Submitted:
01 November 2024
Posted:
01 November 2024
You are already at the latest version
Abstract
Keywords:
MSC: 40A05; 65B10
1. Introduction
2. Commuting Operators and Spectral Degeneration
3. Evaluation of ’s Matrix Elements
4. On the Twistability of Anisotropic Gaussian Schell-Model Sources
5. Conclusions
6. Proof of Eq. (11)
7. Proof of Eq. (39)
8. On the Van Valkenburgh Extended Wigner Distribution Function
9. Proof of Eq. (43)
10. Proof of Eq. (45)
Acknowledgments
References
- R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95-109 (1993). [CrossRef]
- A.T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818-1826 (1994). [CrossRef]
- R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal mode spectrum,” J. Opt. Soc. Am. A 10, 2008-2016 (1993).
- R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017-2023 (1993). [CrossRef]
- R. Simon and N. Mukunda, “Twist phase in Gaussian-beam optics,” J. Opt. Soc. Am. A 15, 2373-2382 (1998). [CrossRef]
- R. Simon and N. Mukunda, “Shape-invariant anisotropic Gaussian Schell-model beams: a complete characterization,” J. Opt. Soc. Am. A 15, 1361-1370 (1998). [CrossRef]
- R. Simon and N. Mukunda, “Optical phase space, Wigner representation, and invariant quality parameters,” J. Opt. Soc. Am. A 17, 2440-2463 (2000). [CrossRef]
- R. Borghi, F, Gori, G. Guattari, and M. Santarsiero “Twisted Schell-model beams with axial symmetry,” Opt. Lett. 19, 4504 - 4507 (2015).
- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge).
- M. Van Valkenburgh, “Laguerre–Gaussian modes and the Wigner transform,” J. Mod. Opt. 55, 3537 - 3549 (2008).
- Y. A. Brychkov, New Indefinite and Definite Integrals of Elementary and Special Functions (A. A. Dorodnicyn Computing Center of the Russian Academy of Sciences, 2014).
- National Institute of Standards and Technology, Digital Library of Mathematical Functions, http://dlmf.nist.gov/.
- K. Driver and P. Duren, “Zeros of the hypergeometric polynomials F(-n,b;2b;z),” Indag. Math. 11, 43 - 51 (2000).
- K. Driver and P. Duren, “Zeros of ultraspherical polynomials and the Hilbert–Klein formulas,” J. Comput. Appl. Math. 135, 293 - 301 (2001). [CrossRef]
- A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and Series (Gordon Breach, 1986), Vol. I.
- R. Simon and G. Agarwal, “Wigner representation of Laguerre-Gaussian beams,” Opt. Lett. 25, 1313-1315 (2000).
| 1 | We did this evaluation with the help the laterst release (14.1) of Mathematica. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
