Genetic Variant and Expression Coupled with Lipid Peroxidation Reveal New Signatures in Diabetic Dyslipidemia. Biochem Genet. 2021 Jun;59(3):781-798. Epub 2021 Feb 4. PMID: 33543406 . [CrossRef]
- Abdelaziz Mohamed I., Gadeau AP., Hasan A., Abdulrahman N., Mraiche F. Osteopontin: A Promising Therapeutic Target in Cardiac Fibrosis. Cells. 2019 Dec 3;8(12):1558. [CrossRef]
- Yu H., Liu X., Zhong Y. The Effect of Osteopontin on Microglia. Biomed Res Int. 2017:1879437.. [CrossRef]
- Song Z., Chen W., Athavale D., Ge X., Desert R., Das S., Han H., Nieto N. Osteopontin Takes Center Stage in Chronic Liver Disease. Hepatology. 2021 Apr;73(4):1594-1608. [CrossRef]
- Jeon SM. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016 Jul 15;48(7):e245. [CrossRef]
- Ramírez-Vélez R., García-Hermoso A., Hackney AC., Izquierdo M. Effects of exercise training on Fetuin-a in obese., type 2 diabetes and cardiovascular disease in adults and elderly: a systematic review and Meta-analysis. Lipids Health Dis. 2019 Jan 22;18(1):23. [CrossRef]
- Pal D., Dasgupta S., Kundu R., Maitra S., Das G., Mukhopadhyay S., Ray S., Majumdar SS., Bhattacharya S. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med. 2012 Aug;18(8):1279-85. [CrossRef]
- Groarke EM., Young NS. Aging and Hematopoiesis. Clin Geriatr Med. 2019 Aug;35(3):285-293. [CrossRef]
- Langhi LG., Andrade LR., Shimabukuro MK., van Ewijk W., Taub DD., Borojevic R., de Mello Coelho V. Lipid-Laden Multilocular Cells in the Aging Thymus Are Phenotypically Heterogeneous. PLoS One. 2015 Oct 28;10(10):e0141516. [CrossRef]
- Liang Z., Dong X., Zhang Z., Zhang Q., Zhao Y. Age-related thymic involution: Mechanisms and functional impact. Aging Cell. 2022 Aug;21(8):e13671. [CrossRef]
- Kologrivova IV., Naryzhnaya NV., Suslova TE. Thymus in Cardiometabolic Impairments and Atherosclerosis: Not a Silent Player? Biomedicines. 2024 Jun 25;12(7):1408. [CrossRef]
- Sharma S., Hashmi MF., Kaur J., et al. Hypophosphatemia. [Updated 2024 Feb 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493172/.
- Regulski MJ. Cellular Senescence: What, Why, and How. Wounds. 2017 Jun; 29(6):168-174.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
