Submitted:
18 November 2024
Posted:
19 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eichelbaum M, Ekbom K, Bertilsson L et al. Plasma kinetics of carbamazepine and its epoxide metabolite in man after single and multiple doses. Eur J Clin Pharmacol 1975; 8: 337-341. [CrossRef]
- Rane A, Hojer B, Wilson JT. Kinetics of carbamazepine and its 10,11-epoxide metabolite in children. Clin Pharmacol Ther 1976; 19: 276-283.
- Thorn CF, Leckband SG, Kelsoe J et al. PharmGKB summary: carbamazepine pathway. Pharmacogenet Genomics 2011; 21: 906-910.
- Zybina A, Anshakova A, Malinovskaya J et al. Nanoparticle-based delivery of carbamazepine: A promising approach for the treatment of refractory epilepsy. Int J Pharm 2018; 547: 10-23. [CrossRef]
- Yakusheva EN, Titov DS. Structure and Function of Multidrug Resistance Protein 1. Biochemistry (Mosc) 2018; 83: 907-929. [CrossRef]
- Hodges LM, Markova SM, Chinn LW et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics 2011; 21: 152-161.
- Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005; 2: 86-98.
- Potschka H, Fedrowitz M, Loscher W. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. Neuroreport 2001; 12: 3557-3560. [CrossRef]
- Ma A, Wang C, Chen Y, Yuan W. P-glycoprotein alters blood-brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy. Drug Des Devel Ther 2013; 7: 1447-1454.
- Ferreira A, Rodrigues M, Fortuna A et al. Flavonoid compounds as reversing agents of the P-glycoprotein-mediated multidrug resistance: An in vitro evaluation with focus on antiepileptic drugs. Food Res Int 2018; 103: 110-120. [CrossRef]
- Zhang C, Zuo Z, Kwan P, Baum L. In vitro transport profile of carbamazepine, oxcarbazepine, eslicarbazepine acetate, and their active metabolites by human P-glycoprotein. Epilepsia 2011; 52: 1894-1904. [CrossRef]
- Bankstahl M, Klein S, Romermann K, Loscher W. Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice. Neuropharmacology 2016; 109: 183-195.
- Owen A, Pirmohamed M, Tettey JN et al. Carbamazepine is not a substrate for P-glycoprotein. Br J Clin Pharmacol 2001; 51: 345-349. [CrossRef]
- Crowe A, Teoh YK. Limited P-glycoprotein mediated efflux for anti-epileptic drugs. J Drug Target 2006; 14: 291-300. [CrossRef]
- Sandow N, Kim S, Raue C et al. Drug resistance in cortical and hippocampal slices from resected tissue of epilepsy patients: no significant impact of p-glycoprotein and multidrug resistance-associated proteins. Front Neurol 2015; 6: 30. [CrossRef]
- Summers MA, Moore JL, McAuley JW. Use of verapamil as a potential P-glycoprotein inhibitor in a patient with refractory epilepsy. Ann Pharmacother 2004; 38: 1631-1634.
- Zhang C, Kwan P, Zuo Z, Baum L. The transport of antiepileptic drugs by P-glycoprotein. Adv Drug Deliv Rev 2012; 64: 930-942.
- Sauna ZE, Kim IW, Ambudkar SV. Genomics and the mechanism of P-glycoprotein (ABCB1). J Bioenerg Biomembr 2007; 39: 481-487. [CrossRef]
- Leschziner GD, Andrew T, Pirmohamed M, Johnson MR. ABCB1 genotype and PGP expression, function and therapeutic drug response: a critical review and recommendations for future research. Pharmacogenomics J 2007; 7: 154-179.
- Djordjevic N, Milovanovic DD, Radovanovic M et al. CYP1A2 genotype affects carbamazepine pharmacokinetics in children with epilepsy. Eur J Clin Pharmacol 2016; 72: 439-445.
- Horita N, Kaneko T. Genetic model selection for a case-control study and a meta-analysis. Meta Gene 2015; 5: 1-8.
- Hoffmeyer S, Burk O, von Richter O et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97: 3473-3478.
- Kimchi-Sarfaty C, Marple AH, Shinar S et al. Ethnicity-related polymorphisms and haplotypes in the human ABCB1 gene. Pharmacogenomics 2007; 8: 29-39.
- Ameyaw MM, Regateiro F, Li T et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001; 11: 217-221.
- Jeannesson E, Albertini L, Siest G et al. Determination of ABCB1 polymorphisms and haplotypes frequencies in a French population. Fundam Clin Pharmacol 2007; 21: 411-418.
- Tan EK, Drozdzik M, Bialecka M et al. Analysis of MDR1 haplotypes in Parkinson's disease in a white population. Neurosci Lett 2004; 372: 240-244.
- Ho GT, Nimmo ER, Tenesa A et al. Allelic variations of the multidrug resistance gene determine susceptibility and disease behavior in ulcerative colitis. Gastroenterology 2005; 128: 288-296.
- Rideg O, Haber A, Botz L et al. Pilot study for the characterization of pharmacogenetically relevant CYP2D6, CYP2C19 and ABCB1 gene polymorphisms in the Hungarian population. Cell Biochem Funct 2011; 29: 562-568.
- Cascorbi I, Gerloff T, Johne A et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther 2001; 69: 169-174.
- Milojkovic M, Stojnev S, Jovanovic I et al. Frequency of the C1236T, G2677T/A and C3435T MDR1 gene polymorphisms in the Serbian population. Pharmacol Rep 2011; 63: 808-814.
- Mijac D, Vukovic-Petrovic I, Mijac V et al. MDR1 gene polymorphisms are associated with ulcerative colitis in a cohort of Serbian patients with inflammatory bowel disease. PLoS One 2018; 13: e0194536.
- Nurmohamed L, Garcia-Bournissen F, Buono RJ et al. Predisposition to epilepsy--does the ABCB1 gene play a role? Epilepsia 2010; 51: 1882-1885.
- Gogou M, Pavlou E. Efficacy of antiepileptic drugs in the era of pharmacogenomics: A focus on childhood. Eur J Paediatr Neurol 2019; 23: 674-684.
- Li H, Wang B, Chang C et al. The roles of variants in human multidrug resistance (MDR1) gene and their haplotypes on antiepileptic drugs response: a meta-analysis of 57 studies. PLoS One 2015; 10: e0122043.
- Hunt R, Sauna ZE, Ambudkar SV et al. Silent (synonymous) SNPs: should we care about them? Methods Mol Biol 2009; 578: 23-39.
- Tanabe M, Ieiri I, Nagata N et al. Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 2001; 297: 1137-1143.
- Kim RB, Leake BF, Choo EF et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70: 189-199.
- Tang K, Ngoi SM, Gwee PC et al. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics 2002; 12: 437-450.
- Fromm, MF. The influence of MDR1 polymorphisms on P-glycoprotein expression and function in humans. Adv Drug Deliv Rev 2002; 54: 1295-1310.
- Mathijssen RH, Marsh S, Karlsson MO et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 2003; 9: 3246-3253.
- Schaich M, Kestel L, Pfirrmann M et al. A MDR1 (ABCB1) gene single nucleotide polymorphism predicts outcome of temozolomide treatment in glioblastoma patients. Ann Oncol 2009; 20: 175-181.
- Rodriguez Novoa S, Barreiro P, Rendon A et al. Plasma levels of atazanavir and the risk of hyperbilirubinemia are predicted by the 3435C-->T polymorphism at the multidrug resistance gene 1. Clin Infect Dis 2006; 42: 291-295.
- Haas DW, Smeaton LM, Shafer RW et al. Pharmacogenetics of long-term responses to antiretroviral regimens containing Efavirenz and/or Nelfinavir: an Adult Aids Clinical Trials Group Study. J Infect Dis 2005; 192: 1931-1942. [CrossRef]
- Kimchi-Sarfaty C, Oh JM, Kim IW et al. A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 2007; 315: 525-528.
- Yamauchi A, Ieiri I, Kataoka Y et al. Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. Transplantation 2002; 74: 571-572.
- Salama NN, Yang Z, Bui T, Ho RJ. MDR1 haplotypes significantly minimize intracellular uptake and transcellular P-gp substrate transport in recombinant LLC-PK1 cells. J Pharm Sci 2006; 95: 2293-2308. [CrossRef]
- Loscher W, Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther 2002; 301: 7-14.
- Tishler DM, Weinberg KI, Hinton DR et al. MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 1995; 36: 1-6.
- Weiss J, Kerpen CJ, Lindenmaier H et al. Interaction of antiepileptic drugs with human P-glycoprotein in vitro. J Pharmacol Exp Ther 2003; 307: 262-267. [CrossRef]
- Maines LW, Antonetti DA, Wolpert EB, Smith CD. Evaluation of the role of P-glycoprotein in the uptake of paroxetine, clozapine, phenytoin and carbamazapine by bovine retinal endothelial cells. Neuropharmacology 2005; 49: 610-617.
- Baltes S, Gastens AM, Fedrowitz M et al. Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology 2007; 52: 333-346.
- Luna-Tortos C, Fedrowitz M, Loscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 2008; 55: 1364-1375.
- Leandro K, Bicker J, Alves G et al. ABC transporters in drug-resistant epilepsy: mechanisms of upregulation and therapeutic approaches. Pharmacol Res 2019; 144: 357-376.
- Puranik YG, Birnbaum AK, Marino SE et al. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics 2013; 14: 35-45.
- Shen XM, Cheng J. Effects of MDR1 (C3435T) Polymorphism on Resistance, Uptake, and Efflux to Antiepileptic Drugs. DNA Cell Biol 2019; 38: 250-255.
- Meng H, Ren J, Lv Y et al. Association study of CYP3A5 genetic polymorphism with serum concentrations of carbamazepine in Chinese epilepsy patients. Neurology Asia 2011; 16: 39-45.
- Seo T, Ishitsu T, Ueda N et al. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics 2006; 7: 551-561.
- Subenthiran S, Abdullah NR, Joseph JP et al. Linkage disequilibrium between polymorphisms of ABCB1 and ABCC2 to predict the treatment outcome of Malaysians with complex partial seizures on treatment with carbamazepine mono-therapy at the Kuala Lumpur Hospital. PLoS One 2013; 8: e64827.
- Sterjev Z, Trencevska GK, Cvetkovska E et al. The association of C3435T single-nucleotide polymorphism, Pgp-glycoprotein gene expression levels and carbamazepine maintenance dose in patients with epilepsy. Neuropsychiatr Dis Treat 2012; 8: 191-196.
- Subenthiran S, Abdullah NR, Muniandy PK et al. G2677T polymorphism can predict treatment outcome of Malaysians with complex partial seizures being treated with Carbamazepine. Genet Mol Res 2013; 12: 5937-5944.
- Ozgon GO, Bebek N, Gul G, Cine N. Association of MDR1 (C3435T) polymorphism and resistance to carbamazepine in epileptic patients from Turkey. Eur Neurol 2008; 59: 67-70.
- Hung CC, Chang WL, Ho JL et al. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics 2012; 13: 159-169.
- Haerian BS, Lim KS, Mohamed EH et al. Lack of association of ABCB1 and PXR polymorphisms with response to treatment in epilepsy. Seizure 2011; 20: 387-394.
- Lakhan R, Misra UK, Kalita J et al. No association of ABCB1 polymorphisms with drug-refractory epilepsy in a north Indian population. Epilepsy Behav 2009; 14: 78-82.
- Grover S, Bala K, Sharma S et al. Absence of a general association between ABCB1 genetic variants and response to antiepileptic drugs in epilepsy patients. Biochimie 2010; 92: 1207-1212.
- Emich-Widera E, Likus W, Kazek B et al. CYP3A5*3 and C3435T MDR1 polymorphisms in prognostication of drug-resistant epilepsy in children and adolescents. Biomed Res Int 2013; 2013: 526837.
- Kudriakova TB, Sirota LA, Rozova GI, Gorkov VA. Autoinduction and steady-state pharmacokinetics of carbamazepine and its major metabolites. Br J Clin Pharmacol 1992; 33: 611-615.
- Frigerio A, Fanelli R, Biandrate P et al. Mass spectrometric characterization of carbamazepine-10,11-epoxide, a carbamazepine metabolite isolated from human urine. J Pharm Sci 1972; 61: 1144-1147.
- Bertilsson L, Tomson T. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide. An update. Clin Pharmacokinet 1986; 11: 177-198.
- Fortuna A, Alves G, Falcao A, Soares-da-Silva P. Evaluation of the permeability and P-glycoprotein efflux of carbamazepine and several derivatives across mouse small intestine by the Ussing chamber technique. Epilepsia 2012; 53: 529-538.
- Bourgeois BF, Wad N. Individual and combined antiepileptic and neurotoxic activity of carbamazepine and carbamazepine-10,11-epoxide in mice. J Pharmacol Exp Ther 1984; 231: 411-415.
- Hung CC, Tai JJ, Lin CJ et al. Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response. Pharmacogenomics 2005; 6: 411-417.
- Jung R, Bentley P, Oesch F. Influence of carbamazepine 10,11-oxide on drug metabolizing enzymes. Biochem Pharmacol 1980; 29: 1109-1112.
- Panesar SK, Bandiera SM, Abbott FS. Comparative effects of carbamazepine and carbamazepine-10,11-epoxide on hepatic cytochromes P450 in the rat. Drug Metab Dispos 1996; 24: 619-627.
- Kerr BM, Thummel KE, Wurden CJ et al. Human liver carbamazepine metabolism. Role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 1994; 47: 1969-1979.
- Mahmood I, Duan J. Population pharmacokinetics with a very small sample size. Drug Metabol Drug Interact 2009; 24: 259-274.
- Pynnonen S, Sillanpaa M, Frey H, Iisalo E. Carbamazepine and its 10,11-epoxide in children and adults with epilepsy. Eur J Clin Pharmacol 1977; 11: 129-133. [CrossRef]
- Rylance GW, Edwards C, Gard PR. Carbamazepine 10,11-epoxide in children. Br J Clin Pharmacol 1984; 18: 935-939.
| Observed frequency | 95% Confidence interval | ||
|---|---|---|---|
| Allele | |||
| rs1128503 (1236T) | 0.479 (45/94) | 0.381, 0.579 | |
| rs2032582 (2677T/A) | 0.489 (44/94) | 0.391, 0.589 | |
| rs1045642 (3435T) | 0.521 (49/94) | 0.421, 0.619 | |
| Genotype | |||
| rs1128503 (1236C>T) | CC | 0.234 (11/47) | 0.135, 0.375 |
| CT | 0.574 (27/47) | 0.433, 0.705 | |
| TT | 0.191 (9/47) | 0.103, 0.329 | |
| rs2032582 (2677G>T/A) | GG | 0.255 (12/47) | 0.152, 0.397 |
| GT | 0.511 (24/47) | 0.373, 0.647 | |
| GA | 0.000 (0/47) | 0.000, 0.092 | |
| TT | 0.191 (9/47) | 0.103, 0.329 | |
| AT | 0.043 (2/47) | 0.005, 0.152 | |
| AA | 0.000 (0/47) | 0.000, 0.092 | |
| rs1045642 (3435C>T) | CC | 0.149 (7/47) | 0.072, 0.281 |
| CT | 0.660 (31/47) | 0.516, 0.778 | |
| TT | 0.191 (9/47) | 0.103, 0.329 | |
| Diplotype 1236-2677-3435* | |||
| C-G-C/C-G-C | 0.064 (3/47) | 0.016, 0.180 | |
| C-G-C/C-G-T | 0.128 (6/47) | 0.057, 0.257 | |
| C-G-C/T-T-T | 0.362 (17/47) | 0.240, 0.505 | |
| T-T-T/T-T-T | 0.128 (6/47) | 0.057, 0.257 | |
| NONMEM | Bootstrap Analysis | |||
|---|---|---|---|---|
| Parameter | Estimate | 95% CI* | Estimate | 95% CI‡ |
| CL/F (l/h) | 0.175 | 0.14 – 0.21 | 0.170 | 0.16 – 0.19 |
| SEX | 0.0403 | 0.0324 – 0.0482 | 0.0401 | 0.0269 – 0.0537 |
| DD (mg/l) | 0.000151 | 0.000097 – 0.000205 | 0.000154 | 0.00011 – 0.00019 |
| CYP1A2 | 0.0176 | 0.0133 – 0.0219 | 0.0181 | 0.0163 – 0.0199 |
| ABCB1 | 0.0332 | 0.0235 – 0.0429 | 0.0329 | 0.023 – 0.0367 |
| ω2CL | 0.0361 | 0.0216 – 0.0506 | 0.0385 | 0.0308 – 0.0415 |
| σ2 | 0.025 | 0.0191 – 0.0309 | 0.0257 | 0.022 – 0.0294 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
