Submitted:
23 November 2024
Posted:
26 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Measures of Feed Efficiency
2.1. Feed Conversion Ratio/Feed Conversion Efficiency (FCR)
2.2. Residual Feed Intake (RFI)
2.3. Residual Average Daily Gain (RADG)
2.4. Maintenance Efficiency
2.5. Partial Efficiency of Growth
2.6. Cow/Calf Efficiency
3. Methods of Recording Feed Intake
4. Genetic Relationships Between Feed Efficiency, and Growth and Carcass Traits
5. Genetic Relationships Between Feed Efficiency and Maintenance Requirements
5.1. Physiological basis for variation in feed efficiency
5.2. Distribution of nutrient demands
5.3. Body Composition
5.4. Physical Activity
5.5. Extra-physiological Considerations
5.5. Visceral Organs
5.6. Intestinal Absorption and Cell Morphology
6. Descriptors of International Nutritional Models on Determination of Energy Requirements for Beef Cattle
7. Metabolizable and Net Energy requirements for maintenance for growing beef cattle from recent studies published around the world
8. Energy Requirement for Maintenance During the Finishing Period
9. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- USDA USDA Foreign Agricultural Service. Beef. Foreign Agricultural Service (FAS), United States Department of Agriculture (USDA); 2024. Released April 11, 2024.; 2024.
- USDA USDA National Agricultural Statistics Service. Cattle . National Agricultural Statistics Service (NASS), Agricultural Statistics Board, United States Department of Agriculture (USDA); 2024. Released January 31, 2024.; 2024.
- UN World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100 | United Nations. 2017.
- Revell, B. Meat and Milk Consumption 2050: The Potential for Demand-Side Solutions to Greenhouse Gas Emissions Reduction. EuroChoices 2015, 14, 4–11. [Google Scholar] [CrossRef]
- FAO Global Meat Consumption, World, 1961 to 2050; 2024.
- Xie, Y.; Hunter, M.; Sorensen, A.; Nogeire-McRae, T.; Murphy, R.; Suraci, J.P.; Lischka, S.; Lark, T.J. U.S. Farmland under Threat of Urbanization: Future Development Scenarios to 2040. Land (Basel) 2023, 12, 574. [Google Scholar] [CrossRef]
- Abu Hatab, A.; Cavinato, M.E.R.; Lindemer, A.; Lagerkvist, C.J. Urban Sprawl, Food Security and Agricultural Systems in Developing Countries: A Systematic Review of the Literature. Cities 2019, 94, 129–142. [Google Scholar] [CrossRef]
- Nesheim, M.C.; Oria, M.; Yih, P.T.; Committee on a Framework for Assessing the Health, E. and S.E. of the F.S.; Board, F. and N.; Resources, B. on A. and N.; Medicine, I. of; Council, N.R. U.S. BIOFUELS POLICY. 2015.
- Hill, R.A. Feed Efficiency in the Beef Industry; Wiley-Blackwell, 2012; ISBN 9780470959527.
- Baker, S.D.; Szasz, J.I.; Klein, T.A.; Kuber, P.S.; Hunt, C.W.; Glaze, J.B.; Falk, D.; Richard, R.; Miller, J.C.; Battaglia, R.A.; et al. Residual Feed Intake of Purebred Angus Steers: Effects on Meat Quality and Palatability. J Anim Sci 2006, 84, 938–945. [Google Scholar] [CrossRef]
- Arthur, P.F.; Archer, J.A.; Johnston, D.J.; Herd, R.M.; Richardson, E.C.; Parnell, P.F. Genetic and Phenotypic Variance and Covariance Components for Feed Intake, Feed Efficiency, and Other Postweaning Traits in Angus Cattle. J Anim Sci 2001, 79, 2805–2811. [Google Scholar] [CrossRef]
- Arthur, J.P.F.; Herd, R.M. Residual Feed Intake in Beef Cattle. Revista Brasileira de Zootecnia 2008, 37, 269–279. [Google Scholar] [CrossRef]
- Nkrumah, J.D.; Okine, E.K.; Mathison, G.W.; Schmid, K.; Li, C.; Basarab, J.A.; Price, M.A.; Wang, Z.; Moore, S.S. Relationships of Feedlot Feed Efficiency, Performance, and Feeding Behavior with Metabolic Rate, Methane Production, and Energy Partitioning in Beef Cattle. J Anim Sci 2006, 84, 145–153. [Google Scholar] [CrossRef]
- Gibb, D.J.; Mcallister, T.A. The Impact of Feed Intake and Feeding Behaviour of Cattle on Feedlot and Feedbunk Management. Proc. 20th Western Nutr. Conf., Calgary, Alberta 1999, 101–116.
- Basarab, J.A.; Price, M.A.; Okine, E.K. Commercialization of Net Feed Efficiency; 2002.
- Fox, D.G.; Tedeschi, L.O.; Guiroy, P.J. Determining Feed Intake and Feed of Individual Cattle Fed in Groups. In Proceedings of the Proceedings of the 2001 Beef Improvement Federation Meeting, San Antonio, TX.; 2001.
- Lamb, G.C.; Black, T.E.; Bischoff, K.M.; Mercadante, V.R.G. The Importance of Feed Efficiency in the Cow Herd; 2013.
- Montaño-Bermude, M.; Nielsen, M.K.; Deutsches, G.H. ENERGY REQUIREMENTS FOR MAINTENANCE OF CROSSBRED BEEF CAlTLE WITH DIFFERENT GENETIC POTENTIAL FOR MILK1; 1990.
- Klosterman, E.W.; Parker, C.F.; Wooster, S. Effect of Size, Breed, and Sex Upon Feed Efficiency in Beef Cattle *****; 1976.
- Cabezas-Garcia, E.H.; Lowe, D.; Lively, F. Energy Requirements of Beef Cattle: Current Energy Systems and Factors Influencing Energy Requirements for Maintenance. Animals 2021, 11. [Google Scholar] [CrossRef]
- Meuwissen, T.; Hayes, B.; Goddard, M. Accelerating Improvement of Livestock with Genomic Selection. Annu Rev Anim Biosci 2013, 1, 221–237. [Google Scholar] [CrossRef]
- Miar, Y.; Plastow, G.; Wang, Z. Genomic Selection, a New Era for Pork Quality Improvement. Springer Science Reviews 2015 3:1 2015, 3, 27–37. [Google Scholar] [CrossRef]
- Brito, L.F.; Oliveira, H.R.; Houlahan, K.; Fonseca, P.A.S.; Lam, S.; Butty, A.M.; Seymour, D.J.; Vargas, G.; Chud, T.C.S.; Silva, F.F.; et al. Genetic Mechanisms Underlying Feed Utilization and Implementation of Genomic Selection for Improved Feed Efficiency in Dairy Cattle. Can J Anim Sci 2020, 100, 587–604. [Google Scholar] [CrossRef]
- de Haas, Y.; Calus, M.P.L.; Veerkamp, R.F.; Wall, E.; Coffey, M.P.; Daetwyler, H.D.; Hayes, B.J.; Pryce, J.E. Improved Accuracy of Genomic Prediction for Dry Matter Intake of Dairy Cattle from Combined European and Australian Data Sets. J Dairy Sci 2012, 95, 6103–6112. [Google Scholar] [CrossRef] [PubMed]
- Bolormaa, S.; Pryce, J.E.; Kemper, K.; Savin, K.; Hayes, B.J.; Barendse, W.; Zhang, Y.; Reich, C.M.; Mason, B.A.; Bunch, R.J.; et al. Accuracy of Prediction of Genomic Breeding Values for Residual Feed Intake and Carcass and Meat Quality Traits in Bos Taurus, Bos Indicus, and Composite Beef Cattle. J Anim Sci 2013, 91, 3088–3104. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Chen, L.; Vinsky, M.; Crowley, J.; Plastow, G.; Basarab, J.; Stothard, P.; Li, C.; Canada, A.-F.; et al. 287 Genomic Prediction for Residual Feed Intake and Its Component Traits Based on 50K and Imputed 7.8. J Anim Sci 2018, 96, 107–107. [Google Scholar] [CrossRef]
- Verbyla, K.L.; Calus, M.P.L.; Mulder, H.A.; de Haas, Y.; Veerkamp, R.F. Predicting Energy Balance for Dairy Cows Using High-Density Single Nucleotide Polymorphism Information. J Dairy Sci 2010, 93, 2757–2764. [Google Scholar] [CrossRef]
- Pryce, J.E.; Arias, J.; Bowman, P.J.; Davis, S.R.; Macdonald, K.A.; Waghorn, G.C.; Wales, W.J.; Williams, Y.J.; Spelman, R.J.; Hayes, B.J. Accuracy of Genomic Predictions of Residual Feed Intake and 250-Day Body Weight in Growing Heifers Using 625,000 Single Nucleotide Polymorphism Markers. J Dairy Sci 2012, 95, 2108–2119. [Google Scholar] [CrossRef]
- Pryce, J.E.; Wales, W.J.; De Haas, Y.; Veerkamp, R.F.; Hayes, B.J. Genomic Selection for Feed Efficiency in Dairy Cattle. Animal 2014, 8, 1–10. [Google Scholar] [CrossRef]
- Mujibi, F.D.N.; Nkrumah, J.D.; Durunna, O.N.; Stothard, P.; Mah, J.; Wang, Z.; Basarab, J.; Plastow, G.; Crews, D.H.; Moore, S.S. Accuracy of Genomic Breeding Values for Residual Feed Intake in Crossbred Beef Cattle. J Anim Sci 2011, 89, 3353–3361. [Google Scholar] [CrossRef] [PubMed]
- de Haas, Y.; Pryce, J.E.; Calus, M.P.L.; Wall, E.; Berry, D.P.; Løvendahl, P.; Krattenmacher, N.; Miglior, F.; Weigel, K.; Spurlock, D.; et al. Genomic Prediction of Dry Matter Intake in Dairy Cattle from an International Data Set Consisting of Research Herds in Europe, North America, and Australasia. J Dairy Sci 2015, 98, 6522–6534. [Google Scholar] [CrossRef]
- Bolormaa, S.; MacLeod, I.M.; Khansefid, M.; Marett, L.C.; Wales, W.J.; Miglior, F.; Baes, C.F.; Schenkel, F.S.; Connor, E.E.; Manzanilla-Pech, C.I.V.; et al. Sharing of Either Phenotypes or Genetic Variants Can Increase the Accuracy of Genomic Prediction of Feed Efficiency. Genet Sel Evol 2022, 54. [Google Scholar] [CrossRef]
- Nielsen, M.K.; MacNeil, M.D.; Dekkers, J.C.M.; Crews, D.H.; Rathje, T.A.; Enns, R.M.; Weaber, R.L. Review: Life-Cycle, Total-Industry Genetic Improvement of Feed Efficiency in Beef Cattle: Blueprint for the Beef Improvement Federation. Prof Anim Sci 2013, 29, 559–565. [Google Scholar] [CrossRef]
- Berry, D.P.; Crowley, J.J. CELL BIOLOGY SYMPOSIUM: Genetics of Feed Efficiency in Dairy and Beef Cattle. J Anim Sci 2013, 91, 1594–1613. [Google Scholar] [CrossRef] [PubMed]
- Korver, S. Genetic Aspects of Feed Intake and Feed Efficiency in Dairy Cattle: A Review. 1988.
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of Feed Use in Beef Cattle. J Anim Sci 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Keith Salmon, R.; C Bailey, D.R.; Weingardt, R.; aNoBBnc, R. GROWTH EFFICIENCY IN MICE SELECTED FOR INCREASED BODY WEIGHT; 1990.
- Honig, A.C.; Inhuber, V.; Spiekers, H.; Windisch, W.; Götz, K.-U.; Schuster, M.; Ettle, T. NC-ND License Body Composition and Composition of Gain of Growing Beef Bulls Fed Rations with Varying Energy Concentrations. Meat Sci 2022, 184, 309–1740. [Google Scholar] [CrossRef]
- Hersom, M.J.; Horn, G.W.; Krehbiel, C.R.; Phillips, W.A. Effect of Live Weight Gain of Steers during Winter Grazing: I. Feedlot Performance, Carcass Characteristics, and Body Composition of Beef Steers. J. Anim. Sci 2004, 82, 262–272. [Google Scholar] [CrossRef]
- Archer, J.A.; Richardson, E.C.; Herd, R.M.; Arthur, P.F. Potential for Selection to Improve Efficiency of Feed Use in Beef Cattle: A Review; 1999; Vol. 50.
- Svendsen, M.; Skipenes, P.; Mao, I.L. Genetic Parameters in the Feed Conversion Complex of Primiparous Cows in the First Two Trimesters. J Anim Sci 1993, 71, 1721–1729. [Google Scholar] [CrossRef]
- Veerkamp, R.F.; Emmans, G.C.; Cromie, A.R.; Simm, G. Variance Components for Residual Feed Intake in Dairy Cows. Livest Prod Sci 1995, 41, 111–120. [Google Scholar] [CrossRef]
- Torres-Vázquez, J.A.; van der Werf, J.H.J.; Clark, S.A. Genetic and Phenotypic Associations of Feed Efficiency with Growth and Carcass Traits in Australian Angus Cattle. J Anim Sci 2018, 96, 4521–4531. [Google Scholar] [CrossRef]
- Novo, L.C.; Gondo, A.; Gomes, R.C.; Fernandes Junior, J.A.; Ribas, M.N.; Brito, L.F.; Laureano, M.M.M.; Araújo, C. V.; Menezes, G.R.O. Genetic Parameters for Performance, Feed Efficiency, and Carcass Traits in Senepol Heifers. Animal 2021, 15. [Google Scholar] [CrossRef]
- Smith, S.N.; Davis, M.E.; Loerch, S.C. Residual Feed Intake of Angus Beef Cattle Divergently Selected for Feed Conversion Ratio. Livest Sci 2010, 132, 41–47. [Google Scholar] [CrossRef]
- Santana, M.H.A.; Oliveira, G.A.; Gomes, R.C.; Silva, S.L.; Leme, P.R.; Stella, T.R.; Mattos, E.C.; Rossi, P.; Baldi, F.S.; Eler, J.P.; et al. Genetic Parameter Estimates for Feed Efficiency and Dry Matter Intake and Their Association with Growth and Carcass Traits in Nellore Cattle. Livest Sci 2014, 167, 80–85. [Google Scholar] [CrossRef]
- Mrode, R.A.; Smith, C.; Thompson, R. Selection for Rate and Efficiency of Lean Gain in Hereford Cattle 1. Selection Pressure Applied and Direct Responses. Anim Prod 1990, 51, 23–34. [Google Scholar] [CrossRef]
- Akdemir, D.; Beavis, W.; Fritsche-Neto, R.; Singh, A.K.; Isidro-Sánchez, J. Multi-Objective Optimized Genomic Breeding Strategies for Sustainable Food Improvement. Heredity (Edinb) 2019, 122, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Covarrubias-Pazaran, G.; Gebeyehu, Z.; Gemenet, D.; Werner, C.; Labroo, M.; Sirak, S.; Coaldrake, P.; Rabbi, I.; Kayondo, S.I.; Parkes, E.; et al. Breeding Schemes: What Are They, How to Formalize Them, and How to Improve Them? Front Plant Sci 2022, 12, 791859. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, G.E. Animal Size and Efficiency: Basic Concepts. Anim Prod 1978, 27, 367–379. [Google Scholar] [CrossRef]
- Andersen, B.B. Animal Size and Efficiency, with Special Reference to Growth and Feed Conversion in Cattle. Anim Prod 1978, 27, 381–391. [Google Scholar] [CrossRef]
- Fitzhugh, H.A. Animal Size and Efficiency, with Special Reference to the Breeding Female. Anim Prod 1978, 27, 393–401. [Google Scholar] [CrossRef]
- Holmes, W. Size of Animal in Relation to Productivity Nutritional Aspects. Proceedings of the British Society of Animal Production (1972) 1973, 2, 27–34. [Google Scholar] [CrossRef]
- Arthur, P.F.; Renand, G.; Krauss, G. Genetic and Phenotypic Relationships among Different Measures of Growth and Feed Efficiency in Young Charolais Bulls. Livest Prod Sci 2001, 68, 131–139. [Google Scholar] [CrossRef]
- Archer, J.A.; Arthur, P. Genetic Variation in Feed Intake and Efficiency of Mature Beef Cows and Relationships with Post-Weaning Measurements. In Proceedings of the Proc. 7th World Congr.Genet. Appl. Livest. Prod., Montpelier, France.; 2002; pp. 221–225.
- Herd, R.M.; Archer, J.A.; Arthur, P.F. Reducing the Cost of Beef Production through Genetic Improvement in Residual Feed Intake: Opportunity and Challenges to Application 1. J. Anim. Sci. 2003, 81, E9–E17. [Google Scholar]
- Herd, R.M.; Bishop, S.C. Genetic Variation in Residual Feed Intake and Its Association with Other Production Traits in British Hereford Cattle. Livest Prod Sci 2000, 63, 111–119. [Google Scholar] [CrossRef]
- Nkrumah, J.D.; Basarab, J.A.; Wang, Z.; Li, C.; Price, M.A.; Okine, E.K.; Crews, D.H.; Moore, S.S. Genetic and Phenotypic Relationships of Feed Intake and Measures of Efficiency with Growth and Carcass Merit of Beef Cattle. J Anim Sci 2007, 85, 2711–2720. [Google Scholar] [CrossRef] [PubMed]
- Ceacero, T.M.; Mercadante, M.E.Z.; Cyrillo, J.N.D.S.G.; Canesin, R.C.; Bonilha, S.F.M.; De Albuquerque, L.G. Phenotypic and Genetic Correlations of Feed Efficiency Traits with Growth and Carcass Traits in Nellore Cattle Selected for Postweaning Weight. PLoS One 2016, 11, e0161366. [Google Scholar] [CrossRef]
- Robinson, D.L.; Oddy, V.H. Genetic Parameters for Feed Efficiency, Fatness, Muscle Area and Feeding Behaviour of Feedlot Finished Beef Cattle. Livest Prod Sci 2004, 90, 255–270. [Google Scholar] [CrossRef]
- Northcutt, S.; Bowman, B. American Angus Association to Release Selection Tool for Feed Efficiency Available online:. Available online: https://www.angus.org/pub/newsroom/releases/090210_radgrelease.html (accessed on 3 November 2024).
- Freetly, H.C.; Kuehn, L.A.; Thallman, R.M.; Snelling, W.M. Heritability and Genetic Correlations of Feed Intake, Body Weight Gain, Residual Gain, and Residual Feed Intake of Beef Cattle as Heifers and Cows. J Anim Sci 2020, 98. [Google Scholar] [CrossRef]
- Faulkner, D.B. The Relationship of RFI and Voluntary Forage Intake and Cow Survival under Range Conditions Measuring Feed Efficiency Residual Average Daily Gain (RADG); 2016. 2016.
- Fan, L.Q.; Wilton, J.W.; Colucci, P.E. Genetic Parameters for Feed Intake and Efficiency in Lactating Beef Cows. Can. J. Anim. Sci. 1996, 76, 81–87. [Google Scholar] [CrossRef]
- Fan, L.Q.; Wilton, L.E.; Colucci, J.W.; Fan, P.E. Genetic Parameters for Feed Intake and Efficiency in Dry Pregnant Beef Cows. 1996.
- Carstens, G.E.; Tedeschi, L.O. Defining Feed Efficiency in Beef Cattle. In Proceedings of the Beef Improvement Federation, 38th Annual Meeting; 2006.
- Taylor, C.S.; Turner, H.G.; Young, G.B. Genetic Control of Equilibrium Maintenance Efficiency in Cattle. Anim Prod 1981, 33, 179–194. [Google Scholar] [CrossRef]
- Grion, A.L.; Mercadante, M.E.Z.; Cyrillo, J.N.S.G.; Bonilha, S.F.M.; Magnani, E.; Branco, R.H. Selection for Feed Efficiency Traits and Correlated Genetic Responses in Feed Intake and Weight Gain of Nellore Cattle. J Anim Sci 2014, 92, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.Q.; Bailey, D.R.; Shannon, N.H. Genetic Parameter Estimation of Postweaning Gain, Feed Intake, and Feed Efficiency for Hereford and Angus Bulls Fed Two Different Diets. J Anim Sci 1995, 73, 365–372. [Google Scholar] [CrossRef]
- Nkrumah, J.D.; Basarab, J.A.; Price, M.A.; Okine, E.K.; Ammoura, A.; Guercio, S.; Hansen, C.; Li, C.; Benkel, B.; Murdoch, B.; et al. Different Measures of Energetic Efficiency and Their Phenotypic Relationships with Growth, Feed Intake, and Ultrasound and Carcass Merit in Hybrid Cattle. J Anim Sci 2004, 82, 2451–2459. [Google Scholar] [CrossRef]
- Shuey, S.A.; Birkelo, C.P.; Marshall, D.M. The Relationship of the Maintenance Energy Requirement to Heifer Production Efficiency. J Anim Sci 1993, 71, 2253–2259. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.G.; Ferrell, C.L. Productivity through Weaning of Nine Breeds of Cattle under Varying Feed Availabilities: I. Initial Evaluation. J Anim Sci 1994, 72, 2787–2797. [Google Scholar] [CrossRef] [PubMed]
- Halachmi, I.; Edan, Y.; Maltz, E.; Peiper, U.M.; Moallem, U.; Brukental, I. A Real-Time Control System for Individual Dairy Cow Food Intake. Comput Electron Agric 1998, 20, 131–144. [Google Scholar] [CrossRef]
- DeVries, T.J.; Von Keyserlingk, M.A.G.; Weary, D.M.; Beauchemin, K.A. Technical Note: Validation of a System for Monitoring Feeding Behavior of Dairy Cows. J Dairy Sci 2003, 86, 3571–3574. [Google Scholar] [CrossRef]
- Bach, A.; Iglesias, C.; Busto, I. Technical Note: A Computerized System for Monitoring Feeding Behavior and Individual Feed Intake of Dairy Cattle. J Dairy Sci 2004, 87, 4207–4209. [Google Scholar] [CrossRef]
- Ferris, C.P.; Keady, T.W.J.; Gordon, F.J.; Kilpatrick, D.J. Comparison of a Calan Gate and a Conventional Feed Barrier System for Dairy Cows: Feed Intake and Cow Behaviour. Irish Journal of Agricultural and Food Research 2006, 45, 149–156. [Google Scholar]
- Wang, Z.; Nkrumah, J.D.; Li, C.; Basarab, J.A.; Goonewardene, L.A.; Okine, E.K.; Crews, D.H.; Moore, S.S. Test Duration for Growth, Feed Intake, and Feed Efficiency in Beef Cattle Using the GrowSafe System. J Anim Sci 2006, 84, 2289–2298. [Google Scholar] [CrossRef]
- Chapinal, N.; Veira, D.M.; Weary, D.M.; Von Keyserlingk, M.A.G. Technical Note: Validation of a System for Monitoring Individual Feeding and Drinking Behavior and Intake in Group-Housed Cattle. J Dairy Sci 2007, 90, 5732–5736. [Google Scholar] [CrossRef]
- Joo, E.M. New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems; BoD–Books on Demand, 2010; ISBN 953307213X.
- Chizzotti, M.L.; Machado, F.S.; Valente, E.E.L.; Pereira, L.G.R.; Campos, M.M.; Tomich, T.R.; Coelho, S.G.; Ribas, M.N. Technical Note: Validation of a System for Monitoring Individual Feeding Behavior and Individual Feed Intake in Dairy Cattle. J Dairy Sci 2015, 98, 3438–3442. [Google Scholar] [CrossRef]
- Lassen, J.; Thomasen, J.R.; Hansen, R.H.; Nielsen, G.G.B.; Olsen, E. V; Stentebjerg, P.R.B.; Hansen, N.W.; Borchersen, S. Individual Measure of Feed Intake on In-House Commercial Dairy Cattle Using 3D Camera System. In Proceedings of the World Congress on Genetics Applied to Livestock Production; 2018.
- Shelley, A.N. Monitoring Dairy Cow Feed Intake Using Machine Vision. 2013.
- Saar, M.; Edan, Y.; Godo, A.; Lepar, J.; Parmet, Y.; Halachmi, I. A Machine Vision System to Predict Individual Cow Feed Intake of Different Feeds in a Cowshed. Animal 2022, 16, 100432. [Google Scholar] [CrossRef]
- Bloch, V.; Levit, H.; Halachmi, I. Assessing the Potential of Photogrammetry to Monitor Feed Intake of Dairy Cows. Journal of Dairy Research 2019, 86, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Spencer Jr, B.F.; Hoskere, V.; Narazaki, Y. Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. Engineering 2019, 5, 199–222. [Google Scholar] [CrossRef]
- Shelley, A.N.; Lau, D.L.; Stone, A.E.; Bewley, J.M. Short Communication: Measuring Feed Volume and Weight by Machine Vision. J Dairy Sci 2016, 99, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Bezen, R.; Edan, Y.; Halachmi, I. Computer Vision System for Measuring Individual Cow Feed Intake Using RGB-D Camera and Deep Learning Algorithms. Comput Electron Agric 2020, 172, 105345. [Google Scholar] [CrossRef]
- Halachmi, I.; Guarino, M. Editorial: Precision Livestock Farming: A ‘per Animal’ Approach Using Advanced Monitoring Technologies. animal 2016, 10, 1482–1483. [Google Scholar] [CrossRef]
- Brito, L.F.; Oliveira, H.R.; McConn, B.R.; Schinckel, A.P.; Arrazola, A.; Marchant-Forde, J.N.; Johnson, J.S. Large-Scale Phenotyping of Livestock Welfare in Commercial Production Systems: A New Frontier in Animal Breeding. Front Genet 2020, 11, 552352. [Google Scholar] [CrossRef] [PubMed]
- Neethirajan, S.; Kemp, B. Digital Phenotyping in Livestock Farming. Animals 2021, Vol. 11, Page 2009 2021, 11, 2009. [Google Scholar] [CrossRef]
- Lassen, J.; Thomasen, J.R.; Borchersen, S. Repeatabilities of Individual Measures of Feed Intake and Body Weight on In-House Commercial Dairy Cattle Using a 3-Dimensional Camera System. J Dairy Sci 2023, 106, 9105–9114. [Google Scholar] [CrossRef]
- Thomasen, J.R.; Lassen, J.; Nielsen, G.G.B.; Borggard, C.; Stentebjerg, P.R.B.; Hansen, R.H.; Hansen, N.W.; Borchersen, S. Individual Cow Identification in a Commercial Herd Using 3D Camera Technology. 2018.
- Viking Genetics Innovators in Cattle Breeding Available online:. Available online: https://www.vikinggenetics.com/about-us/innovative-breeding/innovators (accessed on 25 December 2023).
- Borchersen, S.; Hansen, N.W.; Borggaard, C. System for Determining Feed Consumption of at Least One Animal 2018.
- Borchersen, S.; Borggaard, C.; Hansen, N.W. System and Method for Identification of Individual Animals Based on Images of the Back 2023.
- Lassen, J.; Borchersen, S. Weight Determination of an Animal Based on 3d Imaging 2022.
- Manzanilla-Pech, C.I.V.; Stephansen, R.B.; Lassen, J. Genetic Parameters for Feed Intake and Body Weight in Dairy Cattle Using High-Throughput 3-Dimensional Cameras in Danish Commercial Farms. J Dairy Sci 2023, 106, 9006–9015. [Google Scholar] [CrossRef]
- Takeda, M.; Uemoto, Y.; Inoue, K.; Ogino, A.; Nozaki, T.; Kurogi, K.; Yasumori, T.; Satoh, M. Evaluation of Feed Efficiency Traits for Genetic Improvement in Japanese Black Cattle. J Anim Sci 2018, 96, 797–805. [Google Scholar] [CrossRef]
- Hoque, M.A.; Hosono, M.; Oikawa, T.; Suzuki, K. Genetic Parameters for Measures of Energetic Efficiency of Bulls and Their Relationships with Carcass Traits of Field Progeny in Japanese Black Cattle. J Anim Sci 2009, 87, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Retallick, K. Evaluation of Feedlot Feed Efficiency Relationships as Well as Genetic and Phenotypic Performance, Carcass, and Economic Outcomes [Dissertation (PhD in Animal Sciences)]. Urbana-Champaign: University of Illinois. p. 102.; 2013.
- Elolimy, A.A.; Abdelmegeid, M.K.; McCann, J.C.; Shike, D.W.; Loor, J.J. Residual Feed Intake in Beef Cattle and Its Association with Carcass Traits, Ruminal Solid-Fraction Bacteria, and Epithelium Gene Expression. J Anim Sci Biotechnol 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Kobayashi, M.; Shoji, N.; Kato, K. Genetic Parameters for Fatty Acid Composition and Feed Efficiency Traits in Japanese Black Cattle. Animal 2011, 5, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.R.; Meiske, J.C.; Goodrich, R.D.; Rust, J.R.; Byers, F.M. Influence of Body Composition on Energy Requirements of Beef Cows during Winter. J Anim Sci 1983, 56, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Bottje, W.G.; Carstens, G.E. Variation in Metabolism: Biological Efficiency of Energy Production and Utilization That Affects Feed Efficiency. Feed Efficiency in the Beef Industry 2012, 251–273. [Google Scholar] [CrossRef]
- Kolath, W.H.; Kerley, M.S.; Golden, J.W.; Keisler, D.H. The Relationship between Mitochondrial Function and Residual Feed Intake in Angus Steers. J Anim Sci 2006, 84, 861–865. [Google Scholar] [CrossRef]
- Fitzsimons, C.; Kenny, D.A.; McGee, M. Visceral Organ Weights, Digestion and Carcass Characteristics of Beef Bulls Differing in Residual Feed Intake Offered a High Concentrate Diet. Animal 2014, 8, 949–959. [Google Scholar] [CrossRef]
- Lancaster, P.A.; Carstens, G.E.; Michal, J.J.; Brennan, K.M.; Johnson, K.A.; Davis, M.E. Relationships between Residual Feed Intake and Hepatic Mitochondrial Function in Growing Beef Cattle. J Anim Sci 2014, 92, 3134–3141. [Google Scholar] [CrossRef]
- Acetoze, G.; Weber, K.L.; Ramsey, J.J.; Rossow, H.A. Relationship between Liver Mitochondrial Respiration and Proton Leak in Low and High RFI Steers from Two Lineages of RFI Angus Bulls. Int Sch Res Notices 2015, 2015, 1–5. [Google Scholar] [CrossRef]
- Ramos, M.H.; Kerley, M.S. Mitochondrial Complex I Protein Differs among Residual Feed Intake Phenotype in Beef Cattle. J Anim Sci 2013, 91, 3299–3304. [Google Scholar] [CrossRef]
- Kelly, A.K.; Waters, S.M.; McGee, M.; Fonseca, R.G.; Carberry, C.; Kenny, D.A. MRNA Expression of Genes Regulating Oxidative Phosphorylation in the Muscle of Beef Cattle Divergently Ranked on Residual Feed Intake. Physiol Genomics 2011, 43, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.F.S.; Gimenez, D.F.J.; Mercadante, M.E.Z.; Bonilha, S.F.M.; Ferro, J.A.; Baldi, F.; de Souza, F.R.P.; de Albuquerque, L.G. Expression of Genes Related to Mitochondrial Function in Nellore Cattle Divergently Ranked on Residual Feed Intake. Mol Biol Rep 2015, 42, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Kenny, D.A.; Fitzsimons, C.; Waters, S.M.; McGee, M. Invited Review: Improving Feed Efficiency of Beef Cattle - The Current State of the Art and Future Challenges. Animal 2018, 12, 1815–1826. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.K.; Lawrence, P.; Earley, B.; Kenny, D.A.; McGee, M. Stress and Immunological Response of Heifers Divergently Ranked for Residual Feed Intake Following an Adrenocorticotropic Hormone Challenge. J Anim Sci Biotechnol 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Kelly, A.K.; Earley, B.; McGee, M.; Fahey, A.G.; Kenny, D.A. Endocrine and Hematological Responses of Beef Heifers Divergently Ranked for Residual Feed Intake Following a Bovine Corticotropin-Releasing Hormone Challenge. J Anim Sci 2016, 94, 1703–1711. [Google Scholar] [CrossRef]
- Munro, J.C.; Schenkel, F.S.; Physick-Sheard, P.W.; Fontoura, A.B.P.; Miller, S.P.; Tennessen, T.; Montanholi, Y.R. Associations of Acute Stress and Overnight Heart Rate with Feed Efficiency in Beef Heifers. Animal 2017, 11, 452–460. [Google Scholar] [CrossRef]
- Thompson, W.R.; Meiske, J.C.; Goodrich, R.D.; Rust, J.R.; Byers, F.M. Influence of Body Composition on Energy Requirements of Beef Cows during Winter. J Anim Sci 1983, 56, 1241–1252. [Google Scholar] [CrossRef]
- Mcdonald, P.; Edwards, R.A.; Greenhalgh, J.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G.; Greenhalgh, M.E.; Wilkinson, M.S. AnimAl Nutrition Seventh Edition Seventh Edition; 1988.
- Owens, F.N.; Gill, D.R.; Secrist, D.S.; Coleman, S.W. Review of Some Aspects of Growth and Development of Feedlot Cattle. J Anim Sci 1995, 73, 3152–3172. [Google Scholar] [CrossRef]
- Solis, J.C.; Byers, F.M.; Schelling, G.T.; Long, C.R.; Greene, L.W. Maintenance Requirements and Energetic Efficiency of Cows of Different Breed Types. J Anim Sci 1988, 66, 764–773. [Google Scholar] [CrossRef]
- Taylor, C.S.; Thiessen, R.B.; Murray, J. Inter-Breed Relationship of Maintenance Efficiency to Milk Yield in Cattle. Animal Science 1986, 43, 37–61. [Google Scholar] [CrossRef]
- Luiting, P.; Urff, E.M.; Verstegen, M.W.A. Between-Animal Variation in Biological Efficiency as Related to Residual Feed Consumption. Netherlands Journal of Agricultural Science 1994, 42, 59–67. [Google Scholar] [CrossRef]
- Katle, J.; Kolstad, N. Selection for Efficiency of Food Utilisation in Laying Hens: Direct Response in Residual Food Consumption and Correlated Responses in Weight Gain, Egg Production and Body Weight. https://doi.org/10.1080/00071669108417420 2007, 32, 939–953. [CrossRef]
- Herd, R.M.; Arthur, P.F. Physiological Basis for Residual Feed Intake. J Anim Sci 2009, 87. [Google Scholar] [CrossRef] [PubMed]
- Herd, R.M.; Oddy, V.H.; Richardson, E.C. Biological Basis for Variation in Residual Feed Intake in Beef Cattle. 1. Review of Potential Mechanisms. Aust J Exp Agric 2004, 44, 423. [Google Scholar] [CrossRef]
- Richardson Pedometers Measure Differences in Activity in Bulls Selected for High or Low Net Feed Efficiency. Aust. Soc. Anim. Behav 1999, 26, 16–2.
- Susenbeth, A.; Mayer, R.; Koehler, B.; Neumann, O. Energy Requirement for Eating in Cattle 1. J. Anim. Sci 1998, 76, 2701–2705. [Google Scholar] [CrossRef]
- Llonch, P.; Somarriba, M.; Duthie, C.A.; Troy, S.; Roehe, R.; Rooke, J.; Haskell, M.J.; Turner, S.P. Temperament and Dominance Relate to Feeding Behaviour and Activity in Beef Cattle: Implications for Performance and Methane Emissions. Animal 2018, 12, 2639–2648. [Google Scholar] [CrossRef]
- Richardson, E.C.; Arthur, P.; Oddy, H. Possible Physiological Indicators for Net Feed Conversion Efficiency in Beef Cattle. Proc. Aust. Soc. Anim. Prod. 1996, 21. [Google Scholar]
- Herd, R.M.; Oddy, V.H.; Lee, G.J. Effect of Divergent Selection for Weaning Weight on Liveweight and Wool Growth Responses to Feed Intake in Merino Ewes. Aust J Exp Agric 1993, 33, 699–705. [Google Scholar] [CrossRef]
- Smith, N.E.; Baldwin, R.L. Effects of Breed, Pregnancy, and Lactation on Weight of Organs and Tissues in Dairy Cattle. J Dairy Sci 1974, 57, 1055–1060. [Google Scholar] [CrossRef]
- Early, R.J.; McBride, B.W.; Ball, R.O. Growth and Metabolism in Somatotropin-Treated Steers: III. Protein Synthesis and Tissue Energy Expenditures. J Anim Sci 1990, 68, 4153–4166. [Google Scholar] [CrossRef]
- Jenkins, T.G.; Ferrell, C.L.; Cundiff, L. V. Relationship of Components of the Body among Mature Cows as Related to Size, Lactation Potential and Possible Effects on Productivity. Animal Science 1986, 43, 245–254. [Google Scholar] [CrossRef]
- Koong, L.J.; Nienaber, J.A.; Pekas, J.C.; Yen, J.T. Effects of Plane of Nutrition on Organ Size and Fasting Heat Production in Pigs. J Nutr 1982, 112, 1638–1642. [Google Scholar] [CrossRef]
- Burrin, D.G.; Ferrell’, C.L.; Britton’s A N D M A, R.A.; Bauer’, R.C.; Hruska, R.L. Level of Nutrition and Visceral Organ Size and Metabolic Activity in Sheep*. British Journal of Nutrition 1990, 64, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Seebeck, R.M. The Effect of Body-Weight Loss on the Composition of Brahman Cross and Africander Cross Steers: 1. Empty Body Weight, Dressed Carcass Weight and Offal Components. J Agric Sci 1973, 80, 201–210. [Google Scholar] [CrossRef]
- Ledger, H.P.; Sayers, A.R. The Utilization of Dietary Energy by Steers during Periods of Restricted Food Intake and Subsequent Realimentaion: 1. The Effect of Time on the Maintenance Requirements of Steers Held at Constant Live Weights. J Agric Sci 1977, 88, 11–26. [Google Scholar] [CrossRef]
- Meyer, A.M.; Hess, B.W.; Paisley, S.I.; Du, M.; Caton, J.S. Small Intestinal Growth Measures Are Correlated with Feed Efficiency in Market Weight Cattle, despite Minimal Effects of Maternal Nutrition during Early to Midgestation. J Anim Sci 2014, 92, 3855–3867. [Google Scholar] [CrossRef]
- Montanholi, Y.; Fontoura, A.; Swanson, K.; Coomber, B.; Yamashiro, S.; Miller, S. Small Intestine Histomorphometry of Beef Cattle with Divergent Feed Efficiency. Acta Vet Scand 2013, 55, 9. [Google Scholar] [CrossRef] [PubMed]
- Serão, N.V.L.; González-Peña, D.; Beever, J.E.; Faulkner, D.B.; Southey, B.R.; Rodriguez-Zas, S.L. Single Nucleotide Polymorphisms and Haplotypes Associated with Feed Efficiency in Beef Cattle. BMC Genet 2013, 14, 94. [Google Scholar] [CrossRef]
- National Academies of Sciences, E. and M. Nutrient Requirements of Beef Cattle: Eighth Revised Edition. Nutrient Requirements of Beef Cattle, 8th Revised Edition 2016. [CrossRef]
- Oldham, J.D. The Ruminant Nutrition System: An Applied Model for Predicting Nutrient Requirements and Feed Utilization in Ruminants, Eds L. O. TEDESCHI & D. G. FOX. 578 Pp. Ann Arbor, MI: XanEdu (2016). US $104.69 (Hardback). ISBN 978-1-58390-236-3. J Agric Sci 2017, 155, 1188–1189. [Google Scholar] [CrossRef]
- BR-Corte Nutrient Requirements of Zebu and Crossbred Cattle Third Edition Editors; De Campos, S., Filho, V., Fernando Costa, L., Mateus, S., Gionbelli, P., Pizzi, P., Marcos, R., Marcondes, I., Luiz, M., Laura, C., Prados, F., Eds.; 2016.
- CSIRO Nutrient Requirements of Domesticated Ruminants; CSIRO, Ed.; CSIRO Publishing: Melbourne, 2007; ISBN 9780643092624.
- INRA INRA Feeding System for Ruminants; Pierre Nozière, Daniel Sauvant, Institut national de la recherche agronomique (France), Luc Delaby, Eds.; 2nd ed.; 2018.
- NRC Nutrient Requirements of Dairy Cattle: Seventh Revised Edition, 2001. Nutrient Requirements of Dairy Cattle 2001. [CrossRef]
- NRC Nutrient Requirements of Beef Cattle: Seventh Revised Edition: Update 2000. Nutrient Requirements of Beef Cattle 2000. [CrossRef]
- Smith, J.A.B. The Nutrient Requirements of Farm Livestock. No. 2, Ruminants : Summaries of Estimated Requirements.; Agricultural Research Council,: London :, 1965.
- MAFF MAFF Technical Bulletin 33: Energy Allowances and Feeding Systems for Ruminants. 1975, 80.
- UK.AFRC AFRC Technical Committee on Responses to Nutrients, Report Number 5, Nutritive Requirements of Ruminant Animals: Energy. In Proceedings of the Nutrition Abstracts and Reviews. Series B. Livestock Feeds and Feeding; 1990; Vol. 60.
- Alderman, G.; Cottrill, B.R. Energy and Protein Requirements of Ruminants.; Acribia, SA, 1996; ISBN 8420008028.
- Agnew, R.E.; Yan, T. Calorimetry. In Quantitative aspects of ruminant digestion and metabolism; 2005; pp. 421–442.
- Graham, N.M. Energy Metabolism of Farm Animals : Proceedings of the 9th Symposium Held at Lillehammer, Norway, September 1982 / Edited by A. Ekern and F. Sundstol; Ekern, A., Sundstol, F. (Frik), Production, E.A. for A., Symposium on Energy Metabolism 1982 : Lillehammer, N., Eds.; Publication (European Association for Animal Production) ; 29.; Dept. of Animal Nutrition, Agricultural University of Norway: Aas-NLH, Norway, 1982; ISBN 8257590061.
- Blaxter, K.L.; Wainman, F.W. The Utilization of Food by Sheep and Cattle. J Agric Sci 1961, 57, 419–425. [Google Scholar] [CrossRef]
- McLean, J.A.; Tobin, G. Animal and Human Calorimetry. 1987, 338.
- Thomas, C. Feed into Milk : A New Applied Feeding System for Dairy Cows : An Advisory Manual.; 2004.
- Lofgreen, G.P.; Garrett, W.N. A System for Expressing Net Energy Requirements and Feed Values for Growing and Finishing Beef Cattle. J Anim Sci 1968, 27, 793–806. [Google Scholar] [CrossRef]
- NASEM Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, 2016; ISBN 978-0-309-27335-0.
- Ferrell, C.L.; Jenkins, T.G. Cow Type and the Nutritional Environment: Nutritional Aspects. J Anim Sci 1985, 61, 725–741. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.E.R.; Steen, R.W.J. Estimation of Maintenance Energy Requirements of Beef Cattle and Sheep. J Agric Sci 1998, 131, 477–485. [Google Scholar] [CrossRef]
- Marcondes, M.; Chizzotti, M.; Gionbelli, M.P. Energy Requirements of Zebu Beef Cattle; 2010.
- Gordon, F.J.; Dawson, L.E.R.; Ferris, C.P.; Steen, R.W.J.; Kilpatrick, D.J. The Influence of Wilting and Forage Additive Type on the Energy Utilisation of Grass Silage by Growing Cattle. Anim Feed Sci Technol 1999, 79, 15–27. [Google Scholar] [CrossRef]
- Jiao, H.P.; Yan, T.; McDowell, D.A.; Carson, A.F.; Ferris, C.P.; Easson, D.L.; Wills, D. Enteric Methane Emissions and Efficiency of Use of Energy in Holstein Heifers and Steers at Age of Six Months. J Anim Sci 2013, 91, 356–362. [Google Scholar] [CrossRef]
- Castro, M.M.D.; Albino, R.L.; Rodrigues, J.P.P.; Sguizzato, A.L.L.; Santos, M.M.F.; Rotta, P.P.; Caton, J.S.; Moraes, L.E.F.D.; Silva, F.F.; Marcondes, M.I. Energy and Protein Requirements of Holstein × Gyr Crossbred Heifers. Animal 2020, 14, 1857–1866. [Google Scholar] [CrossRef]
- Ferreira, A.L.; Borges, A.L.C.C.; Mourão, R.C.; Silva, R.R.; Duque, A.C.A.; Silva, J.S.; Souza, A.S.; Gonçalves, L.C.; Carvalho, P.H.A.; Ferreira, A.L.; et al. Energy Partition, Nutritional Energy Requirements and Methane Production in F1 Holstein × Gyr Bulls, Using the Respirometric Technique. Anim Prod Sci 2018, 59, 1253–1260. [Google Scholar] [CrossRef]
- Silva, A.L.; Marcondes, M.I.; Detmann, E.; Campos, M.M.; Machado, F.S.; Filho, S.C.V.; Castro, M.M.D.; Dijkstra, J. Determination of Energy and Protein Requirements for Crossbred Holstein × Gyr Preweaned Dairy Calves. J Dairy Sci 2017, 100, 1170–1178. [Google Scholar] [CrossRef]
- Oss, D.B.; Machado, F.S.; Tomich, T.R.; Pereira, L.G.R.; Campos, M.M.; Castro, M.M.D.; da Silva, T.E.; Marcondes, M.I. Energy and Protein Requirements of Crossbred (Holstein × Gyr) Growing Bulls. J Dairy Sci 2017, 100, 2603–2613. [Google Scholar] [CrossRef]
- Posada-Ochoa, S.L.; Noguera, R.R.; Rodríguez, N.M.; Costa, A.L.; Reis, R. Indirect Calorimetry to Estimate Energy Requirements for Growing and Finishing Nellore Bulls. J Integr Agric 2017, 16, 151–161. [Google Scholar] [CrossRef]
- Salah, N.; Sauvant, D.; Archimède, H. Nutritional Requirements of Sheep, Goats and Cattle in Warm Climates: A Meta-Analysis. Animal 2014, 8, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Marcondes, M.I.; Tedeschi, L.O.; Valadares Filho, S.C.; Gionbelli, M.P. Predicting Efficiency of Use of Metabolizable Energy to Net Energy for Gain and Maintenance of Nellore Cattle. J Anim Sci 2013, 91, 4887–4898. [Google Scholar] [CrossRef] [PubMed]
- Rotta, P.P.; Filho, S.C.V.; Detmann, E.; Costa, L.F.; Villadiego, F.A.C.; Burgos, E.M.G.; Silva, F.A.S. Nutrient Requirements of Energy and Protein for Holstein × Zebu Bulls FInished in Feedlot. Semin Cienc Agrar 2013, 34, 2523–2534. [Google Scholar] [CrossRef]
- Sainz, R.; Magnabosco, C.U.; Da, R.; Gomes, C. Performance, Efficiency and Estimated Maintenance Energy Requirements of Bos Taurus and Bos Indicus Cattle. In Energy and Protein Metabolism and Nutrition in Sustainable Animal Production; EAAP Publication No. 134; Oltjen, J.W., Kebreab, E., Lapierre, H., Eds.; Wageningen Academic Publishers 2013. [CrossRef]
- Valente, E.E.L.; Paulino, M.F.; Detmann, E.; Valadares Filho, S. de C.; Cardenas, J.E.G.; Dias, I.F.T. Requirement of Energy and Protein of Beef Cattle on Tropical Pasture. Acta Sci 2013, 35, 417–424. [Google Scholar] [CrossRef]
- Gomes, R.C.; Sainz, R.D.; Silva, S.L.; César, M.C.; Bonin, M.N.; Leme, P.R. Feedlot Performance, Feed Efficiency Reranking, Carcass Traits, Body Composition, Energy Requirements, Meat Quality and Calpain System Activity in Nellore Steers with Low and High Residual Feed Intake. Livest Sci 2012, 150, 265–273. [Google Scholar] [CrossRef]
- Porto, M.O.; Paulino, M.F.; de Campos Valadares Filho, S.; Detmann, E.; Cavali, J.; Sales, M.F.L.; Valente, É.E.L.; Couto, V.R.M. Nutritional Requirements of Energy, Protein and Macrominerals for Maintenance and Weight Gain of Young Crossbred Nellore × Holstein Bulls on Pasture. Revista Brasileira de Zootecnia 2012, 41, 734–745. [Google Scholar] [CrossRef]
- Cottrill, B.; Dawson, L.; Yan, T.; Xue, B. A Review of the Energy, Protein and Phosphorus Requirments of Beef Cattle and Sheep. Defra Project WQ 2009, 133. [Google Scholar]
- Lawrence, P.; Kenny, D.A.; Earley, B.; McGee, M. Grazed Grass Herbage Intake and Performance of Beef Heifers with Predetermined Phenotypic Residual Feed Intake Classification. Animal 2012, 6, 1648–1661. [Google Scholar] [CrossRef]
- Gomes, R.C.; Sainz, R.D.; Silva, S.L.; César, M.C.; Bonin, M.N.; Leme, P.R. Feedlot Performance, Feed Efficiency Reranking, Carcass Traits, Body Composition, Energy Requirements, Meat Quality and Calpain System Activity in Nellore Steers with Low and High Residual Feed Intake. Livest Sci 2012, 150, 265–273. [Google Scholar] [CrossRef]
- Goulart, R.S.; Tedeschi, L.O.; Silva, S.L.; Leme, P.R.; De Alencar, M.M.; Lanna, D.P.D. The Energy Requirement for Maintenance of Nellore Crossbreds in Tropical Conditions during the Finishing Period. J Anim Sci 2022, 100. [Google Scholar] [CrossRef]
- Galyean, M.L.; Cole, N.A.; Tedeschi, L.O.; Branine, M.E. BOARD-INVITED REVIEW: Efficiency of Converting Digestible Energy to Metabolizable Energy and Reevaluation of the California Net Energy System Maintenance Requirements and Equations for Predicting Dietary Net Energy Values for Beef Cattle. J Anim Sci 2016, 94, 1329–1341. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Kang, K.; Jeon, S.; Lee, M.; Jeong, S. Development of a Model to Predict Dietary Metabolizable Energy from Digestible Energy in Beef Cattle. J Anim Sci 2021, 99, 1–9. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Boin, C.; Fox, D.G.; Leme, P.R.; Alleoni, G.F.; Lanna, D.P.D. Energy Requirement for Maintenance and Growth of Nellore Bulls and Steers Fed High-Forage Diets. J Anim Sci 2002, 80, 1671–1682. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.G.; Black, J.R. A System for Predicting Body Composition and Performance of Growing Cattle. J Anim Sci 1984, 58, 725–739. [Google Scholar] [CrossRef]
- Chizzotti, M.L.; Tedeschi, L.O.; Valadares Filho, S.C. A Meta-Analysis of Energy and Protein Requirements for Maintenance and Growth of Nellore Cattle. J Anim Sci 2008, 86, 1588–1597. [Google Scholar] [CrossRef]
- Tedeschi, L.; Fox, D. The Ruminant Nutrition System: An Applied Model for Predicting Nutrient Requirements and Feed Utilization in Ruminants. cir.nii.ac.jp 2020.
- Frisch, J.E.; Vercoe, J.E. Food Intake, Eating Rate, Weight Gains, Metabolic Rate and Efficiency of Feed Utilization in Bos Taurus and Bos Indicus Crossbred Cattle. Animal Science 1977, 25, 343–358. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Jenkins, T.G. Body Composition and Energy Utilization by Steers of Diverse Genotypes Fed a High-Concentrate Diet during the Finishing Period: II. Angus, Boran, Brahman, Hereford, and Tuli Sires. J Anim Sci 1998, 76, 647–657. [Google Scholar] [CrossRef]
- Moraes, L.E.; Kebreab, E.; Strathe, A.B.; Dijkstra, J.; France, J.; Casper, D.P.; Fadel, J.G. Multivariate and Univariate Analysis of Energy Balance Data from Lactating Dairy Cows. J Dairy Sci 2015, 98, 4012–4029. [Google Scholar] [CrossRef] [PubMed]
- Chizzotti, M.L.; Valadares Filho, S.C.; Tedeschi, L.O.; Chizzotti, F.H.M.; Carstens, G.E. Energy and Protein Requirements for Growth and Maintenance of F1 Nellore x Red Angus Bulls, Steers, and Heifers. J Anim Sci 2007, 85, 1971–1981. [Google Scholar] [CrossRef]
- Old, C.A.; Garrett, W.N. Effects of Energy Intake on Energetic Efficiency and Body Composition of Beef Steers Differing in Size at Maturity. J Anim Sci 1987, 65, 1371–1380. [Google Scholar] [CrossRef]
- Lofgreen, G.P.; Kiesling, H.E. Effects of Receiving and Growing Diets on Compensatory Gains of Stressed Calves. J Anim Sci 1985, 61, 320–328. [Google Scholar] [CrossRef] [PubMed]

| ADG | BW | FI | RFI | FCR | Breeds2 | Country | Animals3 | Reference |
|---|---|---|---|---|---|---|---|---|
| 0.65 (0.13) | - | 0.64 (0.12) | 0.28 (0.11) | - | AN, HE, SH | United States | 1,324 | [34] |
| 0.36 (0.11) | - | - | - | 0.14 (0.07) | AN | United States | 393 | [66] |
| 0.33(0.11) | - | - | - | 0.13 (0.08) | HE | United States | 340 | [66] |
| - | - | - | - | 0.33 (0.10) | HE | United Kingdom | 452 | [44] |
| 0.48 (0.21) | 0.39 (0.19) | 0.37 (0.19) | - | 0.19 (0.16) | Bonsmara | South Africa | 298 | [70] |
| 0.48 (0.21) | - | 0.06 (0.12) | - | 0.46 (0.20) | FRXHE | United Kingdom | 327 | [71] |
| 0.43 (0.24) | 0.45 (0.22) | 0.27 (0.15) | 0.23 (0.12) | 0.35 (0.22) | AN | Canada | 263 | [73] |
| 0.16 (0.15) | 0.43 (0.22) | 0.18 (0.10) | 0.07 (0.13) | 0.08 (0.09) | HE | Canada | 271 | [73] |
| 0.55 (na) | 0.51 (na) | 0.58 (na) | - | 0.16 (na) | BB | France | 1,442 | [74] |
| 0.25 (na) | - | 0.24 (na) | - | 0.14 (na) | HE | United States | 486 | [75] |
| 0.35 (0.11) | - | 0.62 (0.12) | 0.62 (0.14) | 0.42 (0.13) | AN, HE, Polled HE, SH | Australia | 760 | [76] |
| 0.41 (0.08) | 0.68 (0.08) | 0.59 (0.07) | 0.44 (0.07) | 0.31 (0.09) | AN, HE, SH | Australia | 966 | [76] |
| 0.38 (0.10) | 0.42 (0.10) | 0.31 (0.08) | 0.16 (0.08) | 0.17 (0.09) | HE | United Kingdom | 540 | [62] |
| 0.28 (0.04) | 0.40 (0.02) | 0.39 (0.03) | 0.39 (0.03) | 0.29 (0.04) | AN | Australia | 1180 | [5] |
| 0.34 (0.04) | 0.37 (0.04) | 0.48 (0.04) | 0.39 (0.04) | 0.46 (0.04) | CH | France | 792 | [57] |
| 0.41 (0.06) | 0.46 (0.05) | 0.48 (0.06) | 0.43 (0.04) | 0.31 (0.06) | CH | France | 397 | [57] |
| - | - | - | 0.30 (0.06) | - | CH-sired steers | Canada | 281 | [77] |
| - | - | - | 0.26 (0.07) | - | CH-sired steers | Canada | 274 | [77] |
| 0.23 (0.06) | 0.41 (0.07) | 0.27 (0.06) | 0.18 (0.06) | 0.06 (0.04) | Tropically adapted, temperate | Australia | 1,481 | [63] |
| 0.35 (0.03) | 0.35 (0.02) | 0.44 (0.06) | 0.38 (0.07) | 0.37 (0.06) | CH, LI, AN, SI, HE, BA | Canada | 2,284 | [78] |
| 0.37 (na) | - | - | 0.31 (na) | 0.34 (na) | Bonsmara | South Africa | 6,738 | [79] |
| 0.20 (0.10) | 0.47 (0.10) | 0.34 (0.11) | 0.24 (0.11) | 0.15 (0.04) | Japanese Black (Wagyu) | Japan | 740 | [80] |
| 0.59 (0.17) | 0.32 (0.14) | 0.54 (0.15) | 0.21 (0.12) | 0.41 (0.15) | AN, CH, composite | Canada | 464 | [81] |
| 0.26 (na) | 0.39 (na) | 0.33 (na) | 0.29 (na) | 0.14 (na) | Wagyu | Japan | 1,304 | [82] |
| - | - | 0.36 (0.09) | 0.49 (0.09) | 0.38 (0.07) | Wagyu | Japan | 514 | [83] |
| 0.34 (0.12) | 0.47 (0.16) | 0.49 (0.15) | 0.24 (0.11) | - | Brahman | Australia | 1,007 | [84] |
| 0.20 (0.10) | 0.39 (0.13) | 0.51 (0.14) | 0.38 (0.12) | - | Tropical Composite | Australia | 1,209 | [84] |
| 0.21 (0.12) | 0.35 (0.15) | 0.48 (0.14) | 0.47 (0.13) | 0.29 (0.12) | Brangus | United States | 468 | [85] |
| - | - | - | 0.18 (0.14) | - | AN, CH, composite | Canada | 387 | [86] |
| 0.09 (na) | 0.14 (na) | 0.14 (na) | - | AN | United States | 698 | [87] | |
| - | 0.57 (0.10) | 0.30 (0.08) | 0.26 (0.10) | 0.30 (0.12) | BA | France | 678 | [88] |
| - | 0.30 (0.08) | 0.48 (0.14) | 0.45 (0.18) | 0.23 (0.15) | LI | France | 708 | [88] |
| 0.30 (0.06) | 0.69 (0.07) | 0.49 (0.07) | 0.45 (0.07) | 0.30 (0.06) | AN, CH, HE, SI, LI | Ireland | 2,605 | [28] |
| - | - | 0.21 (0.07) | 0.14 (0.06) | 0.18 (0.07) | AN, BR, BA | United States | 1,129 | [89] |
| 0.06(0.08) | - | 0.30 (0.15) | 0.19 (0.12) | 0.07 (0.09) | ANX, CHX | Canada | 402 | [90] |
| 0.17 (0.28) | - | 0.43 (0.14) | 0.36 (0.13) | 0.26 (0.12) | ANX, CHX | Canada | 419 | [90] |
| - | - | 0.70 (0.11) | 0.22 (0.07) | 0.11 (0.05) | Wagyu | Japan | 863 | [91] |
| 0.26 (0.04) | 0.33 (0.03) | 0.36 (0.05) | - | - | AN | United States | 4,215 to 18,169 | [92] |
| 0.28 (0.11) | - | 0.41 (0.12) | 0.29 (0.12) | - | AN, CH, composite | Canada | 721 | [25] |
| 0.26 (0.10) | 0.35 (0.12) | 0.40 (0.02) | 0.52 (0.14) | 0.27 (0.10) | Multibreed | United States | 1,141 | [93] |
| 0.30 (0.06) | 0.69 (0.07) | - | - | 0.30 (0.06) | AN, CH, HE, LI, SI | Ireland | 3,531 | [95] |
| 0.38 (0.18) | - | - | 0.27 (0.12) | - | - | France | 2,023 | [96] |
| 0.38 (0.12) | - | - | 0.47 (0.12) | 0.21 (0.08) | AN, CH | Canada | 968 | [97] |
| - | - | - | 0.40 (0.10) | - | AN, ANXSI, SI | United States | 1,321 | [98] |
| 0.35 (0.15) | - | - | 0.38 (0.16) | 0.31 (11) | NE | Brazil | 1.038 | [50] |
| 0.20 (0.03) | - | - | - | - | AN, HE, MARC III, SI, LI, CH, RA | United States | 6,331 | [99] |
| 0.33 (0.07) | - | 0.55 (0.08) | 0.40 (0.07) | 0.20 (0.06) | AN | Australia | 6,371 | [47] |
| 0.53 (0.12) | - | - | 0.25 (0.11) | - | AN, HE, MARC III, SI, LI, CH, RA | United States | 687 | [64] |
| BW | FI | RFI | FCR | Breeds2 | Country | Animals | Reference |
|---|---|---|---|---|---|---|---|
| 0.65 (0.01) | - | 0.04 (0.05) | - | Norwegian | Norway | 353 | [41] |
| 0.29 (0.09) | 0.02 (0.02) | 0.23 (0.11) | 0.18 (0.15) | HE | Canada | 295 | [64] |
| 0.40 (0.04) | 0.11 (0.02) | 0.03 (0.01) | 0.11 (0.06) | HE, multibreed | Canada | 1,174 | [64] |
| 0.20 (0.12) | 0.03 (0.01) | 0.03 (0.02) | 0.11 (0.10) | HE | Canada | 206 | [65] |
| 0.44 (0.17) | 0.16 (0.02) | 0.22 (0.04) | 0.05 (0.01) | HE, multibreed | Canada | 729 | [65] |
| 0.71 (na1) | 0.28 (na) | 0.23 (na) | 0.26 (na) | AN, HE, Polled HE, SH | Australia | 751 | [55] |
| - | - | 0.16 (0.10) | - | AN, HE, MARC III, SI, LI, CH, RA | United States | 622 | [62] |
| Country | Organization | Date | Breed | Maintenance Requirement/ Units | Observations |
|---|---|---|---|---|---|
| UK | Agriculture and Food Research Council, AFRC, formerly Agriculture Research Council (ARC) | 1993 | Continental and British breeds | Calorimetry/ ME |
Continues to offer a crucial theoretical foundation for the majority of energy systems worldwide. Forage-based diets. |
| Australia | Australia Commonwealth Scientific and Industrial Research Organization (CSIRO) | 2007 | Bos taurus, Bos indicus, and crossbreds. | Calorimetry/ ME |
The CSIRO guidelines align with the AFRC approach, utilizing MEm to measure maintenance requirements. The feed tables also incorporate low-quality forages. |
| France | Institut National de la Recherche Agronomique (INRA) | 2018 | Beef and dairy origin genotypes | Calorimetry/ NE |
NE is quantified using the barley feed unit (FU), where 1 FU corresponds to 1760 kcal for 1 kg of fresh standard barley. |
| USA and Canada | National Academies of Sciences, Engineering, and Medicine (NASEM). Update on National Research Council (NRC) guidelines | 2016 | Bos taurus, Bos indicus, and crossbreds | Comparative slaughter/ NE |
North American diets for feeding beef cattle are known for their high concentrate levels, distinguishing them from diets in other countries. The NASEM (2016) guidelines offer solutions from empirical to mechanistic approaches. |
| USA and Canada | Ruminant Nutrition System (RNS) Project | 2018 | Bos taurus, Bos indicus, and crossbreds | Comparative slaughter/ NE |
The RNS (Ruminant Nutrition System) is an advancement of the Cornell Net Carbohydrate and Protein System, which was introduced in the 2000s. The RNS incorporates three levels of solutions (L0, L1, and L2), ranging from empirical to more mechanistic approaches. |
| Brazil | Universidade Federal de Viçosa (UFV) (BR-Corte) | 2016 | Zebu cattle and crossbreds | Comparative slaughter/ NE |
The predominant breed of Zebu cattle is Nellore, and energy equations have been developed for feedlot and pasture conditions. Calorimetry has been recently introduced as a method to estimate energy requirements. |
| Systems | Equations |
|---|---|
| AFRC (1993) | |
| CSIRO (2007) | |
| INRA (2018) | |
| NASEM (2016) | |
| BR-Corte (2016) |
| Ref. | Country | Technique | N | Type | Breed | LW(Kg) | MEm (MJ/KG LW0.75) | NEm (MJ/KG LW0.75) |
|---|---|---|---|---|---|---|---|---|
| AFBI Studies (1990 - 2020) | ||||||||
| [162] | UK | Calorimetry | 20 | Steers, heifers | Holstein | 176 | 0.781 | 0.570 |
| [161] | UK | Calorimetry | 12 | Steers | Angus x Friesian | 416 | 0.620 | - |
| [159] | UK | Calorimetry | 75 | Steers | Beef Cross | 450-628 | 0.614 | - |
| International Studies (2009 - 2020) | ||||||||
| [163] | Brazil | Comp. Slaughter | 22 | Heifers | Holstein X Gyr | 98-172 | 0.545 | 0.352 |
| [164] | Brazil | Calorimetry | 15 | Bulls | Holstein X Gyr | 302 | 0.523 | 0.312 |
| [165] | Brazil | Comp. Slaughter | 39 | Bulls | Holstein X Gyr | 43-93 | - | 0.298 |
| [166] | Brazil | Comp. slaughter | 24 | Bulls | Holstein X Gyr | 182-388 | - | 0.313 |
| [167] | Brazil | Calorimetry | 5 | Bulls | Nellore | 219 | 0.691 | 0.418 |
| Brazil | Calorimetry | 5 | Bulls | Nellore | 328 | 0.567 | 0.332 | |
| Brazil | Calorimetry | 5 | Bulls | Nellore | 394 | 0.512 | 0.331 | |
| Brazil | Calorimetry | 5 | Bulls | Nellore | 473 | 0.468 | 0.303 | |
| [168]* | France | Feeding Studies | 1855 | Growing | Temperate and tropical | - | 0.631 | - |
| [169]* | Brazil | Comp. Slaughter | 752 | Growing | Nellore, Nellore X Bos taurus | 258-426 | - | 0.386 |
| [170] | Brazil | Comp. Slaughter | 44 | Bulls | Holstein x Zebu | 338 | 0.555 | 0.382 |
| [171]* | USA | Comp. Slaughter | 127 | Steers | Angus, Hereford, and cross | - | - | 0.314 |
| Brazil | Comp. Slaughter | 711 | Bulls | Bos indicus | - | - | 0.292 | |
| [172] | Brazil | Comp. Slaughter | 46 | Bulls | Nellore | 138 | 0.603 | 0.325 |
| [173] | Brazil | Comp. Slaughter | 8 | Steers | Nellore, High RFI | 340-348 | 0.778 | - |
| Brazil | Comp. Slaughter | 9 | Steers | Nellore, Low RFI | 334-441 | 0.637 | - | |
| [174] | Brazil | Comp. Slaughter | 10 | Bulls | Nellore X Holstein | 199-317 | 0.607 | 0.352 |
| Summaries | ||||||||
| AFBI studies (1990 - 2020) | 0.672 ± 0.0947 | |||||||
| Literature (2009 - 2020) | 0.593 ± 0.0846 | |||||||
| Cottrill et. al. (1989 - 2009) | 0.524 ± 0.0776 | |||||||
| Systems | Equations |
|---|---|
| AFRC (1993) | |
| CSIRO (2007) | |
| INRA (2018) | |
| NASEM (2016) | |
| BR-Corte (2016) |
| System | Equation | ||
|---|---|---|---|
| 0.50 | 0.65 | ||
| AFRC (1993); CSIRO (2007) | 068 | 0.73 | |
| 0.40 | 0.51 | ||
| 0.60 | 0.65 | ||
| INRA (2018) | 0.70 | 0.74 | |
| 0.40 | 0.51 | ||
| - | - | ||
| - | - | ||
| 0.62 | 0.65 | ||
| NASEM (2016) | 0.61 | 0.67 | |
| 0.35 | 0.45 | ||
| BR-Corte (2016) | - | - | |
| - | - |
| GG2 | Intercept2 | N | r2 | RMSE | NEm | MEm | km(CI) | kg(CI) | |
|---|---|---|---|---|---|---|---|---|---|
| AN | 16 | 0.94 | 0.015 | 90.76 | 142.44 | 63.7 (56.3,69.3) | 28.4% (14.6, 42.2) | ||
| CN | 16 | 0.98 | 0.009 | 82.28 | 130.98 | 62.8 (60.7, 66.2) | 22.1% (8.4, 35.9) | ||
| NL | 16 | 0.93 | 0.016 | 85.53 | 137.12 | 62.4 (62.8, 69.1) | 24.6% (10.4, 38.8) | ||
| SN | 14 | 0.85 | 0.024 | 88.80 | 139.11 | 63.8 (46.6, 73.3) | 29.5% (29.5, 29.5) | ||
| All | 62 | 0.93 | 0.016 | 86.86 | 137..53 | 63.2 (59.3, 66.5) | 26.0% (23.3, 28.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
