Submitted:
25 October 2024
Posted:
25 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Plasma from the Thermodynamical Point of View
1.2. Plasma States of Equilibrium
1.3. Plasma Spectroscopy
1.4. Enhanced Emission from Plasmas Induced by Laser Interaction with Nanomaterials
2. Materials and Methods in NELIBS and NELIPS
3. Results
4. Discussion
- The threshold of plasma ignition of the pure nanomaterial by laser is much smaller than the corresponding bulk counterpart.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Symbols

References
- Chen, Francis F. Introduction to Plasma Physics and Controlled Fusion, 2016. [CrossRef]
- Fujimoto, T. “Plasma Spectroscopy.” In Plasma Polarization Spectroscopy, edited by Takashi Fujimoto and Atsushi Iwamae, 44:29–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. [CrossRef]
- Kunze, Hans-Joachim. Introduction to Plasma Spectroscopy. Vol. 56. Springer Series on Atomic, Optical, and Plasma Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. [CrossRef]
- Hora, H. Plasmas at High Temperature and Density Applications and Implications of Laser-Plasma Interaction; Lecture Notes in Physics Monographs; Softcover reprint of the original 1st ed. 1991. 2014. [Google Scholar]
- Miziolek, Andrzej W. , V. Palleschi, and Israel Schechter, eds. Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications. Cambridge, UK; New York: Cambridge University Press, 2006; ISBN 9780521852746. [Google Scholar]
- Bellan, P.M. Fundamentals of Plasma Physics; Cambridge University Press: Cambridge ; New York, 2006; ISBN 9780511160967.
- Linne, M. Spectroscopic Measurement An Introduction to the Fundamentals; An Elsevier Science Imprint: London, 2002; ISBN 0-12-451071-X. [Google Scholar]
- Ussenov, Y. A., T. S. Ramazanov, K. N. Dzhumagulova, and M. K. Dosbolayev. Application of Dust Grains and Langmuir Probe for Plasma Diagnostics. EPL (Europhysics Letters) 2014, 105, 15002. [Google Scholar] [CrossRef]
- El Sherbini, Ashraf M. , Abdelnasser M. Aboulfotouh, and Christian G. Parigger. Electron Number Density Measurements Using Laser-Induced Breakdown Spectroscopy of Ionized Nitrogen Spectral Lines. Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 125, 152–58. [Google Scholar] [CrossRef]
- Ralchenko, Yuri, ed. Modern Methods in Collisional-Radiative Modeling of Plasmas. Vol. 90. Springer Series on Atomic, Optical, and Plasma Physics. Cham: Springer International Publishing, 2016. [CrossRef]
- Van Sijde, B. Der, J. J. A. M. Van Der Mullen, and D. C. Schram. Collisional Radiative Models in Plasmas. Beiträge Aus Der Plasmaphysik 1984, 24, 447–73. [Google Scholar] [CrossRef]
- Cremers, David A., and Leon J. Radziemski. Handbook of Laser-Induced Breakdown Spectroscopy. 1st ed. Wiley, 2013. [CrossRef]
- Konjević, N.; Dimitrijević, M.S.; Wiese, W.L. Experimental Stark Widths and Shifts for Spectral Lines of Neutral Atoms (A Critical Review of Selected Data for the Period 1976 to 1982). Journal of Physical and Chemical Reference Data 1984, 13, 619–647. [Google Scholar] [CrossRef]
- Griem, H.R. (1964) Plasma spectroscopy. McGrow-Hill, Inc.
- Fikry M, Alhijry IA, Aboulfotouh AM, El Sherbini AM. Feasibility of Using Boltzmann Plots to Evaluate the Stark Broadening Parameters of Cu(I) Lines. Applied Spectroscopy. 2021, 75, 1288–1295. [Google Scholar] [CrossRef]
- Kramida, Alexander, and Yuri Ralchenko. “NIST Atomic Spectra Database, NIST Standard Reference Database 78.” National Institute of Standards and Technology, 1999. [CrossRef]
- Konjević, N. Plasma Broadening and Shifting of Non-Hydrogenic Spectral Lines: Present Status and Applications. Physics Reports 1999, 316, 339–401. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; El Sherbini, Th.M.; Hegazy, H.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; Tognoni, E. Evaluation of Self-Absorption Coefficients of Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy Measurements. Spectrochimica Acta Part B: Atomic Spectroscopy 2005, 60, 1573–1579. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; El Sherbini, A.E.; Parigger, C.G. Measurement of Electron Density from Stark-Broadened Spectral Lines Appearing in Silver Nanomaterial Plasma. Atoms 2018, 6, 44. [Google Scholar] [CrossRef]
- Holstein, T. Imprisonment of Resonance Radiation in Gases. Phys. Rev. 1947, 72, 1212–1233. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; Hegazy, H.; El Sherbini, Th.M. Measurement of Electron Density Utilizing the Hα-Line from Laser Produced Plasma in Air. Spectrochimica Acta Part B: Atomic Spectroscopy 2006, 61, 532–539. [Google Scholar] [CrossRef]
- Chan, G.C.-Y.; Hieftje, G.M.; Omenetto, N.; Axner, O.; Bengtson, A.; Bings, N.H.; Blades, M.W.; Bogaerts, A.; Bolshov, M.A.; Broekaert, J.A.C.; et al. EXPRESS: Landmark Publications in Analytical Atomic Spectrometry: Fundamentals and Instrumentation Development. Appl Spectrosc 2024, 00037028241263567. [Google Scholar] [CrossRef] [PubMed]
- Alhijry, I.A.; El Sherbini, A.M.; El Sherbini, T.M. Measurement of Deviations of Transition Probability of the Neutral Silver Lines at 827.35 and 768.77 Nm Using OES-Technique. Journal of Quantitative Spectroscopy and Radiative Transfer 2020, 245, 106922. [Google Scholar] [CrossRef]
- Sherbini, A.M.E.; Aboulfotouh, A.-N.; Rashid, F.; Allam, S.H.; Al-Kaoud, A.M.; Dakrouri, A.E.; Sherbini, T.M.E. Spectroscopic Measurement of Stark Broadening Parameter of the 636.2 Nm Zn I-Line. NS 2013, 5, 501–507. [Google Scholar] [CrossRef]
- Grünberger, S.; Ehrentraut, V.; Eschlböck-Fuchs, S.; Hofstadler, J.; Pissenberger, A.; Pedarnig, J.D. Overcoming the Matrix Effect in the Element Analysis of Steel: Laser Ablation-Spark Discharge-Optical Emission Spectroscopy (LA-SD-OES) and Laser-Induced Breakdown Spectroscopy (LIBS). Analytica Chimica Acta 2023, 1251, 341005. [Google Scholar] [CrossRef]
- Wang, Q.; Xiangli, W.; Teng, G.; Cui, X.; Wei, K. A Brief Review of Laser-Induced Breakdown Spectroscopy for Human and Animal Soft Tissues: Pathological Diagnosis and Physiological Detection. Applied Spectroscopy Reviews 2021, 56, 221–241. [Google Scholar] [CrossRef]
- Senesi, G.S.; Tempesta, G.; Manzari, P.; Agrosì, G. An Innovative Approach to Meteorite Analysis by Laser-Induced Breakdown Spectroscopy. Geostandard Geoanalytic Res 2016, 40, 533–541. [Google Scholar] [CrossRef]
- Jantzi, S.C.; Almirall, J.R. Characterization and Forensic Analysis of Soil Samples Using Laser-Induced Breakdown Spectroscopy (LIBS). Anal Bioanal Chem 2011, 400, 3341–3351. [Google Scholar] [CrossRef]
- Fabre, C. Advances in Laser-Induced Breakdown Spectroscopy Analysis for Geology: A Critical Review. Spectrochimica Acta Part B: Atomic Spectroscopy 2020, 166, 105799. [Google Scholar] [CrossRef]
- Khan, Z.H.; Ullah, M.H.; Rahman, B.; Talukder, A.I.; Wahadoszamen, Md.; Abedin, K.M.; Haider, A.F.M.Y. Laser-Induced Breakdown Spectroscopy (LIBS) for Trace Element Detection: A Review. Journal of Spectroscopy 2022, 2022, 1–25. [Google Scholar] [CrossRef]
- Ismail, M.A.; Imam, H.; Elhassan, A.; Youniss, W.T.; Harith, M.A. LIBS Limit of Detection and Plasma Parameters of Some Elements in Two Different Metallic Matrices. J. Anal. At. Spectrom. 2004, 19, 489. [Google Scholar] [CrossRef]
- Gautier, C.; Fichet, P.; Menut, D.; Dubessy, J. Applications of the Double-Pulse Laser-Induced Breakdown Spectroscopy (LIBS) in the Collinear Beam Geometry to the Elemental Analysis of Different Materials. Spectrochimica Acta Part B: Atomic Spectroscopy 2006, 61, 210–219. [Google Scholar] [CrossRef]
- Scaffidi, J.; Angel, S.M.; Cremers, D.A. Emission Enhancement Mechanisms in Dual-Pulse LIBS. Anal. Chem. 2006, 78, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Rohwetter, Ph.; Yu, J.; Méjean, G.; Stelmaszczyk, K.; Salmon, E.; Kasparian, J.; Wolf, J.-P.; Wöste, L. Remote LIBS with Ultrashort Pulses: Characteristics in Picosecond and Femtosecond Regimes. J. Anal. At. Spectrom. 2004, 19, 437–444. [Google Scholar] [CrossRef]
- EL Sherbini, A.M.; Aboulfotouh, A.; Rashid, F.F.; Allam, S.H.; Dakrouri, A.E.; EL Sherbini, Th.M. Observed Enhancement in LIBS Signals from Nano vs. Bulk ZnO Targets: Comparative Study of Plasma Parameters. WJNSE 2012, 2, 181–188. [Google Scholar] [CrossRef]
- De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell’Aglio, M.; De Pascale, O. Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy of Metallic Samples. Anal. Chem. 2013, 85, 10180–10187. [Google Scholar] [CrossRef]
- Feynman, R.P.; Robbins, J. The Pleasure of Finding Things out: The Best Short Works of Richard P. Feynman; Helix books; Perseus Books: Cambridge, Mass, 1999; ISBN 9780738201085. [Google Scholar]
- Asha, A.B.; Narain, R. Nanomaterials Properties. In Polymer Science and Nanotechnology; Elsevier, 2020; pp. 343–359 ISBN 9780128168066. [CrossRef]
- Joudeh, N.; Linke, D. Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J Nanobiotechnol 2022, 20, 262. [Google Scholar] [CrossRef]
- Campos, A.; Troc, N.; Cottancin, E.; Pellarin, M.; Weissker, H.-C.; Lermé, J.; Kociak, M.; Hillenkamp, M. Plasmonic Quantum Size Effects in Silver Nanoparticles Are Dominated by Interfaces and Local Environments. Nat. Phys. 2019, 15, 275–280. [Google Scholar] [CrossRef]
- Vollath, D.; Fischer, F.D.; Holec, D. Surface Energy of Nanoparticles – Influence of Particle Size and Structure. Beilstein J. Nanotechnol. 2018, 9, 2265–2276. [Google Scholar] [CrossRef]
- Li, S.; Meng Lin, M.; Toprak, M.S.; Kim, D.K.; Muhammed, M. Nanocomposites of Polymer and Inorganic Nanoparticles for Optical and Magnetic Applications. Nano Reviews 2010, 1, 5214. [Google Scholar] [CrossRef]
- Ohta, T.; Ito, M.; Kotani, T.; Hattori, T. Emission Enhancement of Laser-Induced Breakdown Spectroscopy by Localized Surface Plasmon Resonance for Analyzing Plant Nutrients. Appl Spectrosc 2009, 63, 555–558. [Google Scholar] [CrossRef]
- De Giacomo, A.; Gaudiuso, R.; Koral, C.; Dell’Aglio, M.; De Pascale, O. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of Nanoparticles Deposited on Sample Surface on Laser Ablation and Plasma Emission. Spectrochimica Acta Part B: Atomic Spectroscopy 2014, 98, 19–27. [Google Scholar] [CrossRef]
- De Giacomo, A.; Dell’Aglio, M.; Gaudiuso, R.; Koral, C.; Valenza, G. Perspective on the Use of Nanoparticles to Improve LIBS Analytical Performance: Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy (NELIBS). J. Anal. At. Spectrom. 2016, 31, 1566–1573. [Google Scholar] [CrossRef]
- Koral, C.; De Giacomo, A.; Mao, X.; Zorba, V.; Russo, R.E. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy for Improving the Detection of Molecular Bands. Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 125, 11–17. [Google Scholar] [CrossRef]
- Gaudiuso, R.; Koral, C.; Dell’Aglio, M.; De Pascale, O.; De Giacomo, A. Fundamental Study and Analytical Applications of Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) of Metals, Semiconductors and Insulators. In Nano-Optics: Principles Enabling Basic Research and Applications; Di Bartolo, B., Collins, J., Silvestri, L., Eds.; Springer Netherlands: Dordrecht, 2017; ISBN 9789402408485. [Google Scholar]
- Dell’Aglio, M.; Alrifai, R.; De Giacomo, A. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy (NELIBS), a First Review. Spectrochimica Acta Part B: Atomic Spectroscopy 2018, 148, 105–112. [Google Scholar] [CrossRef]
- Koral, C.; Dell’Aglio, M.; Gaudiuso, R.; Alrifai, R.; Torelli, M.; De Giacomo, A. Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy for the Noninvasive Analysis of Transparent Samples and Gemstones. Talanta 2018, 182, 253–258. [Google Scholar] [CrossRef]
- El Farash, A.; El Sherbini, A.; Helal, O.; El-Sherif, A. Enhanced Ti I Spectral Intensity Using NELIBS Technique. Eng. Sci. and Milit. Techno. 2019, 3, 84–90. [Google Scholar] [CrossRef]
- Tang, H.; Hao, X.; Hu, X. Spectral Enhancement Effect of LIBS Based on the Combination of Au Nanoparticles with Magnetic Field. Optik 2019, 179, 1129–1133. [Google Scholar] [CrossRef]
- Palásti, D.J.; Albrycht, P.; Janovszky, P.; Paszkowska, K.; Geretovszky, Z.; Galbács, G. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy of Liquid Samples by Using Modified Surface-Enhanced Raman Scattering Substrates. Spectrochimica Acta Part B: Atomic Spectroscopy 2020, 166, 105793. [Google Scholar] [CrossRef]
- De Giacomo, A.; Alrifai, R.; Gardette, V.; Salajková, Z.; Dell’Aglio, M. Nanoparticle Enhanced Laser Ablation and Consequent Effects on Laser Induced Plasma Optical Emission. Spectrochimica Acta Part B: Atomic Spectroscopy 2020, 166, 105794. [Google Scholar] [CrossRef]
- De Giacomo, A.; Dell’Aglio, M. Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) on Biological Samples. In Laser-Induced Breakdown Spectroscopy in Biological, Forensic and Materials Sciences; Galbács, G., Ed.; Springer International Publishing: Cham, 2022; ISBN 9783031145018. [Google Scholar]
- Khan, M.R.; Haq, S.U.; Abbas, Q.; Nadeem, A. Improvement in Signal Sensitivity and Repeatability Using Copper Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 2022, 195, 106507. [Google Scholar] [CrossRef]
- Dell’Aglio, M.; Di Franco, C.; De Giacomo, A. Different Nanoparticle Shapes for Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy: Nanosphere and Nanorod Effects. J. Anal. At. Spectrom. 2023, 38, 766–774. [Google Scholar] [CrossRef]
- Dell’Aglio, M.; Mallardi, A.; Gaudiuso, R.; Giacomo, A.D. Plasma Parameters During Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy (NELIBS) in the Presence of Nanoparticle–Protein Conjugates. Appl Spectrosc 2023, 77, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Awan, R.A.; Siraj, K.; Haq, S.U.; Abbas, Q.; Rahim, M.S.A.; Younas, Q.; Fareed, S.; Ahsen, R.; Ahmad, Z.; Irshad, M.; et al. Laser Induced Breakdown Spectroscopy of Aluminum Incorporated with Metallic Nanoparticles. Opt Quant Electron 2023, 55, 73. [Google Scholar] [CrossRef]
- Salajková, Z.; Dell’Aglio, M.; Gardette, V.; De Giacomo, A. Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy. In Laser Induced Breakdown Spectroscopy (LIBS); Singh, V.K., Tripathi, D.K., Deguchi, Y., Wang, Z., Eds.; Wiley, 2023; pp. 165–182 ISBN 9781119758402.
- Narlagiri, L.M.; Soma, V.R. Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy for Sensing Applications. In Laser Induced Breakdown Spectroscopy (LIBS); Singh, V.K., Tripathi, D.K., Deguchi, Y., Wang, Z., Eds.; Wiley, 2023; pp. 183–210 ISBN 9781119758402.
- Safi, A.; Landis, J.E.; Adler, H.G.; Khadem, H.; Eseller, K.E.; Markushin, Y.; Honarparvaran, S.; De Giacomo, A.; Melikechi, N. Enhancing Biomarker Detection Sensitivity through Tag-Laser Induced Breakdown Spectroscopy with NELIBS. Talanta 2024, 271, 125723. [Google Scholar] [CrossRef] [PubMed]
- Rashid, F.F.; ELSherbini, A.M.; Al-Muhamady, A. Strong Emission from Nano-Iron Using Laser-Induced Breakdown Spectroscopy Technique. Appl. Phys. A 2014, 115, 1395–1399. [Google Scholar] [CrossRef]
- EL Sherbini, A.M.; Galil, A.A.; Allam, S.H; EL Sherbini, Th.M. Nanomaterials Induced Plasma Spectroscopy. J. Phys.: Conf. Ser. 2014, 548, 012031. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; Parigger, C.G. Wavelength Dependency and Threshold Measurements for Nanoparticle-Enhanced Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 116, 8–15. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; Parigger, C.G. Nano-Material Size Dependent Laser-Plasma Thresholds. Spectrochimica Acta Part B: Atomic Spectroscopy 2016, 124, 79–81. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; El Sherbini, A.E.; Parigger, C.G. Measurement of Electron Density from Stark-Broadened Spectral Lines Appearing in Silver Nanomaterial Plasma. Atoms 2018, 6, 44. [Google Scholar] [CrossRef]
- Sherbini, A.M.E.; Sherbini, A.E.E.; Parigger, C.G.; Sherbini, T.M.E. Nano-Particle Enhancement of Diagnosis with Laser-Induced Plasma Spectroscopy. J. Phys.: Conf. Ser. 2019, 1253, 012002. [Google Scholar] [CrossRef]
- El Sherbini, A.M.; Hagrass, M.M.; Rizk, M.R.M.; El-Badawy, E.A. Plasma Ignition Threshold Disparity between Silver Nanoparticle-Based Target and Bulk Silver Target at Different Laser Wavelengths. Plasma Sci. Technol. 2019, 21, 015502. [Google Scholar] [CrossRef]
- Keldysh. L, Ionization in the field of a strong electromagnetic wave, Sov. Phys. J. Exp.Theory Phys. 1965, 20, 1307–1314. [Google Scholar]

| Species | Proper distribution | Proper expression |
|---|---|---|
| Atoms | Boltzmann | |
| Electrons | Maxwell | |
| Ions | Saha-Boltzmann | |
| Radiation | Planck |
| Electron density |
State of equilibrium | Conditions on temperatures | Applicable distribution functions |
|---|---|---|---|
| Complete Thermodynamical Equilibrium (CTE) |
Boltzmann Saha-Boltzmann Maxwell Planck |
||
| Local Thermodynamical Equilibrium (LTE) |
Boltzmann Saha-Boltzmann Maxwell |
||
| Partial Local Thermodynamical Equilibrium (PLTE) |
Boltzmann Maxwell |
||
| Corona state (Equilibrium) |
None of these distribution functions is applicable and Collisional-Radiative modeling should be constructed. |
| NELIPS | NELIBS | |
|---|---|---|
|
Pure-nanomaterial. [35,62,63,64,65,66,67,68]. | Thin layer of nanomaterial deposited on the surface of the analysed sample [36,43–61]. |
|
From the pure-nanomaterial [35,62–68]. | From the analysed sample material [36,43–61]. |
|
Modelling of the enhanced emission from pure-nanomaterials [35,64,65,68]. | Reduction of limit of detection LOD of the LIBS-spectrochemical technique [36,43,44,45,46,47,48,49,53,54]. |
|
Thermodynamics and plasma spectroscopy [64,65,66,67,68]. | Electromagnetic theory and plasma spectroscopy [36,44,53,56,61]. |
|
|
Suggested a resonance between the localized surface plasmons (LSPR) with frequency of the incident laser light, which enhances coupling of laser energy to substrate material [36,53]. |
|
|
|
|
|
|
|
|
The extra fine micro-analytical chemistry promoting the potential use of LIBS-technique in a wide variety of biological, industrial, material science applications. [43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
