Submitted:
18 November 2024
Posted:
19 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Nuclear Components and Their Cellular Functions
2.1. The LINC Complex Structure and Its Cellular Functions
2.2. The NE Structure and Its Cellular Functions
2.3. The Nuclear Lamina Structure and Its Cellular Functions
2.4. Chromatin Structure and Its Cellular Functions
3. Mechanisms of Nuclear Size Regulation
4. The Nuclear Mechanical Function
5. Nuclear Morphology and Disease
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Manda, N. K.; Golla, U.; Sesham, K.; Desai, P.; Joshi, S.; Patel, S.; Nalla, S.; Kondam, S.; Singh, L.; Dewansh, D.; et al. Tuning between Nuclear Organization and Functionality in Health and Disease. Cells 2023, 12. [Google Scholar] [CrossRef] [PubMed]
- Rothballer, A.; Schwartz, T. U.; Kutay, U. LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. Nucleus 2013, 4, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Sosa, B. A.; Rothballer, A.; Kutay, U.; Schwartz, T. U. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 2012, 149, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- McGillivary, R. M.; Starr, D. A.; Luxton, G. W. G. Building and breaking mechanical bridges between the nucleus and cytoskeleton: Regulation of LINC complex assembly and disassembly. Curr Opin Cell Biol 2023, 85, 102260. [Google Scholar] [CrossRef]
- Belaadi, N.; Guilluy, C. Life outside the LINC complex - Do SUN proteins have LINC-independent functions? Bioessays 2024, 46, e2400034. [Google Scholar] [CrossRef]
- De Silva, S.; Fan, Z.; Kang, B.; Shanahan, C. M.; Zhang, Q. Nesprin-1: novel regulator of striated muscle nuclear positioning and mechanotransduction. Biochem Soc Trans 2023, 51, 1331–1345. [Google Scholar] [CrossRef]
- Bone, C. R.; Tapley, E. C.; Gorjánácz, M.; Starr, D. A. The Caenorhabditis elegans SUN protein UNC-84 interacts with lamin to transfer forces from the cytoplasm to the nucleoskeleton during nuclear migration. Mol Biol Cell 2014, 25, 2853–2865. [Google Scholar] [CrossRef] [PubMed]
- Sulston, J. E.; Horvitz, H. R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 1977, 56, 110–156. [Google Scholar] [CrossRef]
- Gregory, E. F.; Luxton, G. W. G.; Starr, D. A. Anchorage of H3K9-methylated heterochromatin to the nuclear periphery helps mediate P-cell nuclear migration though constricted spaces in Caenorhabditis elegans. bioRxiv 2024. [Google Scholar] [CrossRef]
- Nishino, M.; Imaizumi, H.; Yokoyama, Y.; Katahira, J.; Kimura, H.; Matsuura, N.; Matsumura, M. Histone methyltransferase SUV39H1 regulates the Golgi complex via the nuclear envelope-spanning LINC complex. PLoS One 2023, 18, e0283490. [Google Scholar] [CrossRef]
- Gasnereau, I.; Boissan, M.; Margall-Ducos, G.; Couchy, G.; Wendum, D.; Bourgain-Guglielmetti, F.; Desdouets, C.; Lacombe, M. L.; Zucman-Rossi, J.; Sobczak-Thépot, J. KIF20A mRNA and its product MKlp2 are increased during hepatocyte proliferation and hepatocarcinogenesis. Am J Pathol 2012, 180, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Hieda, M.; Matsumoto, T.; Isobe, M.; Kurono, S.; Yuka, K.; Kametaka, S.; Wang, J. Y.; Chi, Y. H.; Kameda, K.; Kimura, H.; et al. The SUN2-nesprin-2 LINC complex and KIF20A function in the Golgi dispersal. Sci Rep 2021, 11, 5358. [Google Scholar] [CrossRef] [PubMed]
- Bertosin, E.; Klughammer, N.; Barth, A.; Kerssemakers, J. W. J.; van der Sluis, E.; Dekker, C. Visualization and transport through biomimetic nuclear pore complexes. Biophysical Journal 2024, 123, 169a. [Google Scholar] [CrossRef]
- Tang, Y.; Yang, X.; Huang, A.; Seong, K.; Ye, M.; Li, M.; Zhao, Q.; Krasileva, K.; Gu, Y. Proxiome assembly of the plant nuclear pore reveals an essential hub for gene expression regulation. Nat Plants 2024, 10, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E. What Is the Role of Nuclear Envelope Proteins in Neurologic Disorders? Neurology 2024, 102, e209202. [Google Scholar] [CrossRef] [PubMed]
- Bui, K. H.; von Appen, A.; DiGuilio, A. L.; Ori, A.; Sparks, L.; Mackmull, M. T.; Bock, T.; Hagen, W.; Andrés-Pons, A.; Glavy, J. S.; et al. Integrated structural analysis of the human nuclear pore complex scaffold. Cell 2013, 155, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Bensidoun, P.; Zenklusen, D.; Oeffinger, M. Choosing the right exit: How functional plasticity of the nuclear pore drives selective and efficient mRNA export. Wiley Interdiscip Rev RNA 2021, 12, e1660. [Google Scholar] [CrossRef]
- Bensidoun, P.; Zenklusen, D.; Oeffinger, M. Differential affinity purification and mass spectrometry analysis of two nuclear pore complex isoforms in yeast S. cerevisiae. STAR Protoc 2023, 4, 102359. [Google Scholar] [CrossRef]
- Nobari, P.; Doye, V.; Boumendil, C. Metazoan nuclear pore complexes in gene regulation and genome stability. DNA Repair (Amst) 2023, 130, 103565. [Google Scholar] [CrossRef] [PubMed]
- Braun, D. A.; Sadowski, C. E.; Kohl, S.; Lovric, S.; Astrinidis, S. A.; Pabst, W. L.; Gee, H. Y.; Ashraf, S.; Lawson, J. A.; Shril, S.; et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat Genet 2016, 48, 457–465. [Google Scholar] [CrossRef]
- Ester, L.; Cabrita, I.; Ventzke, M.; Kieckhöfer, E.; Christodoulou, M.; Mandel, A. M.; Diefenhardt, P.; Fabretti, F.; Benzing, T.; Habbig, S.; et al. The role of the FSGS disease gene product and nuclear pore protein NUP205 in regulating nuclear localization and activity of transcriptional regulators YAP and TAZ. Hum Mol Genet 2023, 32, 3153–3165. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Li, M.; Liu, W.; Yan, M.; Li, L.; Ding, W.; Nian, X.; Dai, W.; Sun, D.; Zhu, Y.; et al. Nucleoporin Seh1 maintains Schwann cell homeostasis by regulating genome stability and necroptosis. Cell Rep 2023, 42, 112802. [Google Scholar] [CrossRef] [PubMed]
- Doronin, S. A.; Ilyin, A. A.; Kononkova, A. D.; Solovyev, M. A.; Olenkina, O. M.; Nenasheva, V. V.; Mikhaleva, E. A.; Lavrov, S. A.; Ivannikova, A. Y.; Simonov, R. A.; et al. Nucleoporin Elys attaches peripheral chromatin to the nuclear pores in interphase nuclei. Commun Biol 2024, 7, 783. [Google Scholar] [CrossRef] [PubMed]
- Choudhry, S. K.; Neal, M. L.; Li, S.; Navare, A. T.; Van Eeuwen, T.; Wozniak, R. W.; Mast, F. D.; Rout, M. P.; Aitchison, J. D. Nuclear pore complexes mediate subtelomeric gene silencing by regulating PCNA levels on chromatin. J Cell Biol 2023, 222. [Google Scholar] [CrossRef]
- Neely, A. E.; Blumensaadt, L. A.; Ho, P. J.; Lloyd, S. M.; Kweon, J.; Ren, Z.; Bao, X. NUP98 and RAE1 sustain progenitor function through HDAC-dependent chromatin targeting to escape from nucleolar localization. Communications Biology 2023, 6, 664. [Google Scholar] [CrossRef]
- Ito, N.; Sakamoto, T.; Oko, Y.; Sato, H.; Hanamata, S.; Sakamoto, Y.; Matsunaga, S. Nuclear pore complex proteins are involved in centromere distribution. iScience 2024, 27, 108855. [Google Scholar] [CrossRef]
- Prazak, V.; Mironova, Y.; Vasishtan, D.; Hagen, C.; Laugks, U.; Jensen, Y.; Sanders, S.; Heumann, J. M.; Bosse, J. B.; Klupp, B. G.; et al. Molecular plasticity of herpesvirus nuclear egress analysed in situ. Nat Microbiol 2024, 9, 1842–1855. [Google Scholar] [CrossRef]
- Keuenhof, K. S.; Kohler, V.; Broeskamp, F.; Panagaki, D.; Speese, S. D.; Büttner, S.; Höög, J. L. Nuclear envelope budding and its cellular functions. Nucleus 2023, 14, 2178184. [Google Scholar] [CrossRef]
- Rout, M. P.; Aitchison, J. D.; Suprapto, A.; Hjertaas, K.; Zhao, Y.; Chait, B. T. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 2000, 148, 635–651. [Google Scholar] [CrossRef]
- Fiserova, J.; Spink, M.; Richards, S. A.; Saunter, C.; Goldberg, M. W. Entry into the nuclear pore complex is controlled by a cytoplasmic exclusion zone containing dynamic GLFG-repeat nucleoporin domains. J Cell Sci 2014, 127 Pt 1, 124–136. [Google Scholar] [CrossRef]
- Lee, R. S.; Geronimo, C. L.; Liu, L.; Twarowski, J. M.; Malkova, A.; Zakian, V. A. Identification of the nuclear localization signal in the Saccharomyces cerevisiae Pif1 DNA helicase. PLoS Genet 2023, 19, e1010853. [Google Scholar] [CrossRef] [PubMed]
- Bochman, M. L.; Sabouri, N.; Zakian, V. A. Unwinding the functions of the Pif1 family helicases. DNA Repair (Amst) 2010, 9, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, P. C.; Kim, H.; Obarska-Kosinska, A.; Kreysing, J. P.; Andino-Frydman, E.; Cruz-Leon, S.; Cernikova, L.; Kosinski, J.; Turoňová, B.; Hummer, G.; et al. Nuclear pores as conduits for fluid flow during osmotic stress. bioRxiv 2024. 2024.2001.2017.575985. [Google Scholar] [CrossRef]
- Hirano, Y.; Kinugasa, Y.; Kubota, Y.; Obuse, C.; Haraguchi, T.; Hiraoka, Y. Inner nuclear membrane proteins Lem2 and Bqt4 interact with different lipid synthesis enzymes in fission yeast. J Biochem 2023, 174, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Hirano, Y.; Sato, T.; Miura, A.; Kubota, Y.; Shindo, T.; Fukase, K.; Fukagawa, T.; Kabayama, K.; Haraguchi, T.; Hiraoka, Y. Disordered region of nuclear membrane protein Bqt4 recruits phosphatidic acid to the nuclear envelope to maintain its structural integrity. J Biol Chem 2024, 300, 107430. [Google Scholar] [CrossRef] [PubMed]
- Mannino, P. J.; Perun, A.; Surovstev, I.; Ader, N. R.; Shao, L.; Melia, T. J.; King, M. C.; Lusk, C. P. A quantitative ultrastructural timeline of nuclear autophagy reveals a role for dynamin-like protein 1 at the nuclear envelope. bioRxiv 2024. [Google Scholar] [CrossRef]
- Papandreou, M. E.; Konstantinidis, G.; Tavernarakis, N. Nucleophagy delays aging and preserves germline immortality. Nat Aging 2023, 3, 34–46. [Google Scholar] [CrossRef]
- Li, P.; Messina, G.; Lehner, C. F. Nuclear elongation during spermiogenesis depends on physical linkage of nuclear pore complexes to bundled microtubules by Drosophila Mst27D. PLoS Genet 2023, 19, e1010837. [Google Scholar] [CrossRef] [PubMed]
- Burke, B.; Stewart, C. L. The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 2013, 14, 13–24. [Google Scholar] [CrossRef]
- Dechat, T.; Adam, S. A.; Taimen, P.; Shimi, T.; Goldman, R. D. Nuclear lamins. Cold Spring Harb Perspect Biol 2010, 2, a000547. [Google Scholar] [CrossRef]
- Kim, P. H.; Kim, J. R.; Tu, Y.; Jung, H.; Jeong, J. Y. B.; Tran, A. P.; Presnell, A.; Young, S. G.; Fong, L. G. Progerin forms an abnormal meshwork and has a dominant-negative effect on the nuclear lamina. Proc Natl Acad Sci U S A 2024, 121, e2406946121. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, A. T.; Brull, A.; Azibani, F.; Benarroch, L.; Chikhaoui, K.; Stewart, C. L.; Medalia, O.; Ben Yaou, R.; Bonne, G. Lamin A/C Assembly Defects in LMNA-Congenital Muscular Dystrophy Is Responsible for the Increased Severity of the Disease Compared with Emery-Dreifuss Muscular Dystrophy. Cells 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Odell, J.; Graf, R.; Lammerding, J. Heterologous expression of Dictyostelium discoideum NE81 in mouse embryo fibroblasts reveals conserved mechanoprotective roles of lamins. Mol Biol Cell 2024, 35, ar7. [Google Scholar] [CrossRef]
- Walker, S. G.; Langland, C. J.; Viles, J.; Hecker, L. A.; Wallrath, L. L. Drosophila Models Reveal Properties of Mutant Lamins That Give Rise to Distinct Diseases. Cells 2023, 12. [Google Scholar] [CrossRef] [PubMed]
- (45) Pho, M.; Berrada, Y.; Gunda, A.; Stephens, A. D. Nuclear shape is affected differentially by loss of lamin A, lamin C, or both lamin A and C. MicroPubl Biol 2024, 2024. [Google Scholar] [CrossRef]
- (46) Yohei, K.; Chan-Gi, P.; Takehiko, I.; Arata, K.; Stephen, A. A.; Loïc, R.; Sussan, N.; Ohad, M.; Robert, D. G.; Takeshi, F.; et al. Comprehensive analysis of A-type lamin tail region for repairing the nuclear lamina. bioRxiv 2023. 2023.2009.2002.555826. [Google Scholar] [CrossRef]
- Fan, J. R.; Chang, S. N.; Chu, C. T.; Chen, H. C. AKT2-mediated nuclear deformation leads to genome instability during epithelial-mesenchymal transition. iScience 2023, 26, 106992. [Google Scholar] [CrossRef]
- Yamamoto-Hino, M.; Ariura, M.; Tanaka, M.; Iwasaki, Y. W.; Kawaguchi, K.; Shimamoto, Y.; Goto, S. PIGB maintains nuclear lamina organization in skeletal muscle of Drosophila. J Cell Biol 2024, 223. [Google Scholar] [CrossRef]
- Nmezi, B.; Bey, G. R.; Oranburg, T. D.; Dudnyk, K.; Lardo, S. M.; Herdman, N.; Jacko, A.; Rubio, S.; Alcocer, E. L.; Kofler, J.; et al. An oligodendrocyte silencer element underlies the pathogenic impact of lamin B1 structural variants. bioRxiv 2023. [Google Scholar] [CrossRef]
- Koufi, F. D.; Neri, I.; Ramazzotti, G.; Rusciano, I.; Mongiorgi, S.; Marvi, M. V.; Fazio, A.; Shin, M.; Kosodo, Y.; Cani, I.; et al. Lamin B1 as a key modulator of the developing and aging brain. Front Cell Neurosci 2023, 17, 1263310. [Google Scholar] [CrossRef]
- Gräf, R.; Batsios, P.; Meyer, I. Evolution of centrosomes and the nuclear lamina: Amoebozoan assets. Eur J Cell Biol 2015, 94, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Odell, J.; Gräf, R.; Lammerding, J. Heterologous expression of Dictyostelium discoideum NE81 in mouse embryo fibroblasts reveals conserved mechanoprotective roles of lamins. bioRxiv 2023. [Google Scholar] [CrossRef]
- Yin, C.; Sun, A.; Guo, T.; Mao, X.; Fang, Y. Arabidopsis lamin-like proteins CRWN1 and CRWN2 interact with SUPPRESSOR OF NPR1-1 INDUCIBLE 1 and RAD51D to prevent DNA damage. Plant Cell 2023, 35, 3345–3362. [Google Scholar] [CrossRef] [PubMed]
- Alagna, N. S.; Thomas, T. I.; Wilson, K. L.; Reddy, K. L. Choreography of lamina-associated domains: structure meets dynamics. FEBS Lett 2023, 597, 2806–2822. [Google Scholar] [CrossRef] [PubMed]
- Sobo, J. M.; Alagna, N. S.; Sun, S. X.; Wilson, K. L.; Reddy, K. L. Lamins: The backbone of the nucleocytoskeleton interface. Curr Opin Cell Biol 2024, 86, 102313. [Google Scholar] [CrossRef]
- Pujadas Liwag, E. M.; Wei, X.; Acosta, N.; Carter, L. M.; Yang, J.; Almassalha, L. M.; Jain, S.; Daneshkhah, A.; Rao, S. S. P.; Seker-Polat, F.; et al. Depletion of lamins B1 and B2 promotes chromatin mobility and induces differential gene expression by a mesoscale-motion-dependent mechanism. Genome Biol 2024, 25, 77. [Google Scholar] [CrossRef] [PubMed]
- Dauban, L.; Eder, M.; de Haas, M.; Franceschini-Santos, V. H.; Yañez-Cuna, J. O.; van Schaik, T.; Leemans, C.; Rademaker, K.; Ara, M. M.; Martinovic, M.; et al. Genome - nuclear lamina interactions are multivalent and cooperative. bioRxiv 2024. 2024.2001.2010.574825. [Google Scholar] [CrossRef]
- Strom, A. R.; Kim, Y.; Zhao, H.; Chang, Y. C.; Orlovsky, N. D.; Kosmrlj, A.; Storm, C.; Brangwynne, C. P. Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity. Cell 2024, 187, 5282–5297. [Google Scholar] [CrossRef]
- Huang, W. Y. C.; Ferrell, J. E., Jr.; Cheng, X. Measuring Molecular Diffusion in Self-Organizing Xenopus Extracts by Fluorescence Correlation Spectroscopy. Methods Mol Biol 2024, 2740, 107–115. [Google Scholar] [CrossRef]
- Hubner, M. R.; Spector, D. L. Chromatin dynamics. Annu Rev Biophys 2010, 39, 471–489. [Google Scholar] [CrossRef]
- Gilbert, N.; Gilchrist, S.; Bickmore, W. A. Chromatin organization in the mammalian nucleus. Int Rev Cytol 2005, 242, 283–336. [Google Scholar] [CrossRef] [PubMed]
- Hauer, M. H.; Gasser, S. M. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev 2017, 31, 2204–2221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Boninsegna, L.; Yang, M.; Misteli, T.; Alber, F.; Ma, J. Computational methods for analysing multiscale 3D genome organization. Nat Rev Genet 2024, 25, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, G.; Amiad Pavlov, D.; Lorber, D.; Volk, T.; Safran, S. Mesoscale phase separation of chromatin in the nucleus. Elife 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Rippe, K. Liquid-Liquid Phase Separation in Chromatin. Cold Spring Harb Perspect Biol 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Grewal, S. I.; Moazed, D. Heterochromatin and epigenetic control of gene expression. Science 2003, 301, 798–802. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Zheng, X.; Liu, C.; Dong, S.; Li, R.; Zhang, G.; Wei, Y.; Qu, H.; Li, Y.; et al. Histone Modifications Regulate Chromatin Compartmentalization by Contributing to a Phase Separation Mechanism. Mol Cell 2019, 76, 646–659. [Google Scholar] [CrossRef]
- Fierz, B.; Poirier, M. G. Biophysics of Chromatin Dynamics. Annu Rev Biophys 2019, 48, 321–345. [Google Scholar] [CrossRef]
- Trovato, M.; Bunina, D.; Yildiz, U.; Fernandez-Novel Marx, N.; Uckelmann, M.; Levina, V.; Perez, Y.; Janeva, A.; Garcia, B. A.; Davidovich, C.; et al. Histone H3.3 lysine 9 and 27 control repressive chromatin at cryptic enhancers and bivalent promoters. Nat Commun 2024, 15, 7557. [Google Scholar] [CrossRef] [PubMed]
- Strom, A. R.; Kim, Y.; Zhao, H.; Chang, Y.-C.; Orlovsky, N. D.; Košmrlj, A.; Storm, C.; Brangwynne, C. P. Condensate interfacial forces reposition DNA loci and probe chromatin viscoelasticity. Cell 2024, 187, 5282–5297.e5220. [Google Scholar] [CrossRef] [PubMed]
- Rana, U.; Xu, K.; Narayanan, A.; Walls, M. T.; Panagiotopoulos, A. Z.; Avalos, J. L.; Brangwynne, C. P. Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility. Nat Chem 2024, 16, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, T.; Shinkai, S.; Ide, S.; Higashi, K.; Tamura, S.; Shimazoe, M. A.; Nakagawa, M.; Suzuki, Y.; Okada, Y.; Sasai, M.; et al. Condensed but liquid-like domain organization of active chromatin regions in living human cells. Sci Adv 2023, 9, eadf1488. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z. P.; Bloom, K. S.; Forest, M. G.; Cao, X. Z. Transient crosslinking controls the condensate formation pathway within chromatin networks. Phys Rev E 2024, 109, L042401. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, B.; Kim, Y.; Shaevitz, J. W.; Petry, S.; Stone, H. A.; Brangwynne, C. P. Capillary forces generated by biomolecular condensates. Nature 2022, 609, 255–264. [Google Scholar] [CrossRef]
- Swygert, S. G.; Peterson, C. L. Chromatin dynamics: interplay between remodeling enzymes and histone modifications. Biochim Biophys Acta 2014, 1839, 728–736. [Google Scholar] [CrossRef]
- Antonin, W.; Neumann, H. Chromosome condensation and decondensation during mitosis. Curr Opin Cell Biol 2016, 40, 15–22. [Google Scholar] [CrossRef]
- Tashiro, S.; Tanizawa, H.; Noma, K.-i. Local chromatin decompaction shapes mitotic chromosome landscape. bioRxiv 2024. 2024.2006.2030.601459. [Google Scholar] [CrossRef]
- Sen, B.; Xie, Z.; Thomas, M. D.; Pattenden, S. G.; Howard, S.; McGrath, C.; Styner, M.; Uzer, G.; Furey, T. S.; Rubin, J. Nuclear actin structure regulates chromatin accessibility. Nat Commun 2024, 15, 4095. [Google Scholar] [CrossRef]
- Serebryannyy, L. A.; Parilla, M.; Annibale, P.; Cruz, C. M.; Laster, K.; Gratton, E.; Kudryashov, D.; Kosak, S. T.; Gottardi, C. J.; de Lanerolle, P. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J Cell Sci 2016, 129, 3412–3425. [Google Scholar] [CrossRef]
- El Said, N. H.; Abdrabou, W.; Mahmood, S. R.; Venit, T.; Idaghdour, Y.; Percipalle, P. Nuclear actin-dependent Meg3 expression suppresses metabolic genes by affecting the chromatin architecture at sites of elevated H3K27 acetylation levels. bioRxiv 2024. 2024.2005.2012.593742. [Google Scholar] [CrossRef]
- Zulske, T.; Attou, A.; Gross, L.; Horl, D.; Harz, H.; Wedemann, G. Nucleosome spacing controls chromatin spatial structure and accessibility. Biophys J 2024, 123, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Urizar, A. I.; Prause, M.; Ingerslev, L. R.; Wortham, M.; Sui, Y.; Sander, M.; Williams, K.; Barres, R.; Larsen, M. R.; Christensen, G. L.; et al. Beta cell dysfunction induced by bone morphogenetic protein (BMP)-2 is associated with histone modifications and decreased NeuroD1 chromatin binding. Cell Death Dis 2023, 14, 399. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Fan, D.; Zhao, H.; Liu, Z.; Hou, Z.; Tao, W.; Yu, G.; Yuan, S.; Zhu, X.; Kang, M.; et al. Dynamics of histone acetylation during human early embryogenesis. Cell Discov 2023, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, H. S.; Ikeda, T.; Ikeda, S.; Takeda, H. Cell cycle length governs heterochromatin reprogramming during early development in non-mammalian vertebrates. EMBO Rep 2024, 25, 3300–3323. [Google Scholar] [CrossRef] [PubMed]
- Jevtic, P.; Levy, D. L. Nuclear size scaling during Xenopus early development contributes to midblastula transition timing. Curr Biol 2015, 25, 45–52. [Google Scholar] [CrossRef]
- Mukherjee, R. N.; Chen, P.; Levy, D. L. Recent advances in understanding nuclear size and shape. Nucleus 2016, 7, 167–186. [Google Scholar] [CrossRef]
- Vukovic, L. D.; Chen, P.; Mishra, S.; White, K. H.; Gigley, J. P.; Levy, D. L. Nuclear Transport Factor 2 (NTF2) suppresses WM983B metastatic melanoma by modifying cell migration, metastasis, and gene expression. Sci Rep 2021, 11, 23586. [Google Scholar] [CrossRef]
- Levy, D. L.; Heald, R. Nuclear size is regulated by importin alpha and Ntf2 in Xenopus. Cell 2010, 143, 288–298. [Google Scholar] [CrossRef]
- Vukovic, L. D.; Jevtic, P.; Zhang, Z.; Stohr, B. A.; Levy, D. L. Nuclear size is sensitive to NTF2 protein levels in a manner dependent on Ran binding. J Cell Sci 2016, 129, 1115–1127. [Google Scholar] [CrossRef]
- Chen, P.; Mishra, S.; Prabha, H.; Sengupta, S.; Levy, D. L. Nuclear growth and import can be uncoupled. Mol Biol Cell 2024, 35, ar1. [Google Scholar] [CrossRef]
- Theerthagiri, G.; Eisenhardt, N.; Schwarz, H.; Antonin, W. The nucleoporin Nup188 controls passage of membrane proteins across the nuclear pore complex. J Cell Biol 2010, 189, 1129–1142. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, N.; Cibulka, J.; Mendiburo, M. J.; Romanauska, A.; Schneider, M.; Kohler, A. Nuclear pore basket proteins are tethered to the nuclear envelope and can regulate membrane curvature. Dev Cell 2015, 33, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Jevtic, P.; Schibler, A. C.; Wesley, C. C.; Pegoraro, G.; Misteli, T.; Levy, D. L. The nucleoporin ELYS regulates nuclear size by controlling NPC number and nuclear import capacity. EMBO Rep 2019, 20. [Google Scholar] [CrossRef]
- Mukherjee, R. N.; Salle, J.; Dmitrieff, S.; Nelson, K. M.; Oakey, J.; Minc, N.; Levy, D. L. The Perinuclear ER Scales Nuclear Size Independently of Cell Size in Early Embryos. Dev Cell 2020, 54, 395–409. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Levy, D. L. Nuclear F-actin and Lamin A antagonistically modulate nuclear shape. J Cell Sci 2022, 135. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Tomschik, M.; Nelson, K. M.; Oakey, J.; Gatlin, J. C.; Levy, D. L. Nucleoplasmin is a limiting component in the scaling of nuclear size with cytoplasmic volume. J Cell Biol 2019, 218, 4063–4078. [Google Scholar] [CrossRef] [PubMed]
- Edens, L. J.; Levy, D. L. cPKC regulates interphase nuclear size during Xenopus development. J Cell Biol 2014, 206, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Jevtic, P.; Edens, L. J.; Li, X.; Nguyen, T.; Chen, P.; Levy, D. L. Concentration-dependent Effects of Nuclear Lamins on Nuclear Size in Xenopus and Mammalian Cells. J Biol Chem 2015, 290, 27557–27571. [Google Scholar] [CrossRef]
- Edens, L. J.; Dilsaver, M. R.; Levy, D. L. PKC-mediated phosphorylation of nuclear lamins at a single serine residue regulates interphase nuclear size in Xenopus and mammalian cells. Mol Biol Cell 2017, 28, 1389–1399. [Google Scholar] [CrossRef]
- Stephens, A. D.; Banigan, E. J.; Marko, J. F. Chromatin's physical properties shape the nucleus and its functions. Curr Opin Cell Biol 2019, 58, 76–84. [Google Scholar] [CrossRef]
- Wallace, M.; Zahr, H.; Perati, S.; Morsink, C. D.; Johnson, L. E.; Gacita, A. M.; Lai, S.; Wallrath, L. L.; Benjamin, I. J.; McNally, E. M.; et al. Nuclear damage in LMNA mutant iPSC-derived cardiomyocytes is associated with impaired lamin localization to the nuclear envelope. Mol Biol Cell 2023, 34, mbcE21100527. [Google Scholar] [CrossRef] [PubMed]
- Cenni, V.; Evangelisti, C.; Santi, S.; Sabatelli, P.; Neri, S.; Cavallo, M.; Lattanzi, G.; Mattioli, E. Desmin and Plectin Recruitment to the Nucleus and Nuclei Orientation Are Lost in Emery-Dreifuss Muscular Dystrophy Myoblasts Subjected to Mechanical Stimulation. Cells 2024, 13. [Google Scholar] [CrossRef] [PubMed]
- Mostafazadeh, N.; Peng, Z. Microstructure-based nuclear lamina constitutive model. Cytoskeleton (Hoboken) 2024. [Google Scholar] [CrossRef] [PubMed]
- Schibler, A. C.; Jevtic, P.; Pegoraro, G.; Levy, D. L.; Misteli, T. Identification of epigenetic modulators as determinants of nuclear size and shape. Elife 2023, 12. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, D. N.; Allis, C. D.; Lu, C. Oncogenic Mechanisms of Histone H3 Mutations. Cold Spring Harb Perspect Med 2017, 7. [Google Scholar] [CrossRef]
- Stephens, A. D.; Liu, P. Z.; Kandula, V.; Chen, H.; Almassalha, L. M.; Herman, C.; Backman, V.; O'Halloran, T.; Adam, S. A.; Goldman, R. D.; et al. Physicochemical mechanotransduction alters nuclear shape and mechanics via heterochromatin formation. Mol Biol Cell 2019, mbcE19050286T. [Google Scholar] [CrossRef]
- Cantwell, H.; Nurse, P. Unravelling nuclear size control. Curr Genet 2019, 65, 1281–1285. [Google Scholar] [CrossRef]
- Introini, V.; Kidiyoor, G. R.; Porcella, G.; Cicuta, P.; Cosentino Lagomarsino, M. Centripetal nuclear shape fluctuations associate with chromatin condensation in early prophase. Commun Biol 2023, 6, 715. [Google Scholar] [CrossRef]
- Bunner, S.; Prince, K.; Srikrishna, K.; Pujadas, E. M.; McCarthy, A. A.; Kuklinski, A.; Jackson, O.; Pellegrino, P.; Jagtap, S.; Eweka, I.; et al. DNA density is a better indicator of a nuclear bleb than lamin B loss. bioRxiv 2024. [Google Scholar] [CrossRef]
- Pujadas Liwag, E. M.; Acosta, N.; Almassalha, L. M.; Su, Y. P.; Gong, R.; Kanemaki, M. T.; Stephens, A. D.; Backman, V. Nuclear blebs are associated with destabilized chromatin packing domains. bioRxiv 2024. [Google Scholar] [CrossRef]
- Heijo, H.; Shimogama, S.; Nakano, S.; Miyata, A.; Iwao, Y.; Hara, Y. DNA content contributes to nuclear size control in Xenopus laevis. Mol Biol Cell 2020, 31, 2703–2717. [Google Scholar] [CrossRef]
- Gemble, S.; Wardenaar, R.; Keuper, K.; Srivastava, N.; Nano, M.; Macé, A. S.; Tijhuis, A. E.; Bernhard, S. V.; Spierings, D. C. J.; Simon, A.; et al. Genetic instability from a single S phase after whole-genome duplication. Nature 2022, 604, 146–151. [Google Scholar] [CrossRef]
- Deviri, D.; Safran, S. A. Balance of osmotic pressures determines the nuclear-to-cytoplasmic volume ratio of the cell. Proc Natl Acad Sci U S A 2022, 119, e2118301119. [Google Scholar] [CrossRef]
- Anderson, D. J.; Hetzer, M. W. Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. J Cell Biol 2008, 182, 911–924. [Google Scholar] [CrossRef]
- Mistriotis, P.; Wisniewski, E. O.; Bera, K.; Keys, J.; Li, Y.; Tuntithavornwat, S.; Law, R. A.; Perez-Gonzalez, N. A.; Erdogmus, E.; Zhang, Y.; et al. Confinement hinders motility by inducing RhoA-mediated nuclear influx, volume expansion, and blebbing. J Cell Biol 2019, 218, 4093–4111. [Google Scholar] [CrossRef]
- Goswami, R.; Asnacios, A.; Milani, P.; Graindorge, S.; Houlne, G.; Mutterer, J.; Hamant, O.; Chaboute, M. E. Mechanical Shielding in Plant Nuclei. Curr Biol 2020, 30, 2013–2025. [Google Scholar] [CrossRef]
- Jetta, D.; Gottlieb, P. A.; Verma, D.; Sachs, F.; Hua, S. Z. Shear stress-induced nuclear shrinkage through activation of Piezo1 channels in epithelial cells. J Cell Sci 2019, 132. [Google Scholar] [CrossRef]
- Lomakin, A. J.; Cattin, C. J.; Cuvelier, D.; Alraies, Z.; Molina, M.; Nader, G. P. F.; Srivastava, N.; Saez, P. J.; Garcia-Arcos, J. M.; Zhitnyak, I. Y.; et al. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science 2020, 370. [Google Scholar] [CrossRef]
- Venturini, V.; Pezzano, F.; Catala Castro, F.; Hakkinen, H. M.; Jimenez-Delgado, S.; Colomer-Rosell, M.; Marro, M.; Tolosa-Ramon, Q.; Paz-Lopez, S.; Valverde, M. A.; et al. The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science 2020, 370. [Google Scholar] [CrossRef] [PubMed]
- Mistriotis, P.; Wisniewski, E. O.; Si, B. R.; Kalab, P.; Konstantopoulos, K. Coordinated in confined migration: crosstalk between the nucleus and ion channel-mediated mechanosensation. Trends Cell Biol 2024, 34, 809–825. [Google Scholar] [CrossRef] [PubMed]
- Lautscham, L. A.; Kammerer, C.; Lange, J. R.; Kolb, T.; Mark, C.; Schilling, A.; Strissel, P. L.; Strick, R.; Gluth, C.; Rowat, A. C.; et al. Migration in Confined 3D Environments Is Determined by a Combination of Adhesiveness, Nuclear Volume, Contractility, and Cell Stiffness. Biophys J 2015, 109, 900–913. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J. Z.; Adamson, B.; Brangwynne, C. P. Nuclear mechanosensing of cell confinement through biomolecular condensates. Biophysical Journal 2024, 123, 41a. [Google Scholar] [CrossRef]
- Buisson, J.; Zhang, X.; Zambelli, T.; Lavalle, P.; Vautier, D.; Rabineau, M. Reverse Mechanotransduction: Driving Chromatin Compaction to Decompaction Increases Cell Adhesion Strength and Contractility. Nano Lett 2024, 24, 4279–4290. [Google Scholar] [CrossRef] [PubMed]
- Radmacher, M. 6.9 Laminopathies. In Volume 2 Biomedical Applications, Malgorzata, L., Daniel, N., Manfred, R., Alessandro, P. Eds.; De Gruyter, 2023; pp 299-302.
- de Freitas Nader, G. P.; García-Arcos, J. M. Cell migration in dense microenvironments. C R Biol 2023, 346, 89–93. [Google Scholar] [CrossRef]
- Garcia-Arcos, J. M.; Jha, A.; Waterman, C. M.; Piel, M. Blebology: principles of bleb-based migration. Trends Cell Biol 2024, 34, 838–853. [Google Scholar] [CrossRef]
- Ma, L.; Kuhn, J.; Chang, Y. T.; Elnatan, D.; Luxton, G. W. G.; Starr, D. A. FLN-2 functions in parallel to linker of nucleoskeleton and cytoskeleton complexes and CDC-42/actin pathways during P-cell nuclear migration through constricted spaces in Caenorhabditis elegans. Genetics 2024, 227. [Google Scholar] [CrossRef]
- Massidda, M. W.; Ashirov, D.; Demkov, A.; Sices, A.; Baker, A. B. A Computational Model of Mechanical Stretching of Cultured Cells on a Flexible Membrane. bioRxiv 2024. [Google Scholar] [CrossRef]
- Agarwal, P.; Berger, S.; Shemesh, T.; Zaidel-Bar, R. Active nuclear positioning and actomyosin contractility maintain leader cell integrity during gonadogenesis. Curr Biol 2024, 34, 2373–2386. [Google Scholar] [CrossRef]
- Davidson, P. M.; Lammerding, J. Broken nuclei--lamins, nuclear mechanics, and disease. Trends Cell Biol 2014, 24, 247–256. [Google Scholar] [CrossRef]
- Merino-Casallo, F.; Gomez-Benito, M. J.; Hervas-Raluy, S.; Garcia-Aznar, J. M. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022, 16, 25–64. [Google Scholar] [CrossRef]
- d'Humières, J.; Plastino, J. Mechanical roles for actin and the nucleus in cell invasion. Biophysical Journal 2024, 123, 333a. [Google Scholar] [CrossRef]
- González-Novo, R.; de Lope-Planelles, A.; Cruz Rodríguez, M. P.; González-Murillo, Á.; Madrazo, E.; Acitores, D.; García de Lacoba, M.; Ramírez, M.; Redondo-Muñoz, J. 3D environment controls H3K4 methylation and the mechanical response of the nucleus in acute lymphoblastic leukemia cells. Eur J Cell Biol 2023, 102, 151343. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Mu, L.; Hu, Y.; Yan, C.; Zhao, H.; Mi, Y.; Li, X.; Tao, D.; Qin, J. Nuclear Softness Promotes the Metastatic Potential of Large-Nucleated Colorectal Cancer Cells via the ErbB4-Akt1-Lamin A/C Signaling Pathway. Int J Biol Sci 2024, 20, 2748–2762. [Google Scholar] [CrossRef]
- Ouchi, M.; Kobayashi, S.; Nishijima, Y.; Inoue, N.; Ikota, H.; Iwase, A.; Yokoo, H.; Saio, M. Decreased lamin A and B1 expression results in nuclear enlargement in serous ovarian carcinoma, whereas lamin A-expressing tumor cells metastasize to lymph nodes. Pathol Res Pract 2023, 247, 154560. [Google Scholar] [CrossRef] [PubMed]
- Kalinin, A. A.; Allyn-Feuer, A.; Ade, A.; Fon, G. V.; Meixner, W.; Dilworth, D.; Husain, S. S.; de Wet, J. R.; Higgins, G. A.; Zheng, G.; et al. 3D Shape Modeling for Cell Nuclear Morphological Analysis and Classification. Sci Rep 2018, 8, 13658. [Google Scholar] [CrossRef] [PubMed]
- Antao, N. V.; Lam, C.; Davydov, A.; Riggi, M.; Sall, J.; Petzold, C.; Liang, F.-X.; Iwasa, J. H.; Ekiert, D. C.; Bhabha, G. 3D reconstructions of parasite development and the intracellular niche of the microsporidian pathogen Encephalitozoon intestinalis. Nature Communications 2023, 14, 7662. [Google Scholar] [CrossRef] [PubMed]
- Elpers, M. A.; Varlet, A. A.; Agrawal, R.; Lammerding, J. Agarose-based 3D Cell Confinement Assay to Study Nuclear Mechanobiology. Curr Protoc 2023, 3, e847. [Google Scholar] [CrossRef] [PubMed]
- Frey, T.; Murakami, T.; Maki, K.; Kawaue, T.; Tani, N.; Sugai, A.; Nakazawa, N.; Ishiguro, K. I.; Adachi, T.; Kengaku, M.; et al. Age-associated reduction of nuclear shape dynamics in excitatory neurons of the visual cortex. Aging Cell 2023, 22, e13925. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
