Submitted:
15 November 2024
Posted:
19 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Nuclear Genome of Q. robur
3. Chloroplast Genome of Q. robur
4. Mitochondrial Genome of Q. robur
5. Genetic Variation and Population Structure of Q. robur
5.1. Introgressive Hybridization
6. Epigenetic Variation of Q. robur
7. Transcriptome and Gene Expression of Q. robur
8. Phenotypic Variation and Plasticity of Q. robur
9. Phenology of Q. robur
10. Phylogenetics and Phylogeography of Q. robur
11. Response of Q. robur to Environmental Factors in Dendroecological and Dendrochronological Studies
11.1. Drought
11.2. Waterlogging
11.3. Geographic Origin and Cultures, and Provenance Tests
11.4. Climate Change, Temperature and Precipitation
11.5. Climate Response in Genetic and Dendrochronological Studies
12. Factors of Resilience to Environmental Factors in Oaks and Their Longevity
13. Plus Trees and Main Breeding Traits of Q. robur
- -
- trees-phenomena;
- -
- trees-veterans;
- -
- record-breaking best in technical and economic terms and at the same time highly viable;
- -
- fast-growing;
- -
- straight-trunked;
- -
- knot-free;
- -
- possessing the best wood qualities;
- -
- undamaged by rot, harmful insects, frost and other factors.
14. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bellusci, G.; Braglia, R.; Di Marco, G.; Redi, E.; Canini, A.; Gismondi, A. Assessing molecular diversity among 87 species of the Quercus L. genus by RAPD markers. Genet. Resour. Crop Evol. 2023, 70, 1–12. [CrossRef]
- Eaton, E., Caudullo, G., Oliveira, S., de Rigo, D. Quercus robur and Quercus petraea in Europe: distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publ. Off. EU: Luxembourg, Belgium, 2016; pp. 160–163. https://ies-ows.jrc.ec.europa.eu/efdac/download/Atlas/pdf/Quercus_robur_petraea.pdf.
- Mölder, A.; Meyer, P.; Nagel, R.-V. Integrative management to sustain biodiversity and ecological continuity in Central European temperate oak (Quercus robur, Q. petraea) Forests: An Overview. For. Ecol. Manag. 2019, 437, 324–339. [CrossRef]
- Mitchell, R.; Bellamy, P.; Ellis, C.; Hewison, R.; Hodgetts, N.; Iason, G.; Littlewood, N.; Newey, S.; Stockan, J.; Taylor, A. OakEcol: A database of Oak-associated biodiversity within the UK. Data in Brief 2019, 25, 104120. [CrossRef]
- Oosterbaan, A.; Leffef, F. Decline in health and death of Quercus robur L. in the Netherlands. Nederlands-Bosbouwtijdschrift 1987, 59, 186–192. (In Dutch with English Abstract). https://www.cabidigitallibrary.org/doi/full/10.5555/19870618722.
- Thomas, F.M.; Blank, R.; Hartmann, G. Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. For Path 2002, 32, 277–307. [CrossRef]
- Neagu, S. Long-term growth decline of Quercus robur L. forests in Vlăsia Plain. Proc. Rom. Acad. Series B: Chemistry Life Sci. Geosci. 2010, 3, 255–259. https://acad.ro/sectii2002/proceedingsChemistry/doc2010-3/art10Neagu.pdf.
- Lione, G.G.; Ebone, A.; Petrella, F.; Terzuolo, P.; Nicolotti, G.; Gonthier, P. Decline of Quercus Robur Forests in Northwestern Italy: Current Situation and Tentative Aetiology. IOBC/Wprs Bull. 2012, 76, 67–70. http://hdl.handle.net/2318/109969.
- Matisons, R.; Elferts, D.; Brūmelis, G. Possible signs of growth decline of pedunculate oak in Latvia during 1980–2009 in treering width and vessel size. Bal. For. 2013, 19, 137–142.
- Keča, N.; Koufakis, I.; Dietershagen, J.; Nowakowska, J.A.; Oszako, T. European Oak Decline Phenomenon in Relation to Climatic Changes. Folia For. Pol. Ser. A 2016, 58, 170–177. [CrossRef]
- Conte, A.L.; Di Pietro, R.; Iamonico, D.; Di Marzio, P.; Cillis, G.; Lucia, D.; Fortini, P. Oak decline in the Mediterranean Basin: A Study Case from the Southern Apennines (Italy). Plant Sociol. 2019, 56, 69–80. [CrossRef]
- Losseau, J.; Jonard, M.; Vincke, C. Pedunculate oak decline in southern Belgium: A long-term process highlighting the complex interplay among drought, winter frost, biotic attacks, and masting. Can. J. For. Res. 2020, 50, 380–389. [CrossRef]
- Schroeder, H.; Nosenko, T.; Ghirardo, A.; Fladung, M.; Schnitzler, J.P.; Kersten, B. Oaks as Beacons of Hope for Threatened Mixed Forests in Central Europe. Front. For. Glob. Change 2021, 4, 670797. [CrossRef]
- Macháčová, M.; Nakládal, O.; Samek, M.; Baťa, D.; Zumr, V.; Pešková, V. Oak Decline Caused by Biotic and Abiotic Factors in Central Europe: A Case Study from the Czech Republic. Forests 2022, 13, 1223. [CrossRef]
- Kowsari, M; Karimi, E. A review on oak decline: The global situation causative factors and new research approaches. For. Syst. 2023, 32, 1–11. [CrossRef]
- Gribbe, S.; Enderle, L.; Weigel, R.; Hertel, D.; Leuschner, C.; Muffler, L. Recent growth decline and shifts in climatic growth constraints suggest climate vulnerability of beech, Douglas fir, pine and oak in Northern Germany. For. Ecol. Manag. 2024, 566, 122022. [CrossRef]
- Krutovsky, K.V. Dendrogenomics Is a New Interdisciplinary Field of Research of the Adaptive Genetic Potential of Forest Tree Populations Integrating Dendrochronology, Dendroecology, Dendroclimatology, and Genomics. Russ. J. Genet. 2022, 58, 1273–1286. [CrossRef]
- Gailing, O.; Hipp, A.L.; Plomion, C.; Carlson, J.E. Oak Population Genomics. In Population Genomics: Forest Trees; Rajora, O.P., Eds.; Springer: Cham, Switzerland, 2021; pp. 1–37. [CrossRef]
- Gadella, T.W. J.; Kliphuis, E. Chromosome numbers of flowering plants in the Netherlands. VI. Mededelingen van het Botanisch Museum en Herbarium van de Rijksuniversiteit te Utrecht 1973, 392, 303–311.
- Butorina, A.K. Cytogenetic study of diploid and spontaneous triploid oaks, Quercus robur L. Ann. For. Sci. 1993, 50, 144–150. [CrossRef]
- Naujoks, G.; Hertel H.; Ewald D. Characterisation and propagation of an adult triploid pedunculate oak (Quercus robur). Silvae Genet. 1995, 44, 282–286. https://literatur.thuenen.de/digbib_extern/dn055203.pdf.
- Dzialuk, A.; Chybicki, I.; Welc, M.; Sliwinska, E.; Burczyk, J. Presence of Triploids among Oak Species. Ann. Bot. 2007, 99, 959–964. [CrossRef]
- Zoldoš, V.; Besendorfer, V.; Jelenić, S.; Lorković, Z.; Littvay, T.; Papeš, D. Cytogenetic damages as an indicator of pedunculate oak forest decline. In Proceedings of the First IUFRO Cytogenetics Working Party S2.04-08 Symposium Cytogenetic Studies of Forest Trees and Shrub Species, Brijuuni National Park, Croatia, 8-11 September 1993; Borzan, Ž., Schlarbaum, S.E., Eds.; Hrvatske šume: Šumarski fakultet, University of Zagreb, Zagreb, Croatia, 1997; pp. 275–284.
- Zoldos, V.; Papes, D.; Brown, S.; Panaud, O.; Siljak-Yakovlev, S. Genome size and base composition of seven Quercus species: Inter- and intra-population variation. Genome 1998, 41, 162–168. [CrossRef]
- Mehra, P.N.; Hans A.S.; Sareen T.S. Cytomorphology of Himalayan Fagaceae. Silvae Genet. 1972, 21, 102–109.
- D’emerico, S.; Bianco, P.; Medagli, P.; Schirone, B. Karyotype analysis in Quercus spp. (Fagaceae). Silvae Genet. 1995, 44, 66–70.
- Ohri, D.; Ahuja, M.R. Giemsa C-banding in Quercus L. (oak). Silvae Genet. 1990, 39, 216–219.
- Ohri, D.; Ahuja, M.R. Giemsa C-banding in Fagus sylvatica L., Betula pendula Roth, and Populus tremula L. Silvae Genet. 1991, 40, 72–74.
- Wang, L.-min. A taxonomy study of the deciduous Oak in China by means of cluster and karyotype analysis. Bull. Bot. Res. 1986, 6, 55–69. https://bbr.nefu.edu.cn/EN/Y1986/V6/I1/55.
- Cao, R.B.; Chen, R.; Liao, K.X.; Li, H.; Xu, G.B.; Jiang, X.L. Karyotype and LTR-RTs analysis provide insights into oak genomic evolution. BMC Genomics 2024, 25, 328. [CrossRef]
- Natividade, J.V. Recherches cytologiques sur quelque especes et hybrides du genre Quercus (I). Boletin da Sociedate Broteriana 1937, 12, 21–85. (In Portuguese with English Abstract).
- Leitch, I.J.; Johnston, E.; Pellicer, J.; Hidalgo, O.; Bennett, M.D. 2019. Angiosperm DNA C-values database (release 9.0, Apr 2019). Available online: https://cvalues.science.kew.org/search/angiosperm (accessed on 13 October, 2024).
- Favre, J.M.; Brown, S. A flow cytometric evaluation of the nuclear DNA content and GC percent in genomes of European oak species. Ann. Sci. For. 1996, 53, 915–917. [CrossRef]
- Kremer, A.; Casasoli, M.; Barreneche, T.; Bodénès, C.; Sisco, P.; Kubisiak, T.; Scalfi, M.; Leonardi, S.; Bakker, E.; Buiteveld, J.; et al. Fagaceae Trees. In Genome Mapping and Molecular Breeding in Plants; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 7, pp. 161–187.
- Schwarz, O. Quercus L. In Flora Europaea. Lycopodiaceae to Platanaceae. 1964, 1, 61–64.
- Camus, A. Les chênes, Monographie du genre Quercus et Monographie du genre Lithocarpus. Encyclopédie Economique de Sylviculture. 1936-1954. Vol. VI, VII, VIII. Editions Lechevalier (Paris).
- Manos, P.S.; Steele K.P. Phylogenetic analyses of “higher” Hamamelidiae based on plastid sequence data. Am. J. Bot. 1997, 84, 1407–1419. [CrossRef]
- Xu, L.A. Diversité de l’ADN chloroplastique et relations phylogénétiques au sein des Fagacées et du genre Quercus. Nancy: Thèse Université Henri Poincaré, 2004. 129 p. (In French with English Abstract).
- Barreneche, T.; Bodénès, C.; Lexer, C.; Trontin, J.F.; Fluch, S.; Streiff, R.; Plomion, C.; Roussel, G.; Steinkellner, H.; Burg, K.; Favre, J.M.; Glössl, J.; Kremer, A. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theor. Appl. Genet. 1998, 97, 1090–1103. [CrossRef]
- Barreneche, T.; Casasoli, M.; Russell, K.; Akkak, A.; Meddour, H.; Plomion, C.; Villani, F.; Kremer, A. Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor. Appl. Genet. 2004, 108, 558–566. [CrossRef]
- Gailing, O. QTL analysis of leaf morphological characters in a Quercus robur full-sib family (Q. robur × Q. robur ssp. slavonica). Plant Biol. 2008, 10, 624–634. [CrossRef]
- Gailing, O.; Langenfeld-Heyser, R.; Polle, A.; Finkeldey R. Quantitative trait loci affecting stomatal density and growth in a Quercus robur progeny: implications for the adaptation to changing environments. Global Change Biol. 2008, 14, 1934–1946. [CrossRef]
- Bodénès, C.; Chancerel, E.; Gailing, O.; Vendramin, G.G.; Bagnoli, F.; Durand, J.; Goicoechea, P.G.; Soliani, C.; Villani, F.; Mattioni, C.; et al. Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biol. 2012, 12, 153. [CrossRef]
- Bodénès, C.; Chancerel, E.; Ehrenmann, F.; Kremer, A.; Plomion, C. High-density linkage mapping and distribution of segregation distortion regions in the oak genome. DNA Res. 2016, 23, 115–124. [CrossRef]
- Quercus PORTAL. A european genetic and genomic web resources for Quercus: Oak mapping initiatives. Available online https://quercusportal.pierroton.inra.fr/index.php?p=GENETIC_MAPPING (accessed on 13 October 2024).
- Lepoittevin, C.; Bodénès, C.; Chancerel, E.; Villate, L.; Lang, T.; Lesur, I.; Boury, C.; Ehrenmann, F.; Zelenica, D.; Boland, A.; et al. Single-nucleotide polymorphism discovery and validation in high-density SNP array for genetic analysis in European white oaks. Mol. Ecol. Resour. 2015, 15, 1446–1459. [CrossRef]
- Endelman, J.; Plomion, C. LPmerge: an R package for merging genetic maps by linear programming. BioInformatics 2014, 30, 1623–1624. [CrossRef]
- Plomion, C.; Aury, JM.; Amselem, J.; Alaeitabar, T.; Barbe, V.; Belser, C.; Bergès, H.; Bodénès, C.; Boudet, N.; Boury, C.; Canaguier, A.; Couloux, A.; Da, Silva, C.; Duplessis, S.; Ehrenmann, F.; Estrada-Mairey, B.; Fouteau, S.; Francillonne, N.; Gaspin, C.; Guichard, C.; Klopp, C.; Labadie, K.; Lalanne, C.; Le, Clainche, I.; Leplé, JC.; Le, Provost, G.; Leroy, T.; Lesur, I.; Martin, F.; Mercier, J.; Michotey, C.; Murat, F.; Salin, F.; Steinbach, D.; Faivre-Rampant, P.; Wincker, P.; Salse, J.; Quesneville, H.; Kremer, A. Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Mol. Ecol. Resour. 2016, 16:254-65. [CrossRef]
- Plomion, C.; Aury, J.; Amselem, J.; Leroy, T.; Murat, F.; Duplessis, S.; Faye, S.; Francillonne, N.; Labadie, K.; Provost, G.L.; et al. Oak genome reveals facets of long lifespan. Nat. Plants 2018, 4, 440–452. [CrossRef]
- Oak Genome Browser. Available online: https://urgi.versailles.inra.fr/WebApollo_oak_PM1N/PseudoMolecule.html (accessed on 14 October, 2024).
- Dumolin, S.; Demesure, B.; Petit, R.J. Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theoret. Appl. Genet. 1995, 91, 1253–1256. [CrossRef]
- Semerikova, S.A.; Isakov, I.Y.; Semerikov, V.L. Chloroplast DNA Variation and Phylogeography of Pedunculate Oak Quercus robur L. in the Eastern Part of the Range. Russ. J. Genet. 2021, 57, 47–60. [CrossRef]
- Ducousso, A.; Bordacs, S. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Pedunulate and Sessile Oaks (Quercus robur and Q. petraea); International Plant Genetic Resources Institute: Rome, Italy, 2004; 6 p. https://www.euforgen.org/fileadmin/templates/euforgen.org/upload/Publications/Technical_guidelines/Technical_guidelines_Quercus_robur-petraea.pdf.
- Blanc-Jolivet, C.; Liesebach, M. Tracing the origin and species identity of Quercus robur and Quercus petraea in Europe: a review. Silvae Genet. 2015, 64, 182–193. [CrossRef]
- Petit, R.J.; Kremer, A.; Wagner, D.B. Geographic structure of chloroplast DNA polymorphisms in European oaks. Theor. Appl. Genet. 1993, 87, 122–128. [CrossRef]
- Petit, R.J.; Vendramin, G.G. Plant phylogeography based on organelle genes: an introduction. In Phylogeography of Southern European Refugia; Weiss, S., Ferrand, N., Eds.; Springer: Dordrecht, Netherland, 2007; pp. 23–97. [CrossRef]
- Bi, Q.; Li, D.; Zhao, Y.; Wang, M.; Li, Y.; Liu, X.; Wang, L.; Yu, H. Complete mitochondrial genome of Quercus variabilis (Fagales, Fagaceae). Mitochondrial DNA B Resour. 2019, 4, 3927–3928. [CrossRef]
- Wang, L.; Li, L-L.; Chen, L.; Zhang, R-G.; Zhao, S-W.; Yan, H.; Gao, J.; Chen, X.; Si, Y-J.; Chen, Z.; Liu, H.; Xie, X-M.; Zhao, W.; Han, B.; Qin, X.; Jia, K.-H. Telomere-to-telomere and haplotype-resolved genome assembly of the Chinese cork oak (Quercus variabilis). Front. Plant Sci. 2023, 14, 1290913. [CrossRef]
- Liu, D.; Guo, H.; Zhu, J.; Qu, K.; Chen, Y.; Guo, Y.; Ding, P.; Yang, H.; Xu, T.; Jing, Q.; et al. Complex Physical Structure of Complete Mitochondrial Genome of Quercus acutissima (Fagaceae): A Significant Energy Plant. Genes 2022, 13, 1321. [CrossRef]
- Usié, A., Serra, O., Barros, P.M. et al. An improved reference genome and first organelle genomes of Quercus suber. Tree Genet. Genomes 2023, 19, 54. [CrossRef]
- Grosser, M.R.; Sites, S.K.; Murata, M.M.; Lopez, Y.; Chamusco, K.C.; Love Harriage, K.; Grosser, J.W.; Graham, J.H.; Gmitter, F.; Chase, C.D. Plant mitochondrial introns as genetic markers-conservation and variation. Front. Plant Sci. 2023, 14, 1116851. [CrossRef]
- Mosca, E.; Cruz, F.; Gómez-Garrido, J.; Bianco, L.; Rellstab, C.; Brodbeck, S.; Csilléry, K.; Fady, B.; Fladung, M.; Fussi, B. et al. A reference genome sequence for the European silver fir (Abies alba Mill.): A community-generated genomic resource. G3 Genes Genomes Genet. 2019, 9, 2039–2049. [CrossRef]
- Putintseva, Y.A.; Bondar, E.I.; Simonov, E.P.; Sharov, V.V.; Oreshkova, N.V.; Kuzmin, D.A.; Konstantinov, Y.M.; Shmakov, V.N.; Belkov, V.I.; Sadovsky, M.G.; Keech, O.; Krutovsky, K.V. Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome. BMC Genomics 2020, 21, 654. [CrossRef]
- Feng, L.; Wang, Z.; Wang, C.; Yang, X.; An, M.; Yin, Y. Multichromosomal mitochondrial genome of Punica granatum: comparative evolutionary analysis and gene transformation from chloroplast genomes. BMC Plant Biol. 2023, 23, 512. [CrossRef]
- Wang, Y.; Cui, G.; He, K.; Xu, K.; Liu, W.; Wang, Y.; Wang, Z.; Liu, S.; Bi, C. Assembly and Comparative Analysis of the Complete Mitochondrial Genome of Ilex rotunda Thunb. Forests 2024, 15, 1117. [CrossRef]
- Wu, C.S.; Wang, R.J.; Chaw, S.M. Integration of large and diverse angiosperm DNA fragments into Asian Gnetum mitogenomes. BMC Biol. 2024, 22, 140. [CrossRef]
- Mullagulov, R.Yu.; Redkina, N.N.; Yanbaev, Yu.A. Allozyme variability of pedunculate oak Quercus robur L. (Fagaceae) in isolated populations on the eastern border of the range. Bulletin of the Orenburg State University 2008, 2, 107–110. (In Russian). http://vestnik.osu.ru/2008_2/17.pdf.
- Popović, M.; Katičić Bogdan, I.; Varga, F.; Šatović, Z.; Bogdan, S.; Ivanković, M. Genetic Diversity in Peripheral Pedunculate Oak (Quercus robur L.) Provenances—Potential Climate Change Mitigators in the Center of Distribution despite Challenges in Natural Populations. Forests 2023, 14, 2290. [CrossRef]
- Semerikova, S.A.; Tashev, A.N.; Semerikov, V.L. Genetic Diversity and History of Pedunculate Oak Quercus robur L. in the East of the Range. Russ. J. Ecol. 2023, 54, 423–438. [CrossRef]
- Degen, B.; Yanbaev, Y.; Ianbaev, R.; Blanc-Jolivet, C.; Mader, M., & Bakhtina, S. Large-scale genetic structure of Quercus robur in its eastern distribution range enables assignment of unknown seed sources. Forestry 2022, 95, 531–547. [CrossRef]
- Gömöry, D.; Yakovlev, I.; Zhelev, P.; Jedináková, J.; Paule, L. Geneticd ifferentiation of oak populations within the Quercus robur/Quercus petraea complex in Central and Eastern Europe. Heredity 2001, 86, 557–563. [CrossRef]
- Degen, B.; Yanbaev, Y.; Mader, M.; Ianbaev, R.; Bakhtina, S.; Schroeder, H.; Blanc-Jolivet, C. Impact of Gene Flow and Introgression on the Range Wide Genetic Structure of Quercus robur (L.) in Europe. Forests 2021, 12, 1425. [CrossRef]
- Yakovlev, I.A.; Kleinschmidt, J. Genetic differentiation of pedunculate oak Quercus robur L. in the European part of Russia based on RAPD markers. Russ. J. Genet. 2002, 38, 148–155. [CrossRef]
- Gabitova, А.А.; Yanbaev, R.Yu.; Redkina N.N. High genetic polymorphism in a population of the English oak in the lowlands of Western Ural’s macro-slope. Vestn. Bashk. Univ. Ser. Biol. 2015, 20, 854–856. (In Russian with English Abstract).
- Chokheli, V.; Kagan, D.I.; Varduny, T.V.; Kozlovsky, B.; Sereda, M.; Kapralova, O.A.; Dmitriev, P.; Padutov, V.E. Ecological and genetic differentiation of populations of Quercus robur L. in the Rostov Region with the use of ISSR-markers. Turczaninowia 2018, 21, 161–167. [CrossRef]
- Ballian, D.; Belletti, P.; Ferrazzini, D.; Bogunić, F.; Kajba, D. Genetic variability of pedunculate oak (Quercus robur L.) in Bosnia and Herzegovina. Period. Biol. 2010, 112, 353–362. https://hrcak.srce.hr/58180.
- Degen, B.; Yanbaev, Y.; Ianbaev, R.; Bakhtina, S.; Tagirova, A. Genetic diversity and differentiation among populations of the pedunculate oak (Quercus robur) at the eastern margin of its range based on a new set of 95 SNP loci. J. For. Res. 2021, 32, 2237–2243. [CrossRef]
- Avanzi, C.; Bagnoli, F.; Romiti, E.; Spanu, I.; Tsuda, Y.; Vajana, E.; Vendramin, G.G.; Piotti, A. The latitudinal trend in genetic diversity and distinctiveness of Quercus robur rear edge forest remnants calls for new conservation priorities. bioRxiv, 2023; advance online publication. [CrossRef]
- Di Pietro, R.; Quaranta, L.; Mattioni, C.; Simeone, M.C.; Di Marzio, P.; Proietti, E.; Fortini, P. Chloroplast Haplotype Diversity in the White Oak Populations of the Italian Peninsula, Sicily, and Sardinia. Forests 2024, 15, 864. [CrossRef]
- Neophytou, C.; Aravanopoulos, F.A.; Fink, S.; Dounavi, A. Detecting interspecific and geographic differentiation patterns in two interfertile oak species (Quercus petraea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers. For. Ecol. Manag. 2010, 259, 2026–2035. [CrossRef]
- Milesi, P., Kastally, C., Dauphin, B. et al. Resilience of genetic diversity in forest trees over the Quaternary. Nat. Commun. 2024, 15, 8538. [CrossRef]
- Kremer, A.; Delcamp, A.; Lesur, I.; Wagner, S.; Rellstab, C.; Guichoux, E.; Leroy, T. Whole-genome screening for near-diagnostic genetic markers for four western European white oak species identification. Ann. For. Sci., 2024, 81, 21. [CrossRef]
- Jurkšienė, G., Baranov, O.Y., Kagan, D.I.; Kovalevič-Razumova, O.A.; Baliuckas V. Genetic diversity and differentiation of pedunculate (Quercus robur) and sessile (Q. petraea) oaks. J. For. Res. 2020, 31, 2445–2452. [CrossRef]
- Leroy, T.; Louvet, J.-M.; Lalanne, C.; Le Provost, G.; Labadie, K.; Aury, J.-M., Delzon, S.; Plomion, C.; Kremer, A. Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytol. 2020, 226, 1171–1182. [CrossRef]
- Leroy, T.; Rougemont, Q.; Dupouey, J-L.; Bodénès, C.; Lalanne, C.; Belser, C.; Labadie, K.; Le Provost, G.; Aury, J-M.; Kremer, A. et al. Massive postglacial gene flow between European white oaks uncovered genes underlying species barriers. New Phytol. 2020, 226, 1183–1197. [CrossRef]
- Cannon, C. H.; Petit, R. J. The oak syngameon: More than the sum of its parts. New Phytol. 2020, 226, 978–983. [CrossRef]
- Karunarathne, P.; Zhou, Q.; Lascoux, M.; Milesi, P. Hybridization mediated range expansion and climate change resilience in two keystone tree species of boreal forests. Global Change Biol. 2024, 30, e17262. [CrossRef]
- Zhou, Q.; Karunarathne, P.; Andersson-Li, L.; Chen, C.; Opgenoorth, L.; Heer, K.; Piotti, A.; Vendramin, G.G.; Nakvasina, E.; Lascoux, M.; Milesi, P. Recurrent hybridization and gene flow shaped Norway and Siberian spruce evolutionary history over multiple glacial cycles. Mol. Ecol. 2024, 33. e17495. [CrossRef]
- Leroy, T.; Roux, C.; Villate, L.; Bodénès, C.; Romiguier, J.; Paiva, J.A.P.; Dossat, C.; Aury, J.-M.; Plomion, C.; Kremer, A. Extensive recent secondary contacts between four European white oak species. New Phytol. 2017, 214, 865–878. [CrossRef]
- Fu, R.; Zhu, Y.; Liu, Y.; Feng, Y.; Lu, R.; Li, Y.; Li, P.; Kremer, A.; Lascoux, M.; Chen, J. Genome-wide analyses of introgression between two sympatric Asian oak species. Nat. Ecol. Evol. 2022, 6, 924–935. [CrossRef]
- Correia, B.; Valledor, L.; Meijón, M.; Rodriguez, J.L.; Dias, M.C.; Santos, C.; Cañal, M.J.; Rodriguez, R.; Pinto, G. Is the interplay between epigenetic markers related to the acclimation of cork oak plants to high temperatures? PLoS ONE 2013, 8, e53543. [CrossRef]
- Sork V.L.; Browne L.; Fitz-Gibbon S.; Pellegrini, M. Potential Role of Epigenetic Processes in Oak Populations. Int. Oaks 2019, 30, 177–184. https://www.internationaloaksociety.org/content/potential-role-epigenetic-processes-oak-populations.
- Escandón, M.; Castillejo, M.Á.; Jorrín-Novo, J.V.; Rey, M.-D. Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. Forests 2021, 12, 364. [CrossRef]
- Silva, H.G.; Sobral, R.S.; Magalhães, A.P.; Morais-Cecílio, L.; Costa, M.M.R. Genome-Wide Identification of Epigenetic Regulators in Quercus suber L. Int. J. Mol. Sci. 2020, 21, 3783. [CrossRef]
- Labella-Ortega, M. Genetic and epigenetic bases of Quercus ilex variability. PhD Thesis, Universidad de Córdoba, Andalusia, Spain, 2024. http://hdl.handle.net/10396/28495.
- Gugger, P.F.; Fitz-Gibbon, S.T.; Pellegrini, M.; Sork, V.L. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Mol. Ecol. 2016, 25, 1665–1680. [CrossRef]
- Platt, A.; Gugger, P.F.; Pellegrini, M.; Sork, V.L. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations. Mol. Ecol. 2015, 24, 3823–3830. [CrossRef]
- Fuchs, J.; Jovtchev, G.; Schubert, I. The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms. Chromosome Res. 2008, 16, 891–898. [CrossRef]
- Vičić, V.; Barišić, D.; Horvat, T.; Biruš, I.; Zoldos, V. Epigenetic characterization of chromatin in cycling cells of pedunculate oak, Quercus robur L. Tree Genet. Genomes 2013, 9, 1247–1256. [CrossRef]
- Rubio, B.; Provost, GL.; Brachi, B.; Gerardin, T.; Brendel, O.; Tost, J.; Daviaud, C.; Gallusci, P. Species-specific epigenetic responses to drought stress of two sympatric oak species reflect their ecological preferences. bioRxiv 2023. [CrossRef]
- Lesur, I.; Rogier, O.; Sow, M.D.; Boury, C.; Duplan, A.; Garnier, A.; Senhaji-Rachik, A.; Civan, P.; Daron, J.; Delaunay, A.; Duvaux, L.; Benoit, V.; Guichoux, E.; Le Provost, G.; Sanou, E.; Ambroise, C.; Plomion, C.; Salse, J.; Segura, V.; Tost, J.; Maury, S. A strategy for studying epigenetic diversity in natural populations: proof of concept in poplar and oak. J. Exp. Bot. 2024, 75, 5568–5584. [CrossRef]
- Lesur, I.; Le Provost, G.; Bento, P.; Da Silva, C.; Leplé, J.-C.; Murat, F.; Ueno, S.; Bartholomé, J.; Lalanne, C.; Ehrenmann, F.; et al. The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genomics 2015, 16, 112. [CrossRef]
- Derory, J.; Léger, P.; Garcia, V.; Schaeffer, J.; Hauser, M.T.; Salin, F.; Luschnig, C.; Plomion, C.; Glössl, J.; Kremer, A. Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytol. 2006, 170, 723–738. [CrossRef]
- Kóscielniak, P.; Glazínska, P.; Zadworny, M. OakRootRNADB—a consolidated RNA-seq database for coding and noncoding RNA in roots of pedunculate oak (Quercus robur). Database 2022, 2022, article ID baac097. [CrossRef]
- Baliuckas, V.; Pliura, A. Genetic variation and phenotypic plasticity of Quercus robur populations and open-pollinated families in Lithuania. Scand. J. For. Res. 2003, 18, 305–319. [CrossRef]
- Hautsalo, J.; Mathieu, P.; Elshibli, S.; Vakkari, P.; Raisio, J.; Pulkkinen, P. Variation in height and survival among northern populations of pedunculate oak (Quercus robur L.): Results of a 13-year field study. Silva Fenn. 2015, 49, 1274. [CrossRef]
- George, J.P.; Theroux-Rancourt, G.; Rungwattana, K.; Scheffknecht, S.; Momirovic, N.; Neuhauser, L.; Weißenbacher, L.; Watzinger, A.; Hietz, P. Assessing adaptive and plastic responses in growth and functional traits in a 10-year-old common garden experiment with pedunculate oak (Quercus robur L.) suggests that directional selection can drive climatic adaptation. Evol. Appl. 2020, 13, 2422–2438. [CrossRef]
- Kaplina N. F. Influence of Crown Development on Radial Increment of Early and Late Stem Wood of Quercus Robur. Vestnik Povolzhskogo Gosudarstvennogo Tekhnologicheskogo Universiteta. Seriya: Les. Ekologiya. Prirodopol’zovaniye (Vestnik of Volga State University of Technology. Ser.: Forest. Ecology. Nature Management) 2019, 2, 17–25. (In Russian with English Abstract). [CrossRef]
- Semerikov L.F.; Glotov N.V. Population structure of pedunculate oak. In Physiological and population variability. Collection of scientific papers. Saratov, 1983; pp. 81– 83. (In Russian).
- Gneusheva, T.M.; Kozhevnikov, A.P.; Krutov, A.P. Intraspecific differentiationof English oak (Quercus robur l.) into intrapopulation groups, geographical and ecological populations in different parts of the area. Scientific News of Belgorod State University. Series: Natural Sciences 2012, 9, 5–8. (In Russian with English Abstract) https://elibrary.ru/download/elibrary_17952322_23558175.pdf.
- Kryukova, S.A.; Shirnin V. K. Fruiting of oak forests and plus-sized oak trees. Lesotekhnicheskii zhurnal (Forestry Engineering Journal) 2016, 2, 22–30. (In Russian with English Abstract). [CrossRef]
- Storozhenko, V.G., Chebotarev, P.A., Chebotareva, V.V. and Zasadnaya, V.A. Wood Biomass Stock Allocated to the Main Forest-Forming Species of the Southern Forest Steppes’ Stands. Lesovedenie 2020, 4, 327–334. (In Russian with English Abstract). [CrossRef]
- Chernodubov, A.I. Variability of acorns of the Voronezh upland oak grove. Actual directions of scientific research of the XXI century: theory and practice 2018, 6, 277–280. (In Russian with English Abstract).
- McClory, R.; Ellis, R.H.; Lukac, M.; Clark, J. Pollen source affects acorn production in pedunculate oak (Quercus robur L.). J. For. Res. 2024, 35, 1–9. [CrossRef]
- Batos, B. Diversity of Pedunculate Oak (Quercus robur L.); Foundation Andrejević: Belgrade, Serbia, 2012; ISBN 1450-801X.
- Batos, B.; Miljković, D. Pollen viability in Quercus robur L. Arch. Biol. Sci. 2017, 69, 111–117. [CrossRef]
- Silchenko, I.I. Phenological forms of pedunculate oak (Quercus robur L.) in various types of landscapes of the Bryansk region. Bull. Bryansk State Univ. 2012, 4, 158–161. Available online: https://cyberleninka.ru/article/n/fenologicheskie-formy-duba-chereshchatogo-quercus-robur-l-v-razlichnyh-tipah-landshaftov-bryanskoy-oblasti (accessed on 25 October 2024). (In Russian).
- Danilov, M.D.; Guryev, V.D.; Fedorov, P.N. Some features of the population structure of pedunculate oak under conditions of the northeastern part of its range. In Regularities of intraspecific variability of deciduous tree species; Mamaev, S.A., Makhnev, A.K., Eds.; Ural Scientific Center of the USSR Academy of Sciences: Sverdlovsk, Russia, 1975; Issue 91, pp. 13–17.
- Efimov, Y.P. On the question of the territorial distribution of the phenological forms of the petiolate oak. Genet. Village Fam. Introd. For. Species 1975, 2, 37–45. (In Russian).
- En’kova, E.I. Tellermanovskii Les i ego Vosstanovlenie (Tellerman Forest and Its Recovery); Voronezh Gos. Univ.: Voronezh, Russia, 1976; 214p. (In Russian).
- Puchałka, R.; Koprowski, M.; Przybylak, R. Fenologia liści i ksylogeneza w zróżnicowanej wiekowo populacji dębu szypułkowego. Klimatyczne uwarunkowania życia lasu. In Proceedings of the Ogólnopolska Konferencja Naukowa, Streszczenia Referatów, Rogów, Poland, 16–17 June 2015; pp. 16–17.
- Slepykh, O.O. Rhythm of phenology and distribution phenological forms of Pedunculate oak (Quercus robur L.) in Donetsk region. Biol. Syst. 2016, 8, 272–279.
- Wesołowski, T.; Rowiński, P. Late leaf development in pedunculate oak (Quercus robur): An antiherbivore defence? Scand. J. For. Res. 2008, 23, 386–394. [CrossRef]
- Orlović, S.; Šimunovački, D.; Djorđević, Z.; Pilipović, A.; Radosavljević, N. Očuvanje Genofonda I Proizvodnja Semena Hrasta Lužnjaka (Quercus robur L.). In 250 Godina Ravnog Srema; Vojvodinašume: Petrovaradin, Serbia, 2008; 378 p., ISBN 978-86-906665-1-5.
- Batos, B.; Miljković, D.; Ninić-Todorović, J. Length of vegetation period as parameter of common oak (Quercus robur L.) phenological variability. Genetika 2012, 44, 139–152. [CrossRef]
- Utkina, I.; Rubtsov, V. Studies of Phenological Forms of Pedunculate Oak. Contemp. Probl. Ecol. 2017, 10, 804–811. [CrossRef]
- Pirko, Y.V.; Netsvetov, M.; Kalafat, L.O.; Pirko, N.M.; Rabokon, A.M.; Privalikhin, S.M.; Demkovich, A.Y.; Bilonozhko, Y.O.; Blume, Y.B. Genetic features of the phenological forms of Quercus robur (Fagaceae) according to the analysis of the introns polymorphism of β-tubulin genes and microsatellite loci. Ukr. Bot. J. 2018, 75, 489–500. [CrossRef]
- Ueno, S.; Klopp, C.; Noirot, C.; Léger, V.; Prince, E.; Kremer, A.; Plomion, C.; Le Provost, G. Detection of genes involved in bud phenology in sessile oak (Quercus petraea Matt. Liebl) combining digital expression analysis and Q-PCR. BMC Proc. 2011, 5, 20. [CrossRef]
- Batos, B.; Šešlija Jovanović, D.; Miljković, D. Spatial and temporal variability of flowering in the pedunculate oak (Quercus robur L.). Šumarski List 2014, 7–8, 371–379. https://hrcak.srce.hr/129595.
- Andrić, I.; Jazbec, A.; Pintar, V.; Kajba, D. Modelling the timing of leaf unfolding in pedunculate oak (Quercus robur L.) clonal seed orchard. Šumarski List 2018, 142, 137–148. [CrossRef]
- Tikvić, I.; Seletković, Z.; Ugarković, D. The relationship between phenoform development of pedunculate oak and forest soil microclimate. Glasnik za Šumske Pokuse 2006, 5, 91–104. https://www.cabidigitallibrary.org/doi/full/10.5555/20063205030.
- Chokheli, V.; Kozlovsky, B.; Sereda, M.; Lysenko, V.; Fesenko, I.; Varduny, T.; Kapralova, O.; Bondarenko, E. Preliminary comparative analysis of phenological varieties of Quercus robur by ISSR-markers. J. Bot. 2016, 2016, 7910451. [CrossRef]
- Puchałka, R.; Koprowski, M.; Przybylak, J.; Przybylak, R.; Dąbrowski, H.P. Did the late spring frost in 2007 and 2011 affect tree-ring width and earlywood vessel size in Pedunculate oak (Quercus robur) in northern Poland? Int. J. Biometeorol. 2016, 60, 1143–1150. [CrossRef]
- Puchałka, R.; Koprowski, M.; Gričar, J.; Przybylak, R. Does tree-ring formation follow leaf phenology in Pedunculate oak (Quercus robur L.)? Eur. J. For. Res. 2017, 136, 259–268. [CrossRef]
- Kitin, P. Dynamics of cambial activity in the stem of early- and late-flushing forms of oak (Quercus robur vars. praecox and tardiflora) in the Park of Freedom, Sofia. Nauk za Gorata 1992, 27, 3–13.
- Kostić, S.; Orlović, S.; Karaklić, V.; Kesić, L.; Zorić, M.; Stojanović, D.B. Allometry and Post-Drought Growth Resilience of Pedunculate Oak (Quercus robur L.) Varieties. Forests 2021, 12, 930. [CrossRef]
- Koval, I.M.; Kostyashkin, D.C. The influence of climate and recreation on formation of layers of annual wood of early and late forms Quercus robur L. in Kharkiv. Greenbelt. Sci. Bull. UNFU 2015, 25, 52–58.
- Bobinac, M.; Batos, B.; Miljković, D.; Radulović, S. Polycyclism and phenological variability in the common oak (Quercus robur L.). Arch. Biol. Sci. 2012, 64, 97–105. [CrossRef]
- Levlev, V.V. Ecotypes and Forms of the Petiolate Oak in the Voronezh Nature Reserve: Abstract of the Dissertation of the Phd of Agricultural Sciences; Voronezh State Forestry Academy: Voronezh, Russia, 1970; 20p. (In Russian).
- Lukyanets, V.B. Intraspecific Variability of the Petiolate Oak in the Central Forest-Steppe; Voronezh Gos. Univ.: Voronezh, Russia, 1979; 215p. (In Russian).
- Shitov, V.P. The Form Diversity of Floodplain Oak Forests of Polesie and the Ways of Their Economic Use: Abstract of the Dissertation of the Phd of Agricultural Sciences; BGU: Bryansk, Russia, 1986; 25p. (In Russian).
- Shutyaev, A.M. Biodiversity of the Pedunculate oak (Quercus robur L.) and Its Use in Breeding and Afforestation: Abstract of the Dissertation of the Dr. Agricultural Sciences; Research Institute of Forest Genetics and Breeding: Bryansk, Russia, 1998; 43p. (In Russian).
- Kobranov, N.P. Oak Breeding; New Village: Voronezh, Russia, 1925; 25p, Available online: http://lestehjournal.ru/sites/default/files/journal_pdf/81-98.pdf (accessed on 25 October 2022). (In Russian).
- Pukacka, S. Wzrost i rozwój. In Dęby. Quercus robur L., Quercus petraea Liebl; Bugała, W., Ed.; Nasze Drzewa Leśne: Kórnik, Poland, 2006; Volume 11, pp. 165–303.
- Antin, C.; Pélissier, R.; Vincent, G.; Couteron, P. Crown allometries are less responsive than stem allometry to tree size and habitat variations in an Indian monsoon forest. Trees Struct. Funct. 2013, 27, 1485–1495. [CrossRef]
- Rubtsov, V.V.; Utkina, I.A. Adaptatsionnyye Reaktsii Duba na Defoliatsiyu; Institute of Forestry of the Russian Academy of Sciences: Moscow, Russia, 2008; 302p. (In Russian).
- Vikhrov, V.E. Stroenie i Fiziko-Mekhanicheskie Svoistva Drevesiny duba; Izd-vo Akademii nauk SSSR: Moskva, Russia, 1954; 264p. (In Russian).
- van Asch, M.; Visser, M.E. Phenology of forest caterpillars and their host trees: The importance of synchrony. Ann. Rev. Entomol. 2007, 52, 37–55. [CrossRef]
- Wagenhoff, E.; Blum, R.; Engel, K.; Veit, H.; Delb, H. Temporal synchrony of Thaumetopoea processionea egg hatch and Quercus robur budburst. J. Pest Sci. 2013, 86, 193–202. [CrossRef]
- Milenin, A.I.; Popova, A.A.; Shestibratov, K.A. Effect of Type of Forest Growth Conditions and Climate Elements on the Dynamics of Radial Growth in English Oak (Quercus robur L.) of Early and Late Phenological Forms. Forests 2023, 14, 11. [CrossRef]
- Denk, T.; Grimm, G.W.; Manos, P.S.; Deng, M.; Hipp, A.L. An Updated Infrageneric Classification of the Oaks: Review of Previous Taxonomic Schemes and Synthesis of Evolutionary Patterns. In Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.; Gil-Pelegrín, E., Peguero-Pina, J., Sancho-Knapik, D., Eds.; Springer: Cham, Switzerland, 2017; Volume 7, pp. 13–38. ISBN 3319690981. [CrossRef]
- Hipp, A.L.; Manos, P.S.; González-Rodríguez, A.; Hahn, M.; Kaproth, M.; McVay, J.D.; Avalos, S.V.; Cavender-Bares, J. Sympatric Parallel Diversification of Major Oak Clades in the Americas and the Origins of Mexican Species Diversity. New Phytol. 2018, 217, 439–452. [CrossRef]
- Hipp, A.L.; Manos, P.S.; Hahn, M.; Avishai, M.; Bodénès, C.; Cavender-Bares, J.; Crowl, A.A.; Deng, M.; Denk, T.; Fitz-Gibbon, S.; et al. Genomic Landscape of the Global Oak Phylogeny. New Phytol. 2020, 226, 1198–1212. [CrossRef]
- Kremer, A.; Abbott, A.G.; Carlson, J.E.; Manos, P.S.; Plomion, C.; Sisco, P.; Staton, M.E.; Ueno, S.; Vendramin, G.G. Genomics of Fagaceae. Tree Genet. Genomes 2012, 8, 583–610. [CrossRef]
- Petit, R.J.; Brewer, S.; Bordács, S.; Burg, K.; Cheddadi, R.; Coart, E.; Coart, E.; Cottrell, J.; Csaikl, U.M.; van Damh, B.; et al. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For. Ecol. Manag. 2002, 156, 49–74. [CrossRef]
- Kremer, A.; Hipp, A.L. Oaks: an evolutionary success story. New Phytol. 2020, 226, 987–1011. [CrossRef]
- Gosling, R.H.; Jackson, R.W.; Elliot, M.; Nichols, C.P. Oak declines: Reviewing the evidence for causes, management implications and research gaps. Ecol. Solut. Evid. 2024, 5, e12395. [CrossRef]
- Sever, K.; Bogdan, S.; Škvorc, Ž. Response of photosynthesis, growth, and acorn mass of pedunculate oak to different levels of nitrogen in wet and dry growing seasons. J. For. Res. 2023, 34, 167–176. [CrossRef]
- Kebert, M.; Kostić, S.; Stojnić, S.; Čapelja, E.; Markić, A.G.; Zorić, M.; Kesić, L.; Flors, V. A Fine-Tuning of the Plant Hormones, Polyamines and Osmolytes by Ectomycorrhizal Fungi Enhances Drought Tolerance in Pedunculate Oak. Int. J. Mol. Sci. 2023, 24, 7510. [CrossRef]
- Trudić, B.; Draškić, G.; Le Provost, G.; Stojnić, S.; Pilipović, A.; Ivezić, A. Expression profiles of 11 candidate genes involved in drought tolerance of pedunculate oak (Quercus robur L.). Possibilities for genetic monitoring of the species. Silvae Genet. 2021, 70, 226–234. [CrossRef]
- Bose, A.K.; Scherrer, D.; Camarero, J.J.; Ziche, D.; Babst, F.; Bigler, C.; Bolte, A.; Dorado-Liñán, I.; Etzold, S.; Fonti, P.; et al. Climate Sensitivity and Drought Seasonality Determine Post-Drought Growth Recovery of Quercus petraea and Quercus robur in Europe. Sci. Total Environ. 2021, 784, 147222. [CrossRef]
- Basu, S.; Stojanović, M.; Jevsenak, J.; Buras, A.; Pipíšková, V.; Svetlik, J. Ecological responses of pedunculate oak and narrow-leaved ash to varying groundwater levels in a South Moravian floodplain forest. In Book of Abstracts TRACE 2024 – Tree Rings in Archaeology, Climatology and Ecology, The annual meeting and international conference of the Association for Tree-Ring Research (ATR), Brașov, Romania, 3-8 June 2024, p. 59. https://silvic.unitbv.ro/images/conferinte/trace2024/TRACE2024_Book_of_abstracts.pdf.
- Basu, S.; Stojanović, M.; Jevšenak, J.; Buras, A.; Kulhavý, J.; Hornová, H.; Světlík, J. Pedunculate oak is more resistant to drought and extreme events than narrow-leaved ash in Central European floodplain forests. For. Ecol. Manag. 2024, 561, 121907. [CrossRef]
- Kesić, L.; Čater, M.; Orlović, S.; Matović, B.; Stojanović, M.; Bojović, M. Proximity to riverbed influences physiological response of adult pedunculate oak trees. Topola 2023, 211, 21–28. [CrossRef]
- Resente, G.; Di Fabio, A.; Scharnweber, T.; Gillert, A.; Crivellaro, A.; Anadon-Rosell, A.; Trouillier, M.; Kreyling, J.; Wilmking, M. The importance of variance and microsite conditions for growth and hydraulic responses following long-term rewetting in pedunculate oak wood. Trees 2024, 38, 1161–1175. [CrossRef]
- Gérard, B. (2008). Search for physiological markers of tolerance to waterlogging in pedunculate oak (Quercus robur L.) and sessile oak (Quercus petraea [Mattus.] Liebl. PhD Thesis, University of Franche-Comté, Besançon, France. (In French with English Abstract). https://theses.hal.science/tel-00725019.
- Le Provost, G.; Lesur, I.; Lalanne, C.; Da Silva, C.; Labadie, K.; Aury, J.M.; Leple, J.C.; Plomion, C. Implication of the suberin pathway in adaptation to waterlogging and hypertrophied lenticels formation in pedunculate oak (Quercus robur L.). Tree Physiol. 2016, 36, 1330–1342. [CrossRef]
- Perić, S.; Jazbec, A.; Medak, J.; Topić, V.; Ivanković, M.). Analysis of biomass of 16th Pedunculate Oak provenances. Period. Biol. 2006, 108, 649–653. https://www.cabidigitallibrary.org/doi/full/10.5555/20073035730.
- Popović, V.; Vemić, A.; Jovanović, S.; Lučić, A.; Rakonjac, L.; Ivanović, B.; Miljković, D. The influence of origin on the quality of pedunculate oak (Quercus robur L.) seedlings. Reforesta 2024, 17, 32–40. [CrossRef]
- Dewan, S.; De Frenne, P.; Kepfer-Rojas, S.; Wasof, S.; Vander Mijnsbrugge, K.; Verheyen, K. Weak but Persistent Provenance Effects Modulate the Response of Quercus robur (Fagaceae) Seedlings to Elevated Temperature. Ecoevorxiv 2021. [CrossRef]
- Cuza, P. Differences between provenances and pedunculate oak (Quercus robur) trees after the lethal dose (LD50) of electrolyte leakage. Studia Universitatis Moldaviae. Seria Științe ale Naturii 2023, 6, 46–52. (In Moldavian with English Abstract). [CrossRef]
- Ballian, D.; Hodžić, M.M.; Kvesić, S. Grouping of Pedunculate Oak Populations (Quercus robur L.) Based on Morphological Characteristics and Ecological Vegetation Zoning of Bosnia and Herzegovina. … 2017, 17/18, 150-181.
- Ballian, D.; Hodžić, M.M. Preliminary assessment of genetic gain through the selection of different pedunculate oak populations in provenance test. Genet. Appl. 2022, 6, 61–69. [CrossRef]
- Ugarković, D.; Tikvić, I.; Mikac, S.; Stankić, I.; Balta, D. The influence of changing climate extremes on the ecological niche of pedunculated oak in Croatia. South-East Eur. For. 2016, 7, 143–148. [CrossRef]
- Sonesson, K.; Drobyshev, I. Recent advances on oak decline in southern Sweden. Ecol. Bull. 2010, 53, 197–208. http://www.jstor.org/stable/41442031.
- Repo, T.; Volanen, V.; Pulkkinen, P. No difference in the maximum frost hardiness of different pedunculate oak populations in Finland. Silva Fennica 2022, 56, 10620. [CrossRef]
- Franzén, M.; Hall, M.; Sunde, J.; Forsman, A. Regeneration patterns of native and introduced oak species in Sweden: Investigating the roles of latitude, age, and environmental gradients. For. Ecol. Manag. 2024, 561, 121871. [CrossRef]
- Firmat, C.; Delzon, S.; Louvet, JM.; Parmentier, J.; Kremer, A. Evolutionary dynamics of the leaf phenological cycle in an oak metapopulation along an elevation gradient. J. Evol. Biol. 2017, 30, 2116–2131. [CrossRef]
- Caignard, T.; Kremer, A.; Firmat, C.; Nicolas, M.; Venner, S.; Delzon, S. Increasing spring temperatures favor oak seed production in temperate areas. Sci. Rep. 2017, 7, 8555. [CrossRef]
- Hanley, M.E.; Cook, B.I.; Fenner, M. Climate Variation, Reproductive Frequency and Acorn Yield in English Oaks. J. Plant Ecol. 2019, 12, 542–549. [CrossRef]
- Netsvetov, M.; Sergeyev, M.; Nikulina, V.; Korniyenko, V.; Prokopuk, Y. The climate to growth relationships of pedunculate oak in steppe. Dendrochronologia 2017, 44, 31–38. [CrossRef]
- Kalisty, A. Influence of pluvial and thermal conditions on radial growth of pedunculate oak (Quercus robur L.) in western and north–eastern Poland. Master Thesis, Bialystok University of Technology, Białystok, Poland, 2022.
- Ianbaev, R.Y.; Bakhtina, S.Y.; Sadykov, A.K. Climatic response in radial increment of pedunculate oak stands in the Southern Urals. In Forest ecosystems under climate change: biological productivity and remote monitoring: compendium of research papers; Kurbanov, E.A., Ed.; Volga State University of Technology: Yoshkar-Ola, Russia, 2023; Volume 9, pp. 45–52. (In Russian with English Abstract). [CrossRef]
- Rellstab, C., Zoller, S., Walthert, L., Lesur, I., Pluess, A. R., Graf, R., Bodénès, C., Sperisen, C., Kremer, A., Gugerli, F. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol. Ecol. 2016, 25, 5907–5924. [CrossRef]
- Saleh, D.; Chen, J.; Leplé, J.-C.; Leroy, T.; Truffaut, L.; Dencausse, B.; Lalanne, C.; Labadie, K.; Lesur, I.; Bert, D.; Lagane, F.; Morneau, F.; Aury, J.-M.; Plomion, C.; Lascoux, M.; Kremer, A. Genome-wide evolutionary response of European oaks during the Anthropocene. Evol. Lett. 2022, 6, 4–20. [CrossRef]
- Puchałka, R.; Prislan, P.; Klisz, M.; Koprowski, M.; Gričar, J. Tree-ring formation dynamics in Fagus sylvatica and Quercus petraea in a dry and a wet year. Dendrobiology 2024, 91, 1–15. [CrossRef]
- Hlásny, T.; Mátyás, C.; Seidl, R.; Kulla, L.; Merganicova, K.; Trombik, J.; Dobor, L.; Barcza, Z.; Konopka, B. Climate change increases the drought risk in Central European forests: What are the options for adaptation? Lesn. Cas. For. J. 2014, 60, 5–18. [CrossRef]
- Bussotti, F.; Pollastrini, M.; Holland, V.; Brüggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Exp. Bot. 2015, 111, 91–113. [CrossRef]
- Meger, J.; Ulaszewski, B.; Chmura, D.J.; Burczyk, J. Signatures of local adaptation to current and future climate in phenology-related genes in natural populations of Quercus robur. BMC Genomics 2024, 25, 78. [CrossRef]
- Lazic, D.; Hipp, A.L.; Carlson, J.E.; Gailing, O. Use of Genomic Resources to Assess Adaptive Divergence and Introgression in Oaks. Forests 2021, 12, 690. [CrossRef]
- Cavender-Bares, J.; Reich, P.B. Shocks to the system: Community assembly of the oak savanna in a 40-year fire frequency experiment. Ecology 2012, 93, S52–S69. [CrossRef]
- Cavender-Bares, J. Diversification, Adaptation, and Community Assembly of the American Oaks (Quercus), a Model Clade for Integrating Ecology and Evolution. New Phytol. 2019, 221, 669–692. [CrossRef]
- Sean, C.T. Genetic vs. phenotypic responses of trees to altitude. Tree Physiol. 2011, 31, 1161–1163. [CrossRef]
- Bresson, C.C.; Vitasse, Y.; Kremer, A.; Delzon, S. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiol. 2011, 31, 1164–1174. [CrossRef]
- Chai, Y.; Zhang, X.; Yue M.; Liu, X.; Li, Q.; Shang, H.; Meng, Q.; Zhang, R. Leaf traits suggest different ecological strategies for two Quercus species along an altitudinal gradient in the Qinling Mountains. J. For. Res. 2015, 20, 501–513. [CrossRef]
- Kaproth, M.A.; Fredericksen, B.W.; Antonio González-Rodríguez, A.; Hipp, A.L.; Cavender-Bares, J. Drought response strategies are coupled with leaf habit in 35 evergreen and deciduous oak (Quercus) species across a climatic gradient in the Americas. New Phytol. 2023, 239, 888–904. [CrossRef]
- Liu, D.; Guo, H.; Yan, L.-P.; Gao, L.; Zhai, S.; Xu, Y. Physiological, Photosynthetic and Stomatal Ultrastructural Responses of Quercus acutissima Seedlings to Drought Stress and Rewatering. Forests 2024, 15, 71. [CrossRef]
- Xiong, S.; Wang, Y.; Chen, Y.; Gao, M.; Zhao, Y.; Wu, L. Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China. Plants 2022, 11, 679. [CrossRef]
- Tikhomirova, T.S.; Krutovsky, K.V.; Shestibratov, K.A. Molecular Traits for Adaptation to Drought and Salt Stress in Birch, Oak and Poplar Species. Forests 2023, 14, 7. [CrossRef]
- Klekowski, E.J. Genetic load and its causes in long-lived plants. Trees 2, 195–203 (1988). [CrossRef]
- Burian, A.; de Reuille, P.B.; Kuhlemeier, C. Patterns of Stem Cell Divisions Contribute to Plant Longevity. Curr. Biol. 2016, 26, 1385–1394. [CrossRef]
- Padovan, A.; Keszei, A.; Foley, W.J.; Kulheim, C. Differences in gene expression within a striking phenotypic mosaic Eucalyptus tree that varies in susceptibility to herbivory. BMC Plant Biol. 2013, 13, 29. [CrossRef]
- Tobias, P.A.; Guest, D.I. Tree immunity: Growing old without antibodies. Trends Plant Sci. 2014, 19, 367–370. [CrossRef]
- Schmid-Siegert, E.; Sarkar, N.; Iseli, C.; Calderon, S.; Gouhier-Darimont, C.; Chrast, J.; Cattaneo, P.; Schütz, F.; Farinelli, L.; Pagni, M.; et al. Low number of fixed somatic mutations in a long-lived oak tree. Nat. Plants 2017, 3, 926–929. [CrossRef]
- Biondi, F.; Meko, D.M.; Piovesan, G. Maximum Tree Lifespans Derived from Public-Domain Dendrochronological Data. iScience 2023, 26, 106138. [CrossRef]
- Popov, V.N.; Syromyatnikov, M.Yu.; Franceschi, C.; Moskalev, A.A.; Krutovsky, K.V. Genetic mechanisms of aging in plants: What can we learn from them? Ageing Res. Rev. 2022, 77, 101601. [CrossRef]
- Batalova, A.Y.; Krutovsky, K.V. Genetic and epigenetic mechanisms of longevity in forest trees. Int. J. Mol. Sci. 2023, 24, 10403. [CrossRef]
- Cui, J.; Li, X.; Lu, Z.; Jin, B. Plant secondary metabolites involved in the stress tolerance of long-lived trees. Tree Physiol. 2024, 44, tpae002. [CrossRef]
- Liu, S.; Xu, H.; Wang, G.; Jin, B.; Cao, F.; Wang, L. Tree Longevity: Multifaceted Genetic Strategies and Beyond. Plant Cell Environ. 2024, online version. [CrossRef]
- Volkava, D.; Riha, K. Growing old while staying young: The unique mechanisms that defy aging in plants. EMBO reports 2024, 25, 934–938. [CrossRef]
- Ianbaev, R.Yu.; Bakhtina, S.Y.; Sadykov, A.K.; Yanbaev, Yu.A. Analysis of the relationship between climatic factors and genetic diver-sity of pedunculate oak populations in different parts of the Republic of Bashkortostan. Bulletin of Perm University. Biology 2022, 4, 327–334. (In Russian with English Abstract). [CrossRef]
- Kajba, D., Katičić, I. and Bogdan, S. Estimation of Genetic Parameters in Open Pollinated Progeny Trials from Plus trees of Pedunculate Oak (Quercus robur L.) Selected in Posavina and Podravina and Podunavlje Seed Zones. Croat. J. For. Eng. 2011, 32, 177–192. https://hrcak.srce.hr/68214.
- Fedorkov, A.L. Phenotypical selection in forest breeding. Lesovedenie 2019, 6, 580–584. (In Russian with English Abstract). [CrossRef]
- Herzog, S. Genetic inventory of European oak populations: Consequences for breeding and gene conservation. Ann. For. Sci. 1996, 53, 783–793. [CrossRef]
- Kostrikin, V.A.; Shirnin, V.K.; Kryukova, S.A. Criteria for Assessment of Plus Oak Stands. Lesnoy Zhurnal (Forestry Journal) 2021, 4, 68–79. (In Russian with English Abstract). [CrossRef]
- Shirnin, V.C.; Kryukova, S.A. Modeling the perfect grade common oak high quality wood. In Current research trends of the XXI century: Theory and Practice; G.F. Morozov Voronezh State Forest Engineering University: Voronezh, Russia, 2015; Vol. 3, No. 9, Part 3, pp. 396–400 (In Russian with English Abstract). https://elibrary.ru/download/elibrary_25116505_76094796.pdf. [CrossRef]
- Tsarev, A.P.; Laur, N.V.; Tsarev, V.A.; Tsareva, R.P. The Current State of Forest Breeding in the Russian Federation: The Trend of Recent Decades. Lesnoy Zhurnal (Forestry Journal) 2021, 6, 38–55. (In Russian with English Abstract). https://elibrary.ru/download/elibrary_47312335_38202950.pdf. [CrossRef]
- Sukhorukikh, Y.I.; Biganova, S.G. Selection Criteria for Plus Stands in Field-Protective Forest Belts in the North-Western Caucasus. Lesotekhnicheskii zhurnal (Forestry Engineering Journal) 2023, 13, 102–116. (In Russian with English Abstract). [CrossRef]
- Trudić, B.; Avramidou, E.; Fussi, B.; Neophytou, C.; Stojnić, S.; Pilipović, A. Conservation of Quercus robur L. genetic resources in its south-eastern refugium using SSR marker system–a case study from Vojvodina province, Serbia. Austrian J. For. Sci. 2021, 138, 117–140.
- Stojnić, S.; Trudić, B.; Galović, V.; Šimunovački, Đ.; Đorđević, B.; Rađević, V.; Orlović, S. Conservation of pedunculate oak (Quercus robur L.): Genetic resources at the territory of public enterprise ’Vojvodinašume’. Topola (Poplar) 2014, 193/194, 47–71. (In Serbian with English Abstract and Summary).
- Fedorkov, A.L. Forest Tree Breeding and Genetic Diversity of Wood Species. Lesnoy Zhurnal (Forestry Journal) 2024, 1, 23–32. [CrossRef]
- Lebedev, V.G.; Lebedeva, T.N.; Chernodubov, A.I.; Shestibratov, K.A. Genomic Selection for Forest Tree Improvement: Methods, Achievements and Perspectives. Forests 2020, 11, 1190. [CrossRef]
- Grattapaglia, D. Twelve Years into Genomic Selection in Forest Trees: Climbing the Slope of Enlightenment of Marker Assisted Tree Breeding. Forests 2022, 13, 1554. [CrossRef]
- Sharma, U.; Sankhyan, H.P.; Kumari, A.; Thakur, S.; Thakur, L.; Mehta, D.; Sharma, S.; Sharma, S.; Sankhyan, N. Genomic selection: A revolutionary approach for forest tree improvement in the wake of climate change. Euphytica 2024, 220, 9. [CrossRef]
- Alexandre, H.; Truffaut, L.; Klein, E.; Ducousso, A.; Chancerel, E.; Lesur, I.; Dencausse, B.; Louvet, J.-M.; Nepveu, G.; Torres-Ruiz, J.M.; et al. How does contemporary selection shape oak phenotypes? Evol. Appl. 2020, 13, 2772–2790. [CrossRef]
- Caignard, T.; Truffaut, L.; Delzon, S.; Dencausse, B.; Lecacheux, L.; Torres-Ruiz, J. M.; Kremer, A. Fluctuating selection and rapid evolution of oaks during recent climatic transitions. Plants People Planet 2024, 6, 221–237. [CrossRef]
| Assembly (Type) | GenBank Accession # | Level | Release | WGS Accession | Scaffold Count | Genome Size, Mbp | Submitter |
|---|---|---|---|---|---|---|---|
| ASM301314v1 (haploid) | GCA_003013145.1 | Scaffold | Mar, 2018 | PVWZ01 | 84,416 | 719.6 | Swiss Institute of Bioinformatics |
| dhQueRobu3.1 (principal haplotype of diploid) | GCA_932294415.1 (NCBI RefSeq) | Chromosome | Mar, 2022 | CAKOAN01 | 95 | 789.2 | Wellcome Sanger Institute |
| dhQueRobu3.1 (alternate haplotype of diploid) | GCA_932294425.1 | Scaffold | Mar, 2022 | CAKOAP01 | 1,219 | 762.4 | Wellcome Sanger Institute |
| Q_robur_v1 | GCA_900291515.1 | Scaffold | Mar, 2018 | OLKR01 | 550 | 814.3 | Genoscope CEA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
