Submitted:
26 November 2024
Posted:
27 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
| ETL | Electron-transporting layer |
| PSC | perovskite solar cell |
| TA | Thermal annealing |
| PC | Potonic curing |
References
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chemical reviews 2019, 119, 3036–3103. [Google Scholar] [CrossRef] [PubMed]
- Dunlap-Shohl, W.A.; Zhou, Y.; Padture, N.P.; Mitzi, D.B. Synthetic approaches for halide perovskite thin films. Chemical reviews 2018, 119, 3193–3295. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.E. Materials chemistry approaches to the control of the optical features of perovskite solar cells. Journal of Materials Chemistry A 2017, 5, 20561–20578. [Google Scholar] [CrossRef]
- Aljuaid, F. Stability Enhanced Perovskite Thin Films for Solar Energy Applications. Thesis, 2023.
- Semerci, A.; Buyruk, A.; Emin, S.; Hooijer, R.; Kovacheva, D.; Mayer, P.; Reus, M.A.; Blätte, D.; Günther, M.; Hartmann, N.F. A Novel Multi-Functional Thiophene-Based Organic Cation as Passivation, Crystalline Orientation, and Organic Spacer Agent for Low-Dimensional 3D/1D Perovskite Solar Cells. Advanced Optical Materials 2023, 11, 2300267. [Google Scholar] [CrossRef]
- Saraf, R. Polymer-Integrated Organolead Halide Perovskite for Solar Cells and Self-Powered Electronic Devices 2020. Type: Journal Article.
- Ghahremani, A.H.; Martin, B.; Gupta, A.; Bahadur, J.; Ankireddy, K.; Druffel, T. Rapid fabrication of perovskite solar cells through intense pulse light annealing of SnO2 and triple cation perovskite thin films. Materials & Design 2020, 185, 108237. [Google Scholar]
- Liao, K.; Li, C.; Xie, L.; Yuan, Y.; Wang, S.; Cao, Z.; Ding, L.; Hao, F. Hot-casting large-grain perovskite film for efficient solar cells: film formation and device performance. Nano-Micro Letters 2020, 12, 1–22. [Google Scholar] [CrossRef]
- Troughton, J.; Charbonneau, C.; Carnie, M.J.; Davies, M.L.; Worsley, D.A.; Watson, T.M. Rapid processing of perovskite solar cells in under 2.5 seconds. Journal of Materials Chemistry A 2015, 3, 9123–9127. [Google Scholar] [CrossRef]
- Troughton, J.; Carnie, M.J.; Davies, M.L.; Charbonneau, C.; Jewell, E.H.; Worsley, D.A.; Watson, T.M. Photonic flash-annealing of lead halide perovskite solar cells in 1 ms. Journal of Materials Chemistry A 2016, 4, 3471–3476. [Google Scholar] [CrossRef]
- Sánchez, S.; Vallés-Pelarda, M.; Alberola-Borràs, J.A.; Vidal, R.; Jerónimo-Rendón, J.J.; Saliba, M.; Boix, P.P.; Mora-Seró, I. Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells. Materials Today 2019, 31, 39–46. [Google Scholar] [CrossRef]
- Sánchez, S.; Jerónimo-Rendon, J.; Saliba, M.; Hagfeldt, A. Highly efficient and rapid manufactured perovskite solar cells via Flash InfraRed Annealing. Materials Today 2020, 35, 9–15. [Google Scholar] [CrossRef]
- Jeon, T.; Jin, H.M.; Lee, S.H.; Lee, J.M.; Park, H.I.; Kim, M.K.; Lee, K.J.; Shin, B.; Kim, S.O. Laser crystallization of organic–inorganic hybrid perovskite solar cells. ACS nano 2016, 10, 7907–7914. [Google Scholar] [CrossRef] [PubMed]
- You, P.; Li, G.; Tang, G.; Cao, J.; Yan, F. Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells. Energy & Environmental Science 2020, 13, 1187–1196. [Google Scholar]
- Xu, W.; Daunis, T.B.; Piper, R.T.; Hsu, J.W. Effects of photonic curing processing conditions on MAPbI3 film properties and solar cell performance. ACS Applied Energy Materials 2020, 3, 8636–8645. [Google Scholar] [CrossRef]
- Lavery, B.W.; Kumari, S.; Konermann, H.; Draper, G.L.; Spurgeon, J.; Druffel, T. Intense pulsed light sintering of CH3NH3PbI3 solar cells. ACS applied materials & interfaces 2016, 8, 8419–8426. [Google Scholar]
- Das, S.; Gu, G.; Joshi, P.C.; Yang, B.; Aytug, T.; Rouleau, C.M.; Geohegan, D.B.; Xiao, K. Low thermal budget, photonic-cured compact TiO 2 layers for high-efficiency perovskite solar cells. Journal of Materials Chemistry A 2016, 4, 9685–9690. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, X.; Chen, X.; Luo, M. Solution route to large area all-TiO2 one-dimensional photonic crystals with high reflectivity and different structural colors. Nanotechnology 2020, 31, 135209. [Google Scholar] [CrossRef]
- Sarda, N.; Vidhan, A.; Basak, S.; Hazra, P.; Behera, T.; Ghosh, S.; Choudhary, R.J.; Chowdhury, A.; Sarkar, S.K. Photonically Cured Solution-Processed SnO2 Thin Films for High-Efficiency and Stable Perovskite Solar Cells and Minimodules. ACS Applied Energy Materials 2023, 6, 3996–4006. [Google Scholar] [CrossRef]
- Piper, R.T.; Daunis, T.B.; Xu, W.; Schroder, K.A.; Hsu, J.W. Photonic curing of nickel oxide transport layer and perovskite active layer for flexible perovskite solar cells: a path towards high-throughput manufacturing. Frontiers in Energy Research 2021, 9, 640960. [Google Scholar] [CrossRef]
- Xu, W.; Piper, R.T.; Daunis, T.B.; Schroder, K.A.; Hsu, J.W. Photonic Curing Enabling High-Speed Processing for Perovskite Solar Cells. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2020, pp. 0079–0081. Type: Conference Proceedings.
- Slimani, M.A.; Cloutier, S.G.; Izquierdo, R. Enhancing Performance of Nanocrystalline SnO2 by Photonic Curing Using Impedance Spectroscopy Analysis 2024. Type: Journal Article.
- Wang, Y.; Mahmoudi, T.; Rho, W.Y.; Yang, H.Y.; Seo, S.; Bhat, K.S.; Ahmad, R.; Hahn, Y.B. Ambient-air-solution-processed efficient and highly stable perovskite solar cells based on CH3NH3PbI3-xClx-NiO composite with Al2O3/NiO interfacial engineering. Nano Energy 2017, 40, 408–417. [Google Scholar] [CrossRef]
- Abdelmageed, G.; Mackeen, C.; Hellier, K.; Jewell, L.; Seymour, L.; Tingwald, M.; Bridges, F.; Zhang, J.Z.; Carter, S. Effect of temperature on light induced degradation in methylammonium lead iodide perovskite thin films and solar cells. Solar Energy Materials and Solar Cells 2018, 174, 566–571. [Google Scholar] [CrossRef]
- Gedamu, D.; Asuo, I.M.; Benetti, D.; Basti, M.; Ka, I.; Cloutier, S.G.; Rosei, F.; Nechache, R. Solvent-antisolvent ambient processed large grain size perovskite thin films for high-performance solar cells. Scientific reports 2018, 8, 12885. [Google Scholar] [CrossRef] [PubMed]
- Mehdi, H.; Matheron, M.; Mhamdi, A.; Cros, S.; Bouazizi, A. Effect of the hole transporting layers on the inverted perovskite solar cells. Journal of Materials Science: Materials in Electronics 2021, 32, 21579–21589. [Google Scholar] [CrossRef]
- Pan, H.; Shao, H.; Zhang, X.L.; Shen, Y.; Wang, M. Interface engineering for high-efficiency perovskite solar cells. Journal of Applied Physics 2021, 129. [Google Scholar] [CrossRef]
- Cheng, Y.; So, F.; Tsang, S.W. Progress in air-processed perovskite solar cells: from crystallization to photovoltaic performance. Materials Horizons 2019, 6, 1611–1624. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Wu, Z.; Wang, Y.; Hong, J.; Rao, H.; Pan, Z.; Zhong, X. Crystallization control of air-processed wide-bandgap perovskite for carbon-based perovskite solar cells with 17.69% efficiency. Chemical Engineering Journal 2023, 455, 140566. [Google Scholar] [CrossRef]
- Chen, J.; Jia, D.; Qiu, J.; Zhuang, R.; Hua, Y.; Zhang, X. Multidentate passivation crosslinking perovskite quantum dots for efficient solar cells. Nano Energy 2022, 96, 107140. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, Y.; Zhang, X.; Wang, C.; Wen, S.; Zhang, W.; Chen, S.; Zheng, W. Grain boundary engineering with Cl-terminated Ti2C quantum dots for enhancing perovskite solar cell performance. ACS Sustainable Chemistry & Engineering 2023, 11, 7072–7082. [Google Scholar]
- Kim, Y.C.; An, H.J.; Kim, D.H.; Myoung, J.; Heo, Y.J.; Cho, J.H. High-performance perovskite-based blue light-emitting diodes with operational stability by using organic ammonium cations as passivating agents. Advanced Functional Materials 2021, 31, 2005553. [Google Scholar] [CrossRef]
- Zhou, Y.; Fernando, K.; Wan, J.; Liu, F.; Shrestha, S.; Tisdale, J.; Sheehan, C.J.; Jones, A.C.; Tretiak, S.; Tsai, H. Millimeter-Size All-inorganic Perovskite Crystalline Thin Film Grown by Chemical Vapor Deposition. Advanced Functional Materials 2021, 31, 2101058. [Google Scholar] [CrossRef]
- Min, M.; Hossain, R.F.; Adhikari, N.; Kaul, A.B. Inkjet-printed organohalide 2D layered perovskites for high-speed photodetectors on flexible polyimide substrates. ACS applied materials & interfaces 2020, 12, 10809–10819. [Google Scholar]
- Yamada, T.; Yamada, Y.; Kanemitsu, Y. Photon recycling in perovskite CH3NH3PbX3 (X= I, Br, Cl) bulk single crystals and polycrystalline films. Journal of Luminescence 2020, 220, 116987. [Google Scholar] [CrossRef]
- Ali Akhavan Kazemi, M.; Jamali, A.; Sauvage, F. A holistic study on the effect of annealing temperature and time on CH3NH3PbI3-based perovskite solar cell characteristics. Frontiers in Energy Research 2021, 9, 732886. [Google Scholar] [CrossRef]
- Meng, Q.; Chen, Y.; Xiao, Y.Y.; Sun, J.; Zhang, X.; Han, C.B.; Gao, H.; Zhang, Y.; Yan, H. Effect of temperature on the performance of perovskite solar cells. Journal of Materials Science: Materials in Electronics 2021, 32, 12784–12792. [Google Scholar] [CrossRef]
- Ding, B.; Li, Y.; Huang, S.Y.; Chu, Q.Q.; Li, C.X.; Li, C.J.; Yang, G.J. Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%. Journal of Materials Chemistry A 2017, 5, 6840–6848. [Google Scholar] [CrossRef]
- Chao, L.; Niu, T.; Gao, W.; Ran, C.; Song, L.; Chen, Y.; Huang, W. Solvent engineering of the precursor solution toward large-area production of perovskite solar cells. Advanced Materials 2021, 33, 2005410. [Google Scholar] [CrossRef]
- Kwang, Z.w.; Chang, C.W.; Hsieh, T.Y.; Wei, T.C.; Lu, S.Y. Solvent-modulated reaction between mesoporous PbI2 film and CH3NH3I for enhancement of photovoltaic performances of perovskite solar cells. Electrochimica Acta 2018, 266, 118–129. [Google Scholar] [CrossRef]
- Cloutier, S.G.; Guico, R.S.; Xu, J.M. Phonon localization in periodic uniaxially nanostructured silicon. Applied Physics Letters 2005, 87. [Google Scholar] [CrossRef]
- Park, S.Y.; Zhu, K. Advances in SnO2 for efficient and stable n–i–p perovskite solar cells. Advanced materials 2022, 34, 2110438. [Google Scholar] [CrossRef]
- Gong, J.; Cui, Y.; Li, F.; Liu, M. Progress in surface modification of SnO2 electron transport layers for stable perovskite solar cells. Small Science 2023, 3, 2200108. [Google Scholar] [CrossRef]
- Carnie, M.J.; Charbonneau, C.; Davies, M.L.; O’Regan, B.; Worsley, D.A.; Watson, T.M. Performance enhancement of solution processed perovskite solar cells incorporating functionalized silica nanoparticles. Journal of Materials Chemistry A 2014, 2, 17077–17084. [Google Scholar] [CrossRef]
- Wolff, C.M.; Zu, F.; Paulke, A.; Toro, L.P.; Koch, N.; Neher, D. Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 solar cells. Advanced materials 2017, 29, 1700159. [Google Scholar] [CrossRef] [PubMed]
- Wozny, S.; Yang, M.; Nardes, A.M.; Mercado, C.C.; Ferrere, S.; Reese, M.O.; Zhou, W.; Zhu, K. Controlled humidity study on the formation of higher efficiency formamidinium lead triiodide-based solar cells. Chemistry of Materials 2015, 27, 4814–4820. [Google Scholar] [CrossRef]
- Sun, K.; Guo, R.; Liang, Y.; Heger, J.E.; Liu, S.; Yin, S.; Reus, M.A.; Spanier, L.V.; Deschler, F.; Bernstorff, S. Morphological insights into the degradation of perovskite solar cells under light and humidity. ACS Applied Materials & Interfaces 2023, 15, 30342–30349. [Google Scholar]
- Banerjee, S.; Askari, S.S.A.; Das, M. Effect of rear contact coverage and improvement of efficiency of crystalline p-Si solar cell compared to state of art PERC cell. IEEE Access 2023, 11, 34999–35006. [Google Scholar] [CrossRef]
- Xu, W.; Hart, L.J.; Moss, B.; Caprioglio, P.; Macdonald, T.J.; Furlan, F.; Panidi, J.; Oliver, R.D.; Pacalaj, R.A.; Heeney, M. Impact of Interface Energetic Alignment and Mobile Ions on Charge Carrier Accumulation and Extraction in p-i-n Perovskite Solar Cells. Advanced Energy Materials 2023, 13, 2301102. [Google Scholar] [CrossRef]
- Jia, P.; Qin, L.; Zhao, D.; Tang, Y.; Song, B.; Guo, J.; Li, X.; Li, L.; Cui, Q.; Hu, Y. The trapped charges at grain boundaries in perovskite solar cells. Advanced Functional Materials 2021, 31, 2107125. [Google Scholar] [CrossRef]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
