Submitted:
26 November 2024
Posted:
27 November 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
1.1. Verification Tasks in Modern Robotics
- too general estimation parameters and the absence of methods to take into account the specifics of domain knowledge,
- the absence of realistic schemes to evaluate the applicability of selected criteria,
- the lack of specialized languages to model domain knowledge,
- insufficient development of methods for runtime verification.
1.2. Verification and AI Algorithms in Agents
1.3. Network Verification and the Linked List Scheme
- approval of requested numbers of licenses and permissions,
- following to restrictions declared for cargo parameters and route passing,
- monitoring of visits only to legal zones of the geographical map,
- loading/uploading in legal terminals,
- compliance with the standards of ecology and transport.
1.4. The Aim of the Paper
- widen the spectrum of AGA-based data verification algorithms for agents by the holistic vocabulary structure of terminology and its logic coded variables;
- simplify and unify verification schemes by AGA-based communication language, convenient for dialogs of agents in extendable large-scale robotic system;
- adapt the LL scheme to local data storages in network agents and to messages integrity checks;
- provide the clear control of verification schemes in the heterogeneous logic architecture of agent.
2. Method: Basic MVL Model
2.1. Multiple-Valued Allen-Givone Algebra
- logic constants ,
- operators Min() or, marked by select the minimal truth level in the pair and ,
- operators Max() or , marked by + , select the maximal truth level in the pair and ,
- operators Literal given by exp. (2):where always and
2.2. Possible Discrete Scales for Mapping of Truth Levels
2.3. Formation of AGA Functions
2.4. Correlated Variables for the Description of Large-Scale Space and Time Bands
3. Results: AGA Logic Variables for Scene Description and Dialog Communications
3.1. Representation of the Scene of Action by Natural Language, Numerical Codes, and Truth Levels
3.2. Communication Phrase
3.3. Communication Module and the Dialog Protocol
- to check the received initial parole in the list of fixed and additionally generated ones;
- to extract potentially danger data to be immediately send to homeostasis module,
- to check the presence of the declared sender name and its authority in the AGA function, describing allowed classes of actions for the contacting agent,
- to verify the presence of all declared content parts in the received phrase;
- to compare the requested by external agent set of vocabularies and the allowed one;
- either to begin the new dialog, or to continue the already opened one; if necessary, to send denial reply;
- to send content of the received phrase to the decision-maker and to wait its reply;
- to work out the reply phrase and to assign to it a one-time random hash value, using the reserve list of hash values preliminary filled in by quasi random numbers;
- to add new entry into the LL of incoming messages to save the history of joint work;
- to analyze the reason of errors in the dialog and to choose adequate actions.
| Algorithm 2. The procedure to find correct content part, corresponding to the given header, basing on check coefficients. | ||||
| Input: |
,,,,,}, ,,,,,}, ……….. (up to 30 parts in the buffer) |
← Header ← Content parts |
||
| Step | Procedure | Example from Table 6 | ||
| 1. | Find header part of phrase in the buffer memory | - | ||
| 2. | Calculate with 8 bit overflow for the header | 138 (< 255) | ||
| 3. | Find nearest content part | - | ||
| 4. | Calculate with 8 bit overflow for the content part | 209+196+3+12+6+221+147= 794(overflow: >255)== 794-3x255=29; | ||
| 5. | Calculate with 8 bit overflow: + | 138+29=167 (< 255) | ||
| 6. | Compare, if the calculated result is equal to the declared one in the last field of the content part: + = + ;If yes, then write header and content part in the buffer;other, then find and process next content part. | -167=167yes | ||
| Output: | → Correct pair of header - content part of phrase is in the buffer | |||
4. Results: LL Adaptation for Dialog and Verification Procedures
5. Results: Fragmentation of AGA Function into Diagrams of Logic States for Verification
6. Results: Communication Module and Microassembler Software for the Verification
| N | Word code in natural numbers,={1÷16} | Number of column in vocabulary matrix, m={1÷16} | Addresser approving={1÷256} | Word code in truth levels, {1÷256} | ||
|---|---|---|---|---|---|---|
| #A18 –A16: | #000b | #000b | #000b | #000b | #000b | #000b |
| #SB (A15-A8): | #109 | #108 | #107 | #106 | #105 | #104 |
| #LB: | #0÷255 | #0÷255 | #0÷255 | #0÷255 | #0÷255 | #0÷255 |
| Algorithm 3. Subroutine LLWRD is to compute correct truth levels codes for the requested elements of vocabulary and . Procedure is to be carried out in MCS-III of 2d dual-chip and uses its pins. | ||||
| INPUT: Input variables | ||||
| 1 | LLWRD: CLR P1.4; prepare pin | 2 | MOV P2,#000b; Assign #A18-A16=#000b for SRAM | |
| 3 | CLR P1.7; enable Rg1 by | 4 | SETB P1.4; Rg1 writes #A15-A8=#000b | |
| 5 | CLR P1.4; | 6 | SETB P1.7 ; lock Rg1 | |
| 7 | CYCNT: MOV R2,#255; Set counter of notations | 8 | CYCVAR: MOV R3,#5; counter of input vars | |
| 9 | LOAT:MOV P2,#009b; set #SB at to Rg3/7 ROM | 10 | CLR P1.5; enable Rg3/7 by | |
| 11 | SETB P1.4; Rg3/7 writes #SB=#009b for a-template | 12 | CLR P1.4; | |
| 13 | SETB P1.5; lock Rg3/7 | 14 | MOV P2,R2; set #A7-A0=#255 for at ROM | |
| 15 | CLR P1.2; enable ROM | 16 | CLR P3.1; enable ROM output | |
| 17 | REAT:MOV R7,P0; readfrom ROM | 18 | SETB P3.1; disable ROM output | |
| 19 | LOBT: MOV P2,#109; load #SB of bt in ROM | 20 | CLR P1.6; enable Rg3/7 by | |
| 21 | SETB P1.4; Rg3/7 writes #SB=#109 of b-template | 22 | CLR P1.4; | |
| 23 | SETB P1.6; lock Rg3/7 | 24 | MOV P2,#255; set #LB=#255 for ROM | |
| 25 | CLR P1.2; enable chip ROM | 26 | CLR P3.1; enables ROM output | |
| 27 | REBT:MOV R6,P0; read-template from ROM | 28 | SETB P3.1; disable ROM output | |
| 29 | SETB P1.2; disable chip ROM | 30 | CLR P1.1; prepare pin for SRAM | |
| 31 | LOAE: MOV P2,#0; set #SB=0 in Rg1/5for SRAM | 32 | CLR P1.6; enables Rg2 | |
| 33 | SETB P1.4; write #SB=#0 to Rg2 | 34 | CLR P1.4 | |
| 35 | SETB P1.6; lock Rg2 | 36 | MOV P2,R3 ; #LB counter of variables | |
| 37 | CLR P1.3; enables SRAM | 38 | CLR P1.1;enables output of SRAM | |
| 39 | REAE:MOV R5,P0; read -external from SRAM | 40 | SETB P1.1; disable output of SRAM | |
| 41 | SETB P1.3; disable SRAM | 42 | LITERAL: MOV A,R7; load a-template to calc Lit. | |
| 43 | CLR C; prepare carry bit | 44 | SUBB A, R5; at-ae=R7-R5 | |
| 45 | JC CAB; jump if carry bit C=1,i.e. a-ext. >a-templ. | 46 | AJMP PT0;Lit=0 and the whole pt=0 | |
| 47 | CAB: CLR C | 48 | MOV A,R6; load bt to A to calc Literal | |
| 49 | CLR C; prepare carry bit | 50 | SUBB A,R5; bt-ae=R6-R5 | |
| 51 | JC PT0; jump PT0 if bit C=1, i.e. ae> bt | 52 | DEC R3; counter of input vriables | |
| 53 | CJNE R3,#0,LOAT; process next variable | 54 | PT1: AJMP WRRES; write const in #SB=#003 | |
| 55 | PT0: MOV R0, #0; product term=#0 | 56 | AJMP WRR0 | |
| 57 | WRRES: MOV P2,#4 ; set #SB=#004 to read Const | 58 | SETB P1.4; write #SB=#004 into Rg2/6 | |
| 59 | CLR P1.6; enable Rg2/6 | 60 | CLR P1.4; | |
| 61 | MOV P2,R3 ; assign #LB to read Const | 62 | CLR P1.3; enables chip SRAM | |
| 63 | CLR P1.1; enables output of SRAM | 64 | RECNST:MOV R0,P0; write Const in R0 | |
| 65 | SETB P1.1; disable output of SRAM | 66 | SETB P1.6; disable Rg2/6 | |
| 67 | WRR0: MOV P2,#3; set #SB=#003 to write Const | 68 | CLR P1.6; enable RG2/6 | |
| 69 | SETB P1.4; write #SB=#003 to Rg2 | 70 | CLR P1.4; | |
| 71 | SETB P1.6; lock Rg2 with #003 | 72 | MOV P2,R2; addressing of #LB for SRAM | |
| 73 | MOV P0,R0; output next Const | 74 | CLR P1.3; enables chip SRAM | |
| 75 | CLR P1.1; enables data of SRAM | 76 | CLR P1.0; write Const in #SB=003, #LB=R2 | |
| 77 | SETB P1.0;disables write in SRAM | 78 | SETB P1.1; disables data of SRAM | |
| 79 | SETB P1.3; disables chip SRAM | 80 | DJNZ R2,#1,CYCVAR; process next notation | |
| 81 | MAXPTS:MOV R1,#103; #SB103 for PTs | 82 | MOV R2,#255; counter of PTs | |
| 83 | MOV P2,R1; addressing #SB=#103 | 84 | CLR P1.6; enable Rg2by | |
| 85 | SETB P1.4; write #SB=#103 to Rg2 | 86 | CLR P1.4 | |
| 87 | SETB P1.6; lock Rg2 | 88 | MOV P2,R2 ; #LB is the counter of PTs | |
| 89 | CLR P1.3; enable SRAM by | 90 | CLR P1.1;enables output of SRAM | |
| 91 | MOV A,P0; read PT | 92 | SETB P1.1; disable output of SRAM | |
| 93 | SETB P1.3; disable SRAM | 94 | DEC R2 | |
| 95 | NEXTPT:MOV P2,R2 | 96 | CLR P1.3; enable SRAM by | |
| 97 | CLR P1.1;enables output of SRAM | 98 | MOV R7,P0; read next PT | |
| 99 | SETB P1.1; disable output of SRAM | 100 | SETB P1.3; disable SRAM | |
| 101 | MOV R3,A; save value of Acc | 102 | CLR C | |
| 103 | SUBB A,R7; | 104 | JNC MAX_N1 | |
| 105 | MOV R0,R7 | 106 | MAX_N1:MOV R0,R3 | |
| 107 | DJNZ R2, NEXTPT | 108 | RETI | |
| OUTPUT: R0 →, truth levels code for the requested word from is written into the register R0 | ||||
| Algorithm 4. The fragment of subroutine CHKPHR is to detect header part of phrase and to calculate its total check coefficient in the buffer data. Register R7 is the counter for 30 parts in the buffer segment, R6 is the counter of parts in the phrase, R5 - counter of #LB, R4 - counter of word values (limited by 16). | |||||||
| Header of the received phrase parts | |||||||
| Error 8-byte part | |||||||
| Correct content part of phrase | |||||||
| Words interpretation in the decoding table | |||||||
| 1 | FINDHI: CLR P1.4; prepare pin | 2 | MOV P2,#00000111b; Assign #A18-A16=#000b | ||||
| 3 | CLR P1.7; enable Rg1 by | 4 | SETB P1.4; Rg1 writes #A15-A8=#111b | ||||
| 5 | CLR P1.4 | 6 | SETB P1.7 ; lock Rg1 | ||||
| 7 | CYCPT: MOV R7,#1; counter of 30 parts in buffer | 8 | MOV P2,#00000111b; Assign #SB=#1 to read header | ||||
| 9 | CLR P1.6; enable Rg2 by | 10 | SETB P1.4; Rg1 writes #SB=A15-A8=#1 | ||||
| 11 | CLR P1.4; | 12 | SETB P1.6 ; lock Rg2 | ||||
| 13 | NXTPRT1:MOV R5,#0; counter of #LB | 14 | NXTPRT11:MOV P2,R5; set #LB | ||||
| 15 | REWRD1: CLR P1.3; enable chip SRAM by | 16 | CLR P1.1; enable data output from SRAM | ||||
| 17 | CHKHI1:MOV R3,P0; read 1st word from SRAM | 18 | MOV R0,R3; copy # of 1st word for further summation | ||||
| 19 | SETB P1.1; disable output of SRAM | 20 | SETB P1.3; disable chip of SRAM | ||||
| 21 | CHKHI11: CJNE R3, #7, CHKHI2; check if =7 | 22 | MOV R6,#2; determines number of parts in phrase g=2 | ||||
| 23 | AJMP CHKPWD; | 24 | CHKHI2: CJNE R3, #123, CHKHI3; check if =123 | ||||
| 25 | MOV R6,#3; number of parts in phrase g=3 | 26 | AJMP CHKPWD; | ||||
| 27 | CHKHI3: CJNE R3, #209, NXTPRT2; check if =#209 | 28 | MOV R6,#4; number of parts in phrase g=4 | ||||
| 29 | CHKPWD: INC R5; #LB of 2d word - parole | 30 | MOV P2, R5; # to read password | ||||
| 31 | CLR P1.3; enable chip SRAM by | 32 | CLR P1.1; enable data output from SRAM by | ||||
| 33 | PWD:MOV R3,P0; output 2d word from SRAM | 34 | SETB P1.1; disable output of SRAM | ||||
| 35 | SETB P1.3; disable chip of SRAM | 36 | CJNE R3,#131,NXTPRT2; password =131 | ||||
| 37 | AJMP CHKNAME1; | 38 | NXTPRT2: DEC R5; return to the 1st word | ||||
| 39 | NXTPRT21:MOV A,R5; | 40 | ADD A,#7; #LB for the 1st word in next part | ||||
| 41 | MOV R5,A; #LB | 42 | MOV R1,A; copy #LB of word for further calc | ||||
| 43 | CJNE R5,#240,NXTPRT11; check if buffer passed | 44 | RETI; buffer is fully processed | ||||
| 45 | CHKNAME1: INC R5; #LB+1 | 46 | INC R5; #LB increased by 2 for Addresser name 1 | ||||
| 47 | MOV P2,R5; #LB to read name1 | 48 | NOP; | ||||
| 49 | CLR P1.3; enable chip SRAM by | 50 | CLR P1.1; enable data output from SRAM | ||||
| 51 | RENAME1:MOV R3,P0; read name1 | 52 | SETB P1.1; disable data output from SRAM | ||||
| 53 | SETB P1.3; disable chip of SRAM | 54 | CJNE R3, #0, DEC2LB; name1 is =#0 | ||||
| 55 | INC R1; #LB for Addresser name2 | 56 | CHKNAME2: MOV P2,R1; read name2 | ||||
| 57 | CLR P1.3; enable chip SRAM by | 58 | CLR P1.1; enable data output from SRAM | ||||
| 59 | RENAME2:MOV R3,P0; read name2 | 60 | SETB P1.1; disable data output from SRAM | ||||
| 61 | SETB P1.3; disable chip of SRAM | 62 | CJNE R3, #0, DEC2LB; name2 is =#0 | ||||
| 63 | INC R0; #LB for Addresser name 3 | 64 | CHKNAME3: MOV P2,R3; read name3 | ||||
| 65 | CLR P1.3; enable chip SRAM by | 66 | CLR P1.1; enable data output from SRAM | ||||
| 67 | RENAME3: MOV R3,P0; read next | 68 | SETB P1.1; disable data output from SRAM | ||||
| 69 | SETB P1.3; disable chip of SRAM | 70 | CJNE R3, #3, DEC2LB; name 3 =#3 | ||||
| 71 | AJMP CHKHSUM1 | 72 | DEC2LB: DEC R5; | ||||
| 73 | DEC R5; | 74 | DEC R5; return #LB to 1st word in phrase | ||||
| 75 | AJMP NXTPRT21 | 76 | CHKHSUM1:MOV R1,#0; counter of words | ||||
| 77 | DEC R5; | 78 | DEC R5; | ||||
| 79 | DEC R5; return #LB to 1st word in phrase | 80 | HSUM1: MOV R0, R5; copy #LB of word | ||||
| 81 | MOV P2,R5; #LB 1st word of header | 82 | MOV A,#0; clear A for summation | ||||
| 83 | CLR P1.3; enable chip SRAM by | 84 | CLR P1.1; enable data output from SRAM | ||||
| 85 | MOV R3,P0; read from SRAM | 86 | MOV R1,#0; counter of words in phrase | ||||
| 87 | SETB P1.1; disable output of SRAM | 88 | SETB P1.3; disable chip of SRAM | ||||
| 89 | HSUM2: ADD A,R3; | 90 | INC R1; counter of words in part | ||||
| 91 | INCR5:INC R5; increment #LB +1 | 92 | CJNE R1,#8,HSUM1; check counter of words | ||||
| 93 | WRHSUM: MOV R4,A; save header check sum | 94 | CJNE R5,#240,RETI | ||||
| 95 | WRCNTPT: MOV R1,#240; write check coef. to Reserve 1 | 96 | ADD R5,#8; # LB for next part | ||||
| 97 | CJNE R5,#240,RETI | 98 | RECNTWD: P2,R5; #LB to read 1st content word | ||||
| 99 | CLR P1.3; enables chip SRAM | 100 | CLR P1.1; enables output of SRAM | ||||
| 101 | CLR P1.0 | 102 | MOV P0,R3; read sender name3 | ||||
| 103 | SETB P1.0; disable write | 104 | SETB P1.1; disable chip SRAM | ||||
| 105 | SETB P1.3 | … | … | ||||
| … | RETI | … | … | ||||
| Output: | buffer Reserve1→ | R4 contains total check coefficient for the adequate header and is ready to use it further | |||||
- The proposed structure of coded vocabularies and the conjugated dialog protocol are tested by two microassembler programs, designed for the dual–chip module based on 8-bit microcontrollers MCS-51. They demonstrate principal compatibility of proposed tools with devices of IoT level, provide close complexity level and can be combined together with earlier published algorithms [53,54,59] for the calculations of AGA functions and the base LL scheme.
- The designed dialog phrase protocol for agents communication, involving 8-bytes header and content parts, is compatible and convenient enough for the procession by 8-bit dual-chip module.
- Designed vocabularies structure can be used in simple 8-bit platforms with limited free memory resources, and the proposed dialog protocol can selectively transfer various combinations of logic words and verification coefficients.
- AGA vocabularies structure in 8-bit modelling provides 256 coded words and , what gives the possibility to form complicated enough terminology chains and to design tasks descriptions for distant exchange of data.
- Adapted version of LL with 5 input variables is the minimalistic possible tool for protected local storages of critical data, protected by paroles and hash values. If necessary, intermediate versions of LL can be extended by means of the enlarged number of hash values, approving the LL by other internal and external modules.
- Designed algorithms are applicable both for truth levels codes and natural numbers ones , what can be further used for new and more exhausted verification schemes in the heterogeneous logic architecture of agent.
7. Discussion
8. Conclusions
Funding
Conflicts of Interest
Appendix A
| Algorithm 1. Phrase procession for dialogs Administrator-Agent and Agent –Agent from the same MAS. Total check coefficients are calculated by arithmetic summation or binary XOR operations done for mapped truth levels. Phrase can initiate new dialog or continue the opened one. | ||||||
| Input: | Number of truth levels in AGA; | |||||
| Vocabularies in truth levels representation; | ||||||
| Adresser code, given by the triple of coded truth levels in chain vocabularies; | ||||||
| Sender codes triple; | ||||||
| arbitrarily given enlarging values, p≤r, q≤s ; | ||||||
| Welcome code {“Hi”} to begin new session; | ||||||
| Fixed parole for initial access to Adresser; | ||||||
| Assigned hash value; | ||||||
| List of allowed contacters | ||||||
| List of addressers with opened sessions; | ||||||
| taken from QRNG; | ||||||
| N | Subject | Operation | Commentary | |||
| 1 | Sender); | , if yes go to step 2 ; other go to procedure for unknown contacters | of allowed contacts contains Adresser`s name triple: | |||
| 2 | Assigns i=1, for empty Phrase header template ; | ; begin new phrase and header | ||||
| 3 | Assigns j=1 | ; number of content part | ||||
| 4 |
to Phrase header part |
; initiation of dialog | ||||
| 5 | ; takes fixedfrom | |||||
| 6 | to the header | ; insert triple | ||||
| 7 | ; insert triple | |||||
| 8 | for the header ; | |||||
| 9 | ; | ; number of content parts is determined by 6 free fields in any of them | ||||
| 10 | Assigns v=p, m=q | ; set counters of chain vocabularies | ||||
| 11 | ; begin content parts and set their counter | |||||
| 12 | Assigns g=6 | ; counter of free fields in a content part | ||||
| 13 | ; begin new content part | |||||
| 14 | Goes to step 18 | ; next content part | ||||
| 15 | yes , goes to step 23 other, goes to step 18 | |||||
| 16 | yes, goes to step 26 other, goes to step 18 | ;end of phrase formation | ||||
| 17 | yes, goes to step 12 other, goes to step 25 | |||||
| 18 | ||||||
| 19 | g=g-1 | ; check for free fields | ||||
| 20 | yes, goes to step 25 other, goes to step 21 | |||||
| 21 | ||||||
| 22 | Goes to step 15 | |||||
| 23 | v=v+1 | ; process next v | ||||
| 24 | Goes to step 16 | |||||
| 25 | of the content part | |||||
| 26 | Calculates total summation |
|||||
| 27 | ||||||
| 28 | ||||||
| 29 | i=i+1 | ; counter of phrases for continued dialog | ||||
| 30 | Waits reply from addresser | |||||
| 31 | Adresser | Writes message parts in the buffer:… | ; indexesindicate arbitrarily given words | |||
| 32 | in the Format field of the phrase header | |||||
| 33 | ||||||
| 34 | of opened sessions contains Adresser`s name: yes , goes to step 38, other, goes to step 35 | |||||
| 35 | ): yes , goes to step 37, other, goes to step 36 | |||||
| 36 | Send denial of service message | |||||
| 37 | ; | ; check received external coefficients | ||||
| 38 | Maps truth levels onto natural numbers scale and calculate total coefficient for content parts | |||||
| 39 | Compares the received and the declared values :yes , goes to step 40, other, goes to step 36 | |||||
| 40 | to Decision maker | ; excluding hashes and check coefficients | ||||
| 41 | Waits reply from Decision maker | |||||
| 42 | from Decision maker | ;for simplicity indexes are the same as in step 32 | ||||
| 43 | ||||||
| 44 | Assigns i=1 for empty phrase template | ; form reply phrase | ||||
| 45 | Assigns j=1 | |||||
| 46 | to phrase header | ; format differs from request | ||||
| 47 | ; takes fixedfrom | |||||
| 48 |
to Phrase header part |
|||||
| 49 |
) to Phrase header part |
|||||
| 50 | Assigns j=j+1 | |||||
| 51 | for the header ; | |||||
| 52 | ; | ; number of content parts is determined by 6 free fields in a content part | ||||
| 53 | Assigns v=p, m=q | ; set counters of chain vocabularies | ||||
| 54 | ; begin content parts and set their counter | |||||
| 55 | Assigns g=6 | ;counter of free fields in a content part | ||||
| 56 | ;begin new content part | |||||
| 57 | Goes to step 61 | ;begin next content part | ||||
| 58 | yes, goes to step 66, other, goes to step 61 | ; check counter | ||||
| 59 | yes, goes to ste other, goes to step 61 | ;end of phrase formation | ||||
| 60 | yes, goes to step 55 other, goes to step 68 | ; check counter | ||||
| 61 | ||||||
| 62 | Assigns g=g-1 | ; free fields control | ||||
| 63 | yes, goes to step 68, other, goes to step 64 | |||||
| 64 | ||||||
| 65 | Goes to step 58 | |||||
| 66 | Assigns v=v+1 | ; process next v | ||||
| 67 | Goes to step 59 | |||||
| 68 | of content part | |||||
| 69 | Calculate total summation |
|||||
| 70 | ||||||
| 71 | ||||||
| 72 | i=i+1 | |||||
| 73 | Waits for the next dialog phrase | |||||
| Output: → | in memory for the continuation of the dialog. | |||||
References
- El Madani, S. , Motahhir, S.; El Ghzizal, A. Internet of vehicles: concept, process, security aspects and solutions. Multimed Tools Appl. 2022, 81, 16563–16587. [Google Scholar] [CrossRef]
- Daki, H.; El Hannani, A.; Aqqal, A.; Abdelfattah Haidine, A.; Dahbi, A. Big Data management in smart grid: concepts, requirements and implementation. J Big Data 2017, 4, 13–19 pages. [Google Scholar] [CrossRef]
- Patrao, C.; Moura, P.S.; . De Almeida, A.T. Review of Smart City Assessment Tools. 2020, Smart Cities, 3, 4, 1117-1132.
- Zhang,K. ; Chermprayong,P.; Xiao, F.; Tzoumanikas, D.; Dams, B.; Kay, S.; Kocer, B.B.; Burns, A.; Orr, L.;Alhinai,T.; Choi, C.; Darekar, D. D.; Li, W.; Hirschmann, S.; Soana, V.; Ngah, S.A.; Grillot, C.; Sareh, S.; Choubey, A.; Margheri, L.; Pawar, V. M.;. Ball, R.J.; Williams, C.; Shepherd, P.; Leutenegger, S.; Stuart-Smith R.; Kovac M. Aerial additive manufacturing with multiple autonomous robots. Nature 2022, 609, 709–717. [Google Scholar] [CrossRef]
- Khanna, A. , Kaur, S. Internet of Things (IoT), Applications and Challenges: A Comprehensive Review. Wireless Pers Commun 2020, 114, 1687–1762. [Google Scholar] [CrossRef]
- Maalouf,N.; Sidaoui,A.; Elhajj, I.H.; Asmar, D. Robotics in Nursing: A Scoping Review, Journal of Nursing Scholarship 2018, 50, 6, 590-600. [CrossRef]
- Luckcuck,M.; Farrell, M.; Dennis, L. A.; Dixon, C.; Fisher, M. Formal Specification and Verification of Autonomous Robotic Systems: A Survey. ACM Comput. Surv. 2019,52, 5, Article 100, 41 pages. [CrossRef]
- Araujo,H. ; Mousavi M. R.; Varshosaz, M. 2023. Testing, Validation, and Verification of Robotic and Autonomous Systems: A Systematic Review. ACM Trans. on Software Eng. and Methodol. 2023, 32, 2, Article 51, 1–61. [Google Scholar] [CrossRef]
- Kok Yeow You. A Summary on 5G and Future 6G Internet of ThingsMarch 2023 In Book: Opportunities and Challenges of Industrial IoT in 5G and 6G Networks, Ed. by Yu, P., Hu, X., Prakash, A., Misuko, N. W., Haiyue, G.; Ch. 10, 196-243. Hershey, PA: IGI Global, 2023. [Google Scholar] [CrossRef]
- Nikolic, G.; Dimitrijević, B.; Nikolic, T.; Stojcev, M. Fifty years of microprocessor evolution: from single CPU to multicore and manycore systems FACTA UNIVERSITATIS Ser. Electronics and Energetics 2021, 35, 35–2. [Google Scholar] [CrossRef]
- Shreyas D. K., Srivatsa N. Joshi, Vishwas H. Kumar, Vishaka Venkataramanan, Kaliprasad C. SJoshi, S.N.; Kumar,V.H.; Venkataramanan, V.; Kaliprasad C S A Review on Neural Networks and its Applications September 2023 J. of Comp. Technol. & Applic.2023, 14, 2. [CrossRef]
- Strzelecki,R. M.; Demidova, G.; Lukichev,D.; Poliakov, N.; Abdullin, A.; Lovlin, S. Survey on fuzzy logic methods in control systems of electromechanical plants. January 2019 Scientif. and Tech. J. of Inf. Techn. Mech. and Optics 2019, 19, 1–1. [CrossRef]
- Shreya Shelke, Indrayani S. Pathak, Aniket P. Sangai, Dipali Lunge, Kalyani Shahale, Harsha R. Vyawahare. A Review Paper on Computer Vision. Int. J. of Adv. Res. in Science Commun. and Techn. 2023, 3, 2–673. [Google Scholar] [CrossRef]
- Elyan, E: Vuttipittayamongkol, P.; Johnston, P.; Martin, K.; McPherson, K.; Moreno-García, C.F.; Jayne, C.; Md. Mostafa Kamal Sarker. Computer vision and machine learning for medical image analysis: recent advances, challenges, and way forward. Art. Int. Surg. 2022, 2, 24-45. [CrossRef]
- Basak,S. ; Agrawal,H.; Jena, S.; Gite, S.; Bachute, M.; Pradhan, B., Assiri, M.Challenges and Limitations in Speech Recognition Technology: A Critical Review of Speech Signal Processing Algorithms, Tools and Systems. Comp. Modeling in Eng. & Sci. 2022, 135, 2–1. [Google Scholar] [CrossRef]
- García, S.; Ramírez-Gallego, S.; Luengo, J; Benítez J. M.; Herrera, F. Big data preprocessing: methods and prospects. Big Data Anal. 2016, 1, 9–22. [Google Scholar] [CrossRef]
- Jency Rubia J, Babitha Lincy R, Ezhil E Nithila, Sherin Shibi, Rosi A. A Survey about Post Quantum Cryptography Methods. EAI Endorsed Trans. on Internet of Things, 2024, 10, 9. [Google Scholar] [CrossRef]
- Bykovsky, A.Y.; Kompanets, I.N. Quantum cryptography and combined schemes of quantum cryptography communication networks. Quantum Electron. 2018, 48, 777–801. [Google Scholar] [CrossRef]
- H Shah, Rashid Ali Laghari, Kamlesh Kumar, A A Waqan, Awais Khan Jumani. A Review on Quantum Computing Trends & Future Perspectives EAI Endorsed Trans. on Cloud Systems 2022, 7, 22–11. [CrossRef]
- Thiruthanigesan Kanagasabai, Nagarathnam Thiruchchelvan. Data Verification and Validation Process in the Management System Development. Middle East J. of Scientific Res. 2017, 5, 5–911. [Google Scholar]
- Ricardo Caldas ; Juan Antonio Piñera García, Matei Schiopu, Patrizio Pelliccione, Genaína Rodrigues, Thorsten Berger. Runtime Verification and Field Testing for ROS-Based Robotic Systems. arXiv:2404.11498v1 [cs.SE] 17 Apr 2024.
- Bykovsky, A.Y. Multiple-Valued Logic and Neural Network in the Position-Based Cryptography Scheme. J.of Russian Laser Res. 2021, 42, 618–630. [Google Scholar] [CrossRef]
- Chen, J.; Micali, S. Algorand: A Secure And Efficient Distributed Ledger. Theoretical Computer Science, 2019, 777, 155–183. [Google Scholar] [CrossRef]
- Ethan,B.; Jae, K. Cosmos Whitepaper: A Network Of Distributed Ledgers. https://v1.cosmos.network/ resources/whitepaper, 2016.
- C. Cardoso,R. C.; Farrell, M.; Luckcuck, M.; Ferrando, A.; Fisher. M. Heterogeneous Verification of an Autonomous Curiosity Rover. arXiv.2007.10045v1 [cs.SE] 20 Jul 2020. ( accessed 12 November 2024).
- Aminof, B., Murano, A., Rubin, S., Zuleger, F. (2015). Verification of Asynchronous Mobile-Robots in Partially-Known Environments. Eds. Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. PRIMA 2015: Principles and Practice of Multi-Agent Systems. PRIMA 2015. Lecture Notes in Computer Science, volume 9387. Springer, Cham. 185–200. 2015. [CrossRef]
- Kouvaros, P.; Lomuscio, A. Formal verification of opinion formation in swarms. In Proc. of the 15 International Conference on Autonomous Agents & Multiagent Systems (AAMAS 2016). Singapore, 9-13 May, 2016,1200–1208.
- Foughali, M.; Berthomieu, B.; Dal Zilio, S.; Hladik, P.-E.; Ingrand, F.; Mallet, A. Formal verification of complex robotic systems on resource-constrained platforms. In 2018 IEEE/ACM 6th International FME Workshop on Formal Methods in Software Engineering (FormaliSE). IEEE, Gothenburg, Sweden, May 27–3 June 2018. pp. 2–9. [CrossRef]
- Kamali, M.; Dennis, L. A.; McAree, O.; Fisher, M.; . Veres, S. M. 2017. Formal verification of autonomous vehicle platooning. Science of comp. programming 2017, 148, 88–106. [Google Scholar] [CrossRef]
- Barbot, B.; Bérard, B.; Duplouy, Y.; Haddad, S. Statistical model-checking for autonomous vehicle safety validation. In Conference SIA Simulation Numérique. HAL-Inria, Montigny-le-Bretonneux, France. 16 March 2017.
- Luo C.; Wang, R.; Jiang, Y.; Yang, K.; Guan, Y.; Li, X.; Shi. Z. 2018. Runtime verification of robots collision avoidance case study. In IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Vol. 1. IEEE, Tokyo, Japan, 23- 27 July 2018, pp.204–212. [CrossRef]
- Lomuscio, A.; Michaliszyn, J. 2015. Verifying Multi-Agent Systems by Model Checking Three-valued Abstractions. In Proc. of the 14th Int. Conf. on Autonom. Agents and Multiagent Systems (AAMAS 2015), Eds. Bordini, E.;, Weiss, Y; May 4–8, 2015, Istanbul, Turkey, vol. 15, 189–198.
- Mansoor,N; Saddler, J. A.; Silva, B.; Bagheri, H.; Cohen, M. B. Farritor, S.. Modeling and testing a family of surgical robots: an experience report. In Proceedings of the 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, Lake Buena Vista, FL, USA, November 4 - 9, 2018 , 785–790.
- Cavalcanti, A.; Miyazawa, A.; Sampaio, A.; Li, W.; Ribeiro, P.; Timmis, J. Modelling and verification for swarm robotics. In Proc. Int. Conf. on Integr. Formal Methods. Springer, Maynooth, Ireland, September5-7, 2018,1–19. 2018.
- Betts, K. M.; Petty, M. D. 2016. Automated search-based robustness testing for autonomous vehicle software. Modelling and Simulation in Engineering 2016 , 3, 1-15. [CrossRef]
- Brambilla, M.; Brutschy, A.; Dorigo, M.; Birattari, M. Property-driven design for robot swarms: A design method based on prescriptive modeling and model checking. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 2014, 9, 4–1. [Google Scholar] [CrossRef]
- O’Kelly, M.; Abbas, H.; Gao, S.; Shiraishi, S.; Kato, S.; Mangharam, R. APEX: Autonomous vehicle plan verification and execution. In Proc. SAE 2016 World Congress and Exhibition. SAE International, April 12-14 2016, Detroit,MI, USA,vol. 1, pp. 1–13.
- Desai, A.; Dreossi, T.; Seshia, S. A. 2017. Combining Model Checking and Runtime Verification for Safe Robotics. In Runtime Verification, Eds. Lahiri S., Reger G. Springer Internat. Publishing, Cham, 2017, 172–189.
- Lu, Y.; Niu, H.; Savvaris, A.; Tsourdos,A. 2016. Verifying collision avoidance behaviours for unmanned surface vehicles using probabilistic model checking. IFAC-PapersOnLine 2016, 49, 23, 127–132.
- Foughali, M.; Berthomieu, B.; Dal Zilio, S.; Ingrand, F.; Mallet, A. Model checking real-time properties on the functional layer of autonomous robots. In Int. Conf. on Formal Engineering Methods ICFEM 2016. Springer, Tokyo, Japan, November 14-18, 2016, 383–399.
- Hagerman, S.; Andrews, A.; Oakes, S. Security testing of an unmanned aerial vehicle (UAV). In Proc.2016 Cybersecurity Symposium (CYBERSEC). IEEE, Coeur d’Alene, ID, USA,18-20 April 2016, 26–31. [CrossRef]
- Abdelsalam, M.; Khalil, K.; Stickley, J.; Salem, A.; Loye, B. Verification of advanced driver assistance systems (ADAS) and autonomous vehicles with hardware emulation-in-the-loop. Int. J. of automotive eng. 2019, 10, 2–197. [Google Scholar] [CrossRef]
- Ben Abdessalem, R.; Panichella, A.; Nejati, S.; Briand, L. C. ; Stifter T. 2018. Testing autonomous cars for feature interaction failures using many-objective search. In 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, Montpellier, France, September 3 - 7, 2018,143–154. [CrossRef]
- Sieber, C.; Vieira da Silva, L. M.; Grünhagen, K.; Fay, A. . Rule-Based Verification of Autonomous Unmanned Aerial Vehicles. Drones 2024, 8, 1–26. [Google Scholar] [CrossRef]
- Yaacoub E; Abualsaud, K. ; Mahmoudm, M. Hybrid Encryption for Securing and Tracking Goods Delivery by Multipurpose Unmanned Aerial Vehicles in Rural Areas Using Cipher Block Chaining and Physical Layer Security. Drones 2024, 8, 3–111. [Google Scholar] [CrossRef]
- Ma, J.; Chen, P.; Xiong, X.; Zhang, L.; Yu, S.; Zhang,D. Research on Vision-Based Servoing and Trajectory Prediction Strategy for Capturing Illegal Drones. Drones 2024, 8, 4–127. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Q.; Chen, H.; Deng,H. ; Zhang,L.; Sun, L.; Huang, J. Digital Battle: A Three-Layer Distributed Simulation Architecture for Heterogeneous Robot System Collaboration. Drones 2024, 8, 4–156. [Google Scholar] [CrossRef]
- Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019, Shrestha, A., & Mahmood, A. (). Review of Deep Learning Algorithms and Architectures. IEEE Access, 2019, 7, 53040–53065. [CrossRef]
- Sun, T.; Cao, J. Research on Machine Vision System Design Based on Deep Learning Neural Network Wireless Comm. and Mobile Comp. 2022, 4, 1–16. [Google Scholar] [CrossRef]
- Chai, G.; . Cao, Z.; Liu, W.; Wang, S.; Huang, P.; Zeng, G. Parameter estimation of atmospheric continuous-variable quantum key distribution. Phys. Rev. A 2019, 3, 3–032326. [Google Scholar] [CrossRef]
- Allen, C.M.; Givone, D.D. The Allen-Givone Implementation Oriented Algebra. In Computer Science and Multiple-Valued Logic: Theory and Applications; D.C. Rine, Ed.; North Holland: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Bykovsky, A.Yu. Heterogeneous network architecture for integration of AI and quantum optics by means of multiple-valued logic. Quantum Rep. 2020, 2, 126–165. [Google Scholar] [CrossRef]
- Bykovsky, A. Multiple-Valued Logic Modelling for Agents Controlled via Optical Networks. Appl. Sci. 2022, 3, 1263. [Google Scholar] [CrossRef]
- Bykovsky, A.Y.; Vasiliev, N.A. Data Verification in the Agent, Combining Blockchain and Quantum Keys by Means of Multiple-Valued Logic. Appl. Syst.Innov. 2023, 6, 51. [Google Scholar] [CrossRef]
- Bruns, G., Godefroid, P.: Model Checking Partial State Spaces with 3-Valued Temporal Logics. In Proc. Computer Aided Verification, 11th International Conference, CAV ‘99, Trento, Italy, July 6-10, 1999, Eds. Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 274–287. Springer, Heidelberg,1999. [CrossRef]
- Gurfinkel, A.; Chechik, M. Multi-Valued Model Checking via Classical Model. Lecture Notes in Computer Science 2003, 2761, 17 pages. [CrossRef]
- Gurfinkel, A., Chechik, M. (2003). Multi-valued Model Checking via Classical Model Checking. In Proc. CONCUR 2003 - Concurrency Theory. CONCUR 2003. Lecture Notes in Computer Science, Eds. Amadio, R., Lugiez, D., volume 2761. pp.266-280. Springer, Berlin, Heidelberg. [CrossRef]
- Zhu, J.; Li, Y. Hesitant Fuzzy Linguistic Aggregation Operators Based on the Hamacher t-norm and t-conorm. Symmetry 2018, 10, 189. [Google Scholar] [CrossRef]
- Bykovsky, A.Y.; Vasiliev, N.A. Parametrical T-Gate for Joint Processing of Quantum and Classic Optoelectronic Signals. J –Multidisc.Sci. J, 2023, 6, 384–410.
- Bykovsky, A. A Multiple-Valued Logic for Implementing a Random Oracle and the Position-Based Cryptography. J. of Rus. Laser Res. 2019, 40, 173–183. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; 4th ed.; Hoboken: Pearson, 2021. [Google Scholar]
- Sakagami, R.; Lay, F. S.; Dömel, A.; Schuster, M. J.; Albu-Schäffer, A.; Stulp. F. Robotic world models—conceptualization, review, and engineering best practices. Front. Robot. AI, Sec. Robotic Control Systems. 2023, 10, 1253049–24. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.; Davidson E.; Poon, M.; Dong, H., Duma, D.; Grivas, Grover, A.C. Su’arez-Paniagua, V.; Tobin, R.; Whiteley, W.; Wu, H.; Alex, B. A Systematic Review of Natural Language Processing Applied to Radiology Reports. arXiv:2102.09553v1 [cs.CL] 18 Feb 2021 (accessed on 12 November 2024). arXiv:2102.09553v1 [cs.
- Sun, C.; Sun, P.; Wang, J.; Guo, Y.; Zhao, X. Understanding LiDAR Performance for Autonomous Vehicles Under Snowfall Conditions,” IEEE Trans. on Intel. Transportation Syst., 2024, 25, 11. [Google Scholar] [CrossRef]
- Shahraji, M. H.; Larouche, C. Case Study: Rigorous Boresight Alignment of a Marine Mobile LiDAR System Addressing the Specific Demands of Port Infrastructure Monitoring. Marine Geodesy 2022,.1-18. [CrossRef]
- Prabadevi, B.; Deepa, N.; Pham, Q.-V.; Nguyen, D.C.; Praveen Kumar Reddy, M.; Thippa Reddy, G.; Pathirana, P.N.; Dobre, O. Toward Blockchain for Edge-of-Things: A New Paradigm, Opportunities, and Future Directions. IEEE Internet Things Mag. 2021, 4, 102–108. [Google Scholar] [CrossRef]
- Zhuang, P.; Zamir, T.; Liang, H. Blockchain for Cybersecurity in Smart Grid: A Comprehensive Survey. IEEE Trans. Ind. Inform. 2021, 17, 1–3. [Google Scholar] [CrossRef]
- Ankalkoti, P. A Relative Study on Bitcoin Mining. Imperial J. Interdiscip. Res. 2017, 3, 5–1757. [Google Scholar]
- Ma, X.; Yuan, X.; Cao, Z.; Qi, B.; Zhang, Z. Quantum random number generation. npj Quantum Inf. 2016, 2, 16021. [Google Scholar] [CrossRef]
- Conti, M.; Dragoni, N.; Lesyk, V. A Survey of Man in the Middle Attacks. IEEE Communications Surveys and Tutorials 2016, 18, 3–2027. [Google Scholar] [CrossRef]
- Beebe, N.H. The Mathematical-Function Computation Handbook; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Cyranski, J.F. Measurement theory for physics. Found. Phys. 1979, 9, 641–671. [Google Scholar] [CrossRef]
- Hetmański, M. Expert Knowledge: Its Structure, Functions and Limits. Studia Humana 2018, 3, 3–20. [Google Scholar] [CrossRef]
- Gua, H. A Mathematical Theory of Language. Int. J. of Contemporary Educat. 2017, 1, 1–11. [Google Scholar] [CrossRef]
- Lund, B. D. , Wang, T. Chatting about ChatGPT: How may AI and GPT impactacademia and libraries? Library Hi Tech News, 2023, 40, 3–26. [Google Scholar] [CrossRef]
- Antipov, A.L.; Bykovsky, A.Y.; Vasiliev, N.A.; Egorov, A.A. Multiple-valued logic-protected coding for an optical non-quantum communication line. J. Russ. Laser Res. 2006, 27, 492–505. [Google Scholar] [CrossRef]
- MCS 51 Microcontrollers Family User’s Manual. https://web.mit.edu/6.115/www/document/8051. (accessed on 12 November 2024).
- Gregersen, C. A complete guide to microcontrollers for IoT (July 23 2020). Available online: https://www.nabto.com/iot-microcontroller-guide/ (accessed on 10 November 2024).
- Billman. G.E.; Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Front. Physiol. Sec. Integrative Physiology, 2020, 11-2020, 12. [Google Scholar] [CrossRef]
- Kumar, C. K. Suyambulingom, C. (2012) “Cryptographic of high Security HashFunctions”. Int. J. of Eng. Res. & Techn. (IJERT), 2012, 1, 3–7. [Google Scholar]
- Weiwei, Z.; Baoqiang, L.; Xiuyi, L. A Star Pattern Recognition Algorithm Based on the Radial Companion-Circumferential Feature, Mathematical Problems in Engineering, 2022, 1857481, 10 pages. [CrossRef]
- Arduino. Availabe online: https://www.arduino.cc. (accessed on 12 November 2024).
- Sha, Z.; Li, Z.; Yu, N.; Zhang, Y. DE-FAKE: Detection and Attribution of Fake Images Generated by Text-to-Image Generation Models. In CCS ‘23: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, ACM SIGSAC Conference on Computer and Communications Security, Copenhagen Denmark, November 26 - 30, 2023.; pp. 3418–3432. [CrossRef]












| Input | Input variables | Output variable | |||||
| … | |||||||
| 0 | 0 | 0 | 0 | 0 | … | 0 | |
| 1 | 1 | 0 | 0 | 0 | … | 0 | |
| … | … | … | … | … | … | … | … |
| K-1 | K-1 | K-1 | K-1 | … | K-1 | ||
| Notation | Definition |
| , N – is the set of natural numbers. Only finite sets are intended for basic logic AGA modelling and the mapping of words vocabularies. | |
| It is intended for auxilliary representation and mapping of words vocabularies. | |
| The finite set (or the vocabulary) of all selected different robotiс terms, given by words and word collocations of natural language. It describes the scene of action, robotic tasks, mathematical and verification procedures. | |
| Modelling of the scene of action uses subsets of truth levels,, obtained by arbitrarily chosen bijective mapping →, i.e. onto the scale of truth levels defined in AGA. | |
| →; | |
| where K - the maximal number of truth levels. In majority of tasks convenient classes of robotic terms correspond to classes of words (noun, verb, adverbial modifiers of place, time etc.) | |
| can be given by a word or word collocation, representing in natural language some robotic term. | |
| , providing number code representation of a robotic term. | |
| , providing equivalent logic representation of a robotic term. | |
| . Note that the list of selected vocabularies and message format can differ for various classes of tasks. |
| N | Name of Vocabulary | Content | Class of Word In Natural Language | Natural Language Representation(Maximal number of words - K) |
|---|---|---|---|---|
| 1 | Initiation of dialog and format of message | Cardinal Number | } | |
| 2 | Fixed parole | Cardinal Number | } | |
| 3 | Hash value | Cardinal Number | } | |
| 4 | Addresser of message | Noun | {administrator, robot of MAS, external robot, man, vehicle, unidentified object} | |
| 5 | Sender of message | Noun | {administrator, robot of MAS, external robot, man, vehicle, unidentified object} | |
| 6 | Relative time of sending | Cardinal Number | } | |
| 7 | Time of action | Adverbial modifier of time | {Immediately, now, near future, in an hour, at the specified time…} | |
| 8 | Action/ Task | Verb | {verify, measure, read, write, move to, upload, download, plugs/connectors check, software check, circuit board test, coating check, mechanics check, …} | |
| 9 | Object of action | Noun | {admin, addresser, robot of MAS, external robot, man, house, technical construction, vehicle, road, tree, animal, pit, vocabulary, unidentified object,…} | |
| 10 | Number of object of action | Cardinal Number | } | |
| 11 | Place of action/ objects of action | Noun, Adverbial modifier of place | { robot, external object, vehicle, internal module, …} | |
| 12 | Reference object for relative coordinates | Noun | {robot of MAS, external robot, man, house, technical construction, vehicle, road, tree, bush, animal, pit, stone, …} | |
| 13 | Place of action/ coordinate x | Cardinal Number | } | |
| 14 | Place of action/ coordinate y | Cardinal Number | } | |
| 15 | Linked List | Cardinal Number | } | |
| 16 | Natural number code | Cardinal Number | } | |
| 17 | Truth level code | Cardinal Number | } | |
| 18 | … | … | … | … |
| M | … | … | … | |
| … | Format of message | Cardinal Number | } | |
| … | Fixed parole | Cardinal Number | } | |
| … | Addresser of message | Noun | {administrator, robot of MAS, external robot, man, vehicle, unidentified object} | |
| … | … | … | … | … |
| 2M | … | … | … | |
| … | … | … | … | … |
| KxM | … | … | … |
| N | Natural language Vocabulary | Natural numbers code of Vocabulary | Truth levels code of Vocabulary | Content |
|---|---|---|---|---|
| 1 | Format of message | |||
| ”SOS” | ||||
| ”Hi, read 2parts message”; Initiation of the new phrase | ||||
| ”Hi, read 3parts message”; | ||||
| … | … | … | … | |
| “ Ready to continue” | ||||
| … | … | … | … | … |
| 2 | Fixed parole | |||
| ... | ... | ... | ... | ... |
| KxM | Content given by expert |
| 1st 8-byte part- header | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Variable | ||||||||||||
| Name | Initiation of dialog /Format, | Fixed parole, | Addres-ser name 1, | Addres-ser name 2, | Addres-ser name 3, | Sender name 1, | Sendername 2, | Sendername 3, | ||||
| Vocabulary (in Table 3) | ||||||||||||
| 2d 8-byte part- content | ||||||||||||
| Variable | ||||||||||||
| Name | Assigned hash, | Arbitra-ry word, | Arbitra-ry word, | … | … | Arbitra-ry word, | Arbitra-ry word, | Total check coefficient of all previous parts and the current one, or | ||||
| Vocabulary | … | … | ||||||||||
| … | … | … | … | … | … | … | … | … | ||||
| (KxM-4)/2 th 8-byte part- content | ||||||||||||
| Variable | … | … | … | |||||||||
| Name | Assigned hash, | Arbitra-ry word, | Arbitra-ry word, | … | … | Arbitra-ry word, | Arbitra-ry word, | Total check coefficient of all previous parts and the current one or | ||||
| Vocabulary | … | … | ||||||||||
| Header: | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mapping to natur. numbers code | Hi= 2 | Fixed parole of adresser=131 | Addres-ser name1= 0 | Addres-ser name2= 0 | Addres-ser name3=3 | Sender name1= 0 | Sender name2=0 | Sender name3= 2 | |||
| Content part 1: | =∑ | ||||||||||
| Mapping to natur. numbers code | Assigned hash value =209 | Action=ShowK-Code for word in =196 | Num-ber of object= v= 3 | Num-ber of object= m= 12 | Num-ber of object= 6 | Questionable code name = 221 | Hash for access to vocabularies group, including =147 | 138+ 209+196+3+12+6+221+147 =932 (overflow: >255); 932-3x255=167 | |||
| a) Number of input variables: 2×(1+p+q), p-number of words in entry, q- maximal number of verifying participants | ||||||||||||||||||||||||||||
| Input | variables | Output variable | ||||||||||||||||||||||||||
| Common counters | Previous Entry (8 bytes) | Verifying hash | Last Entry (8 bytes) | Verifying hash | Output hash | |||||||||||||||||||||||
| m | … | … | … | … | ||||||||||||||||||||||||
| 1 | … | … | … | |||||||||||||||||||||||||
| … | … | … | … | … | … | … | … | … | … | … | … | … | … | … | ||||||||||||||
| m-1 | … | … | … | … | ||||||||||||||||||||||||
| m | … | … | … | … | ||||||||||||||||||||||||
| b) Number of input variables: 2×(2+g), g-number of parts in the phrase, q- maximal number of verifying participants. | ||||||||||||||||||||||||||||
| Common counters | Previous Entry (8 bytes) | Verifying hash | Last Entry (8 bytes) | Verifying hash | Output hash | |||||||||||||||||||||||
| Input | variables | Output variable | ||||||||||||||||||||||||||
| m | … | … | ||||||||||||||||||||||||||
| 1 | … | … | ||||||||||||||||||||||||||
| … | … | … | … | … | … | … | … | … | … | … | … | … | ||||||||||||||||
| m-1 | … | … | ||||||||||||||||||||||||||
| m | … | … | ||||||||||||||||||||||||||
![]() |
| Received data buffer | Reserve for intermediatecalculations | |||||
|---|---|---|---|---|---|---|
| N | Part 1 | Part 2 | … | Part 30 | Results 1 | Results 2 |
| #A18 –A16: | #000b | 000b | … | 000b | 000b | 000b |
| #SB (A15-A8): | #111b | #111b | … | #111b | #111b | #111b |
| #LB: | #0-7 | #8-15 | … | #233-239 | #240-247 | #248-255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
