Submitted:
22 October 2024
Posted:
23 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Background and Importance of Post-Exercise Recovery
1.1.1. The Crucial Role of Nutrition in Post-Exercise Recovery
1.1.2. Overview of Current Trends and Practices in Recovery Nutrition
1.2. Objective of the Review
2. Overview of Post-Exercise Recovery
2.1. Physiological Aspects of Recovery
2.2. Nutritional Needs for Effective Recovery
3. Role of Food Supplements in Post-Exercise Recovery
3.1. Types of Food Supplements
3.1.1. Protein Supplements (Whey, Casein, Plant-Based)
3.1.2. Branched-Chain Amino Acids (BCAAs)
3.1.3. Creatine
3.1.4. Electrolyte Supplements
3.2. Benefits and Potential Drawbacks of Food Supplements
4. Functional Foods and Their Impact on Recovery
4.1. Definition and Examples of Functional Foods
4.2. Functional Foods for Recovery
4.2.1. Dairy Products (e.g., Milk and Yogurt)
4.2.2. Anti-Inflammatory Foods (e.g., Tart Cherry Juice, Turmeric, and Other Fruit Juices)
4.2.3. Omega-3 Fatty Acids (e.g., Fish Oil)
5. Comparing Food Supplements and Functional Foods
5.1. Nutritional Efficacy
5.1.1. Protein and Muscle Recovery
5.1.2. Anti-Inflammatory and Oxidative Stress Management
5.2. Practicality and Usage
5.2.1. Convenience of Food Supplements
5.2.2. Sustainability of Functional Foods
5.3. Risks and Limitations
5.3.1. Over-Reliance on Supplements
5.3.2. Functional Foods and Accessibility
6. Future Directions and Emerging Perspectives
6.1. Innovations in Recovery Nutrition
6.1.1. Personalized Nutrition Plans Based on Genetic and Metabolic Profiling
6.1.2. Advances in Food Technology and Supplement Formulation
6.2. Potential Research Areas
6.2.1. Identifying New Functional Foods with Recovery Benefits
6.2.2. Long-Term Effects of Regular Use of Food Supplements and Functional Foods
6.2.3. Interactions between Different Nutritional Strategies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dupuy, O.; Douzi, W.; Theurot, D.; Bosquet, L.; Dugué, B. An Evidence-Based Approach for Choosing Post-exercise Recovery Techniques to Reduce Markers of Muscle Damage, Soreness, Fatigue, and Inflammation: A Systematic Review With Meta-Analysis. Front. Physiol. 2018, 9, 403. [Google Scholar] [CrossRef] [PubMed]
- Peake, J.; Neubauer, O.; Gatta, P.; Nosaka, K. Muscle Damage and Inflammation During Recovery from Exercise. J. Appl. Physiol. 2016, 122, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, D.; Pérez-Idárraga, A.; Odriozola-Martínez, A.; Kreider, R. The 4R’s Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates. Int. J. Environ. Res. Public Health 2020, 18, 103. [Google Scholar] [CrossRef] [PubMed]
- Beelen, M.; Burke, L.; Gibala, M.; Loon, L. Nutritional strategies to promote postexercise recovery. International journal of sport nutrition and exercise metabolism 2010, 20 6, 515–532. [Google Scholar] [CrossRef]
- Kellmann, M. Preventing Overtraining in Athletes in High-Intensity Sports and Stress/Recovery Monitoring. Scand. J. Med. Sci. Sports 2010, 20, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, J.G. Support Your Recovery Needs (SYRN) – A Systemic Approach to Improve Sport Performance. Biomed. Hum. Kinet. 2023, 15, 269–279. [Google Scholar] [CrossRef]
- Dhiman, C.; Kapri, B. Optimizing Athletic Performance and Post-Exercise Recovery: The Significance of Carbohydrates and Nutrition. Monten. J. Sports Sci. Med. 2023. [CrossRef]
- Snijders, T.; Res, P.; Smeets, J.; Vliet, S.; Kranenburg, J.; Maase, K.; Kies, A.; Verdijk, L.; Loon, L. Protein Ingestion before Sleep Increases Muscle Mass and Strength Gains during Prolonged Resistance-Type Exercise Training in Healthy Young Men. J. Nutr. 2015, 145, 1178–1184. [Google Scholar] [CrossRef]
- Gu, C. Role of Whey Protein in Post-Workout Recovery. Rev. Bras. Med. Esporte 2023. [CrossRef]
- Alghannam, A.; Gonzalez, J.; Betts, J. Restoration of Muscle Glycogen and Functional Capacity: Role of Post-Exercise Carbohydrate and Protein Co-Ingestion. Nutrients 2018, 10, 253. [Google Scholar] [CrossRef]
- Ryan, M.; Dudash, H.; Docherty, M.; Geronilla, K.; Geronilla, K.; Baker, B.; Haff, G.; Cutlip, R.; Cutlip, R.; Alway, S. Vitamin E and C Supplementation Reduces Oxidative Stress, Improves Antioxidant Enzymes, and Positive Muscle Work in Chronically Loaded Muscles of Aged Rats. Exp. Gerontol. 2010, 45, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Shirreffs, S.; Sawka, M. Fluid and Electrolyte Needs for Training, Competition, and Recovery. J. Sports Sci. 2011, 29 (suppl 1), S39–S46. [Google Scholar] [CrossRef] [PubMed]
- Castanho, R. da S. Major Nutrological Approaches to Macronutrients in the Performance and Body Composition of Highly Trained Athletes: A Systematic Review. Int. J. Nutrol. 2023, 16, 1–10. [Google Scholar] [CrossRef]
- Arent, S.M.; Cintineo, H.P.; McFadden, B.A.; Chandler, A.J.; Arent, M.A. Nutrient Timing: A Garage Door of Opportunity? Nutrients 2020, 12, 1948. [Google Scholar] [CrossRef]
- Lorinczova, H.; Deb, S.; Begum, G.; Renshaw, D.; Zariwala, M. Comparative Assessment of the Acute Effects of Whey, Rice, and Potato Protein Isolate Intake on Markers of Glycaemic Regulation and Appetite in Healthy Males Using a Randomised Study Design. Nutrients 2021, 13, 2157. [Google Scholar] [CrossRef]
- Howatson, G.; Hoad, M.; Goodall, S.; Tallent, J.; Bell, P.; French, D. Exercise-Induced Muscle Damage Is Reduced in Resistance-Trained Males by Branched Chain Amino Acids: A Randomized, Double-Blind, Placebo-Controlled Study. J. Int. Soc. Sports Nutr. 2012, 9, 20. [Google Scholar] [CrossRef]
- Namma-Motonaga, K.; Kondo, E.; Osawa, T.; Shiose, K.; Kamei, A.; Taguchi, M.; Takahashi, H. Effect of Different Carbohydrate Intakes within 24 Hours after Glycogen Depletion on Muscle Glycogen Recovery in Japanese Endurance Athletes. Nutrients 2022, 14, 1320. [Google Scholar] [CrossRef]
- Nielsen, L.; Lambert, M.; Jeppesen, P. The Effect of Ingesting Carbohydrate and Proteins on Athletic Performance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2020, 12, 1483. [Google Scholar] [CrossRef]
- Kimble, R.; Jones, K.; Howatson, G. The Effect of Dietary Anthocyanins on Biochemical, Physiological, and Subjective Exercise Recovery: A Systematic Review and Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2021, 63, 1262–1276. [Google Scholar] [CrossRef]
- Gray, P.; Chappell, A.; Jenkinson, A.; Thies, F.; Gray, S. Fish Oil Supplementation Reduces Markers of Oxidative Stress but Not Muscle Soreness after Eccentric Exercise. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 206–214. [Google Scholar] [CrossRef]
- Piccioni, A.; Covino, M.; Candelli, M.; Ojetti, V.; Capacci, A.; Gasbarrini, A.; Franceschi, F.; Merra, G. How Do Diet Patterns, Single Foods, Prebiotics and Probiotics Impact Gut Microbiota? Microbiol. Res. 2023, 14, 390–408. [Google Scholar] [CrossRef]
- Kaufman, M.; Roche, M.; Fredericson, M. The Impact of Supplements on Sports Performance for the Trained Athlete: A Critical Analysis. Curr. Sports Med. Rep. 2022, 21, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Ulfa, M.; Setyonugroho, W.; Lestari, T.; Widiasih, E.; Quoc, A. Nutrition-Related Mobile Application for Daily Dietary Self-Monitoring. J. Nutr. Metab. 2022, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.; Horne, J.; Vanderhout, S.; El-Sohemy, A. Sport Nutrigenomics: Personalized Nutrition for Athletic Performance. Front. Nutr. 2019, 6, 8. [Google Scholar] [CrossRef]
- Chargé, S.; Rudnicki, M. Cellular and Molecular Regulation of Muscle Regeneration. Physiol. Rev. 2004, 84, 209–238. [Google Scholar] [CrossRef]
- White, J. Amino Acid Trafficking and Skeletal Muscle Protein Synthesis: A Case of Supply and Demand. Front. Cell Dev. Biol. 2021, 9, 656604. [Google Scholar] [CrossRef]
- Dreyer, H.; Drummond, M.; Pennings, B.; Fujita, S.; Glynn, E.; Chinkes, D.; Dhanani, S.; Volpi, E.; Rasmussen, B. Leucine-Enriched Essential Amino Acid and Carbohydrate Ingestion Following Resistance Exercise Enhances mTOR Signaling and Protein Synthesis in Human Muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E392–E400. [Google Scholar] [CrossRef]
- Lane, M.; Herda, T.; Fry, A.; Cooper, M.; Andre, M.; Gallagher, P. Endocrine Responses and Acute mTOR Pathway Phosphorylation to Resistance Exercise with Leucine and Whey. Biol. Sport 2017, 34, 197–203. [Google Scholar] [CrossRef]
- Beelen, M.; Burke, L.; Gibala, M.; Loon, L. Nutritional Strategies to Promote Postexercise Recovery. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 515–532. [Google Scholar] [CrossRef]
- Evans, G.; James, L.; Shirreffs, S.; Maughan, R. Optimizing the Restoration and Maintenance of Fluid Balance after Exercise-Induced Dehydration. J. Appl. Physiol. 2017, 122, 945–951. [Google Scholar] [CrossRef]
- Fan, P.; Burns, S.; Lee, J. Efficacy of Ingesting an Oral Rehydration Solution after Exercise on Fluid Balance and Endurance Performance. Nutrients 2020, 12, 3826. [Google Scholar] [CrossRef] [PubMed]
- Trangmar, S.; González-Alonso, J. Heat, Hydration and the Human Brain, Heart and Skeletal Muscles. Sports Med. 2019, 49, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Stachenfeld, N. The Interrelationship of Research in the Laboratory and the Field to Assess Hydration Status and Determine Mechanisms Involved in Water Regulation During Physical Activity. Sports Med. 2014, 44, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Castillo, Í.; Williams, J.; López-Chicharro, J.; Mihic, N.; Rueda, R.; Bouzamondo, H.; Horswill, C. Compositional Aspects of Beverages Designed to Promote Hydration Before, During, and After Exercise: Concepts Revisited. Nutrients 2023. [CrossRef]
- McGlory, C.; Devries, M.; Phillips, S. Skeletal Muscle and Resistance Exercise Training: The Role of Protein Synthesis in Recovery and Remodeling. J. Appl. Physiol. 2017, 122, 541–548. [Google Scholar] [CrossRef]
- Bianchi, M.; Crippa, M.; Manfredi, A.; Mezzapelle, R.; Querini, P.; Vénéreau, E. High-Mobility Group Box 1 Protein Orchestrates Responses to Tissue Damage via Inflammation, Innate and Adaptive Immunity, and Tissue Repair. Immunol. Rev. 2017, 280, 74–82. [Google Scholar] [CrossRef]
- Lu, Z.; Hunter, T. Metabolic Kinases Moonlighting as Protein Kinases. Trends Biochem. Sci. 2018, 43, 301–310. [Google Scholar] [CrossRef]
- Vigh-Larsen, J.F.; Ørtenblad, N.; Nielsen, J.; Andersen, O.E.; Overgaard, K.; Mohr, M. The Role of Muscle Glycogen Content and Localization in High-Intensity Exercise Performance: A Placebo-Controlled Trial. Med. Sci. Sports Exerc. 2022, 54, 2073–2086. [Google Scholar] [CrossRef]
- Zhang, S.; Lachance, B.B.; Mattson, M.P.; Jia, X. Glucose Metabolic Crosstalk and Regulation in Brain Function and Diseases. Prog. Neurobiol. 2021, 204, 102089. [Google Scholar] [CrossRef]
- Lee, G.Y.; Han, S.N. The Role of Vitamin E in Immunity. Nutrients 2018, 10, 1614. [Google Scholar] [CrossRef]
- Tsugawa, N.; Shiraki, M. Vitamin K Nutrition and Bone Health. Nutrients 2020, 12, 1909. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.A. H. Overview of the Vital Roles of Macro Minerals in the Human Body. J. Trace Elem. Min. 2023, 4, 100076. [Google Scholar] [CrossRef]
- Srivastava, N.K.; Mukherjee, S.; Mishra, V.N. One Advantageous Reflection of Iron Metabolism in Context of Normal Physiology and Pathological Phases. Clin. Nutr. ESPEN 2023, 58, 277–294. [Google Scholar] [CrossRef]
- Moro, T.; Brightwell, C.R.; Velarde, B.; Fry, C.S.; Nakayama, K.; Sanbongi, C.; Volpi, E.; Rasmussen, B.B. Whey Protein Hydrolysate Increases Amino Acid Uptake, mTORC1 Signaling, and Protein Synthesis in Skeletal Muscle of Healthy Young Men in a Randomized Crossover Trial. J. Nutr. 2019, 149, 1149–1158. [Google Scholar] [CrossRef]
- Chang, Y.B.; Kim, H.; Lee, S.K.; Kim, H.J.; Jeong, A.H.; Suh, H.J.; Ahn, Y. Characteristics and Absorption Rate of Whey Protein Hydrolysates Prepared Using Flavourzyme after Treatment with Alcalase and Protamex. Molecules 2023, 28, 7969. [Google Scholar] [CrossRef]
- Abbott, W.; Brett, A.; Cockburn, E.; Clifford, T. Presleep Casein Protein Ingestion: Acceleration of Functional Recovery in Professional Soccer Players. Int. J. Sports Physiol. Perform. 2019, 14, 385–391. [Google Scholar] [CrossRef]
- Dela Cruz, J.; Kahan, D. Pre-Sleep Casein Supplementation, Metabolism, and Appetite: A Systematic Review. Nutrients 2021, 13, 1872. [Google Scholar] [CrossRef]
- Liu, G.; Guo, B.; Luo, M.; Sun, S.; Lin, Q.; Kan, Q.; He, Z.; Miao, J.; Du, H.; Xiao, H.; Cao, Y. A Comprehensive Review on Preparation, Structure-Activities Relationship, and Calcium Bioavailability of Casein Phosphopeptides. Crit. Rev. Food Sci. Nutr. 2024, 64, 996–1014. [Google Scholar] [CrossRef]
- Zhang, W.; Boateng, I.D.; Xu, J.; Zhang, Y. Proteins from Legumes, Cereals, and Pseudo-Cereals: Composition, Modification, Bioactivities, and Applications. Foods 2024, 13, 1974. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, Y.; Li, J.; Ning, Z. The Effect of Plant-Based Protein Ingestion on Athletic Ability in Healthy People—A Bayesian Meta-Analysis with Systematic Review of Randomized Controlled Trials. Nutrients 2024, 16, 2748. [Google Scholar] [CrossRef]
- Narciso, J.O.; Gulzar, S.; Soliva-Fortuny, R.; Martín-Belloso, O. Emerging Chemical, Biochemical, and Non-Thermal Physical Treatments in the Production of Hypoallergenic Plant Protein Ingredients. Foods 2024, 13, 2180. [Google Scholar] [CrossRef]
- Abu Risha, M.; Rick, E.M.; Plum, M.; Jappe, U. Legume Allergens Pea, Chickpea, Lentil, Lupine and Beyond. Curr. Allergy Asthma Rep. 2024, 24, 527–548. [Google Scholar] [CrossRef] [PubMed]
- Fabiszewska, A.; Wierzchowska, K.; Dębkowska, I.; Śliczniak, W.; Ziółkowska, M.; Jasińska, K.; Kobus, J.; Nowak, D.; Zieniuk, B. Plant-Based Alternatives to Mold-Ripened Cheeses as an Innovation among Dairy Analogues. Foods 2024, 13, 2305. [Google Scholar] [CrossRef] [PubMed]
- Ambulkar, P.; Hande, P.; Tambe, B.; Vaidya, V.G.; Naik, N.; Agarwal, R.; Ganu, G. Efficacy and safety assessment of protein supplement - micronutrient fortification in promoting health and wellbeing in healthy adults - a randomized placebo-controlled trial. Translational and clinical pharmacology 2023, 31, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Kaspy, M.S.; Hannaian, S.J.; Bell, Z.W.; Churchward-Venne, T.A. The Effects of Branched-Chain Amino Acids on Muscle Protein Synthesis, Muscle Protein Breakdown and Associated Molecular Signalling Responses in Humans: An Update. Nutr. Res. Rev. 2023, 1–14. Advance online publication. [CrossRef]
- Bieńkowski, B.; Feja, K.; Łuczak, E.; Jachowicz, K.; Petryla, P.; Suwała, Z.; Marchewka, U.; Ostafin, K.; Rektor, N.; Edyko, K. Branched-Chain Amino Acids (BCAAs) – Oral Supplementation and Its Effects in Resistance Training and Treatment. J. Educ. Health Sport 2023, 43, 208–220. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, X.; Miao, R.; Cao, W.; Wei, H.; Jiang, W.; Gao, R.; Yang, Y.; Sun, H.; Qiu, J. Branched-Chain Amino Acids Promote the Repair of Exercise-Induced Muscle Damage via Enhancing Macrophage Polarization. Front. Physiol. 2022, 13, 1037090. [Google Scholar] [CrossRef]
- Srinivasan, R. The Effect of BCAA Supplementation in Aiding Muscle Soreness to Prevent Lateral Ligament Ankle Injuries in Basketball. Am. J. Sports Sci. 2023, 11, 20–25. [Google Scholar] [CrossRef]
- Fachada, V.; Silvennoinen, M.; Sahinaho, U.-M.; Rahkila, P.; Kivelä, R.; Hulmi, J.J.; Kujala, U.; Kainulainen, H. Effects of Long-Term Physical Activity and BCAA Availability on the Subcellular Associations between Intramyocellular Lipids, Perilipins and PGC-1α. Int. J. Mol. Sci. 2023, 24, 4282. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, B.; Wang, Z.; Lv, Y.; Ma, Q. Short-Term Decreasing and Increasing Dietary BCAA Have Similar, but Not Identical Effects on Lipid and Glucose Metabolism in Lean Mice. Int. J. Mol. Sci. 2023, 24, 5401. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Wu, Y.; Guo, Y.; Wang, X. Baseline Serum BCAAs Are Related to the Improvement in Insulin Resistance in Obese People After a Weight Loss Intervention. Diabetes Metab. Syndr. Obes. 2023, 16, 179–186. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, L.; Wang, Q.; Cao, J.H.; Chen, Y.; Wang, W.; Zhu, B.D.; Wei, Z.H.; Li, R.; Li, C.Y.; Zhou, G.Y.; Tan, Z.J.; Zhou, H.P.; Li, C.X.; Gao, H.K.; Qin, X.J.; Lian, K. Elevated Branched-Chain Amino Acid Promotes Atherosclerosis Progression by Enhancing Mitochondrial-to-Nuclear H2O2-Disulfide HMGB1 in Macrophages. Redox Biol. 2023, 62, 102696. [Google Scholar] [CrossRef]
- Wax, B.; Kerksick, C.M.; Jagim, A.R.; Mayo, J.J.; Lyons, B.C.; Kreider, R.B. Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients 2021, 13, 1915. [Google Scholar] [CrossRef] [PubMed]
- Yokota, Y.; Yamada, S.; Yamamoto, D.; Kato, K.; Morito, A.; Takaoka, A. Creatine Supplementation Alleviates Fatigue after Exercise through Anti-Inflammatory Action in Skeletal Muscle and Brain. Nutraceuticals 2023, 3, 234–249. [Google Scholar] [CrossRef]
- Forbes, S.C.; Candow, D.G.; Neto, J.H. F.; Kennedy, M.D.; Forbes, J.L.; Machado, M.; Bustillo, E.; Gomez-Lopez, J.; Zapata, A.; Antonio, J. Creatine Supplementation and Endurance Performance: Surges and Sprints to Win the Race. J. Int. Soc. Sports Nutr. 2023, 20, 2204071. [Google Scholar] [CrossRef] [PubMed]
- Sandkühler, J.F.; Kersting, X.; Faust, A.; Königs, E.K.; Altman, G.; Ettinger, U.; Lux, S.; Philipsen, A.; Müller, H.; Brauner, J. The effects of creatine supplementation on cognitive performance-a randomised controlled study. BMC medicine 2023, 21, 440. [Google Scholar] [CrossRef]
- Forbes, S.C.; Cordingley, D.M.; Cornish, S.M.; Gualano, B.; Roschel, H.; Ostojic, S.M.; Rawson, E.S.; Roy, B.D.; Prokopidis, K.; Giannos, P.; Candow, D.G. Effects of Creatine Supplementation on Brain Function and Health. Nutrients 2022, 14, 921. [Google Scholar] [CrossRef]
- Peden, D.L.; Funnell, M.P.; Reynolds, K.M.; Kenefick, R.W.; Cheuvront, S.N.; Mears, S.A.; James, L.J. Post-Exercise Rehydration: Comparing the Efficacy of Three Commercial Oral Rehydration Solutions. Front. Sports Act. Living 2023, 5, 1158167. [Google Scholar] [CrossRef]
- Garrison, S.R.; Korownyk, C.S.; Kolber, M.R.; Allan, G.M.; Musini, V.M.; Sekhon, R.K.; Dugré, N. Magnesium for Skeletal Muscle Cramps. Cochrane Database Syst. Rev. 2020, 9, CD009402. [Google Scholar] [CrossRef]
- Rall, J.A. Discovery of the Regulatory Role of Calcium Ion in Muscle Contraction and Relaxation: Setsuro Ebashi and the International Emergence of Japanese Muscle Research. Adv. Physiol. Educ. 2022, 46, 481–490. [Google Scholar] [CrossRef]
- Mohd Daud, S.M.; Sukri, N.M.; Johari, M.H.; Gnanou, J.; Manaf, F.A. Pure Juice Supplementation: Its Effect on Muscle Recovery and Sports Performance. Malays. J. Med. Sci. 2023, 30, 31–48. [Google Scholar] [CrossRef]
- Kocik, V.I.; April, M.D.; Rizzo, J.A.; Dengler, B.A.; Schauer, S.G. A Review of Electrolyte, Mineral, and Vitamin Changes After Traumatic Brain Injury. Mil. Med. 2024, 189, e101–e109. [Google Scholar] [CrossRef] [PubMed]
- Nasrulloh, A. A Review of the Effects of Nutritional Supplements on Muscle Strength and Endurance in Athletes. Fizjoterapia Polska 2023, 23, 138–147. [Google Scholar] [CrossRef]
- Mardiana, M.; Kartini, A.; Sutiningsih, D.; Suroto, S.; Muhtar, M.S. Literature Review: Nutrition Supplementation for Muscle Fatigue in Athletes. J. Keolahragaan 2023, 11, 10–23. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Boullosa, D.; Del Coso, J. Advances in Nutrition, Dietary Supplements and Ergogenic Aids for Athletic Performance: Trends and Future Prospects. Nutrients 2023, 15, 2246. [Google Scholar] [CrossRef]
- Peeling, P.; Sim, M.; McKay, A.K. A. Considerations for the Consumption of Vitamin and Mineral Supplements in Athlete Populations. Sports Med. 2023, 53 (Suppl 1), 15–24. [Google Scholar] [CrossRef]
- Carey, C.C.; Doyle, L.; Lucey, A. Nutritional Priorities, Practices, and Preferences of Athletes and Active Individuals in the Context of New Product Development in the Sports Nutrition Sector. Front. Sports Act. Living 2023, 5, 1088979. [Google Scholar] [CrossRef]
- Mariotti, F. Nutritional and Health Benefits and Risks of Plant-Based Substitute Foods. Proc. Nutr. Soc. 2023, 1–14. Advance online publication. [CrossRef]
- Dini, I.; Mancusi, A. Weight Loss Supplements. Molecules 2023, 28, 5357. [Google Scholar] [CrossRef]
- Sirois, J.; Reddy, S.; Nguyen, T.; Walker, H.; Rendall, J.; Bergen, G.; Reimers, M.; Cermak, E.; Tiwary, A.; Helmes, E.; Palmer, J.; Teo, S.; Mackle, T.; Park, M.; Wang, C. Safety Considerations for Dietary Supplement Manufacturers in the United States. Regul. Toxicol. Pharmacol. 2024, 147, 105544. [Google Scholar] [CrossRef]
- Amidžić, M.; Banović Fuentes, J.; Banović, J.; Torović, L. Notifications and Health Consequences of Unauthorized Pharmaceuticals in Food Supplements. Pharmacy 2023, 11, 154. [Google Scholar] [CrossRef]
- Vozza, G.; Khalid, M.; Byrne, H.J.; Ryan, S.; Frias, J. Nutrition—Nutrient Delivery. In Nanotechnology in the Agri-Food Industry; Grumezescu, A.M.; Ed.; Academic Press: 2017; pp 1–42. [CrossRef]
- Ballini, A.; Charitos, I.A.; Cantore, S.; Topi, S.; Bottalico, L.; Santacroce, L. About Functional Foods: The Probiotics and Prebiotics State of Art. Antibiotics 2023, 12, 635. [Google Scholar] [CrossRef]
- Begum, P.S.; Madhavi, G.; Rajagopal, S.; Viswanath, B.; Razak, M.A.; Venkataratnamma, V. Probiotics as Functional Foods: Potential Effects on Human Health and Its Impact on Neurological Diseases. Int. J. Nutr. Pharmacol. Neurol. Dis. 2017, 7, 23–33. [Google Scholar]
- Abuajah, C.I.; Ogbonna, A.C.; Osuji, C.M. Functional Components and Medicinal Properties of Food: A Review. J. Food Sci. Technol. 2015, 52, 2522–2529. [Google Scholar] [CrossRef] [PubMed]
- Essa, M.M.; Bishir, M.; Bhat, A.; Chidambaram, S.B.; Al-Balushi, B.; Hamdan, H.; Govindarajan, N.; Freidland, R.P.; Qoronfleh, M.W. Functional Foods and Their Impact on Health. J. Food Sci. Technol. 2023, 60, 820–834. [Google Scholar] [CrossRef] [PubMed]
- Martirosyan, D.M.; Lampert, T.; Ekblad, M. Classification and Regulation of Functional Food Proposed by the Functional Food Center. Funct. Food Sci. 2022, 2, 25. [Google Scholar] [CrossRef]
- Fraschetti, E.C.; Skelly, L.E.; Prowting, J.L.; Abdul-Sater, A.A.; Josse, A.R. The Acute Effects of Milk Consumption on Systemic Inflammation after Combined Resistance and Plyometric Exercise in Young Adult Females. Nutrients 2022, 14, 4532. [Google Scholar] [CrossRef]
- Corney, R.A.; Clayton, D.J.; Nash, J.; Joel, T.; Sunderland, C.; James, L.J. Post-Exercise Skimmed Milk, but Not a Sucrose Beverage Decreases Energy Intake at the Next Meal Compared to a Placebo Beverage in Active Males. Appetite 2023, 181, 106400. [Google Scholar] [CrossRef]
- Hizni, A.; Samuel, S.; Sholichin, S. Product Development of Rehydration Milk Drinks for Athletes after Exercise (Organoleptic Assessment and Nutritional Content). Open Access Maced. J. Med. Sci. 2023, 11 (A), 99–104. [Google Scholar] [CrossRef]
- Kung, S.; Vakula, M.N.; Kim, Y.; England, D.L.; Bergeson, J.; Bressel, E.; Lefevre, M.; Ward, R. No Effect of a Dairy-Based, High Flavonoid Pre-Workout Beverage on Exercise-Induced Intestinal Injury, Permeability, and Inflammation in Recreational Cyclists: A Randomized Controlled Crossover Trial. PLoS One 2022, 17, e0277453. [Google Scholar] [CrossRef]
- Yao, S. The Value of Yogurt and Its Function in Health Care. Theor. Nat. Sci. 2023, 3, 765–771. [Google Scholar] [CrossRef]
- Hadjimbei, E.; Botsaris, G.; Chrysostomou, S. Beneficial Effects of Yoghurts and Probiotic Fermented Milks and Their Functional Food Potential. Foods 2022, 11, 2691. [Google Scholar] [CrossRef]
- Qayyum, S.; Rafiq, S.; Hayat, I.; Fahad, M.; Tariq, H.; Waqas, M.; Hussain, S. Nutritional Importance of Stirred Yogurt. J. Agric. Vet. Sci. 2023, 1, 27–35. [Google Scholar] [CrossRef]
- Hasegawa, Y.; Pei, R.; Raghuvanshi, R.; Liu, Z.; Bolling, B.W. Yogurt Supplementation Attenuates Insulin Resistance in Obese Mice by Reducing Metabolic Endotoxemia and Inflammation. J. Nutr. 2023, 153, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Hurst, R.D.; Lyall, K.A.; Wells, R.W.; Sawyer, G.M.; Lomiwes, D.; Ngametua, N.; Hurst, S.M. Daily Consumption of an Anthocyanin-Rich Extract Made From New Zealand Blackcurrants for 5 Weeks Supports Exercise Recovery Through the Management of Oxidative Stress and Inflammation: A Randomized Placebo Controlled Pilot Study. Front. Nutr. 2020, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Sakaguchi, C.A.; Omar, A.M.; Davis, K.L.; Shaffner, C.E.; Strauch, R.C.; Lila, M.A.; Zhang, Q. Blueberry Intake Elevates Post-Exercise Anti-Inflammatory Oxylipins: A Randomized Trial. Sci. Rep. 2023, 13, 11976. [Google Scholar] [CrossRef]
- Volpe-Fix, A.R.; de França, E.; Silvestre, J.C.; Thomatieli-Santos, R.V. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods 2023, 12, 916. [Google Scholar] [CrossRef]
- Wan Nur Zahidah, W.Z.; Mohd Nazrul Hisyam, D.; Syahida, M.; Hadijah, H.; Norhida Arnieza, M. Pineapple Juice Drink: Potential Functional Drink for Reducing Inflammation in Athletes. Food Res. 2023, 6 (Suppl. 2), 263–267. [Google Scholar] [CrossRef]
- Jannas-Vela, S.; Espinosa, A.; Candia, A.A.; Flores-Opazo, M.; Peñailillo, L.; Valenzuela, R. The Role of Omega-3 Polyunsaturated Fatty Acids and Their Lipid Mediators on Skeletal Muscle Regeneration: A Narrative Review. Nutrients 2023, 15, 871. [Google Scholar] [CrossRef]
- Tomczyk, M.; Jost, Z.; Chroboczek, M.; Urbański, R.; Calder, P.C.; Fisk, H.L.; Sprengel, M.; Antosiewicz, J. Effects of 12 Wk of Omega-3 Fatty Acid Supplementation in Long-Distance Runners. Med. Sci. Sports Exerc. 2023, 55, 216–224. [Google Scholar] [CrossRef]
- Lee, S.R.; Directo, D.; Khamoui, A.V. Fish Oil Administration Combined with Resistance Exercise Training Improves Strength, Resting Metabolic Rate, and Inflammation in Older Adults. Aging Clin. Exp. Res. 2022, 34, 3073–3081. [Google Scholar] [CrossRef]
- Haß, U.; Heider, S.; Kochlik, B.; Herpich, C.; Pivovarova-Ramich, O.; Norman, K. Effects of Exercise and Omega-3-Supplemented, High-Protein Diet on Inflammatory Markers in Serum, on Gene Expression Levels in PBMC, and after Ex Vivo Whole-Blood LPS Stimulation in Old Adults. Int. J. Mol. Sci. 2023, 24, 928. [Google Scholar] [CrossRef]
- Gwin, J.A.; Church, D.D.; Allen, J.T.; Wilson, M.A.; Carrigan, C.T.; Murphy, N.E.; Varanoske, A.N.; Margolis, L.M.; Wolfe, R.R.; Ferrando, A.A.; Pasiakos, S.M. Consuming Whey Protein with Added Essential Amino Acids, Not Carbohydrate, Maintains Post-Exercise Anabolism While Underfed. Med. Sci. Sports Exerc. 2024, Advance online publication. [CrossRef]
- Latkov, N.Y.; Dzhatdoeva, D.T.; Tokhiriyon, B.; Lapina, V.; Poznyakovsky, V.M.; Dzhabrailov, Y.M.; Sorokopudova, O.A.; Karanina, E.V.; Kotandzhyan, A.V.; Kalitskaya, V.V. Nutrition for Increased Adaptive Capacity, Better Sports Performance and Improved Quality of Life. Appl. Sci. 2022, 12, 12681. [Google Scholar] [CrossRef]
- Li, W.; Wertheimer, A. Narrative Review: The FDA's Perfunctory Approach of Dietary Supplement Regulations Giving Rise to Copious Reports of Adverse Events. Innov. Pharm. 2023, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Kolar, L.; Stupin, M.; Šušnjara, P.; Stupin, A.; Drenjancevic, I. Functional Food Enriched in n-3 Polyunsaturated Fatty Acids, Selenium, Lutein and Vitamin E Enhances Microvascular Endothelial Function of Competitive Athletes. J. Hypertens. 2022, 40 (Suppl 1), e205. [Google Scholar] [CrossRef]
- Castanho, R.S. Major Nutrological Approaches to Macronutrients in the Performance and Body Composition of Highly Trained Athletes: A Systematic Review. Int. J. Nutrol. 2023, 16. [Google Scholar] [CrossRef]
- Beltrami, F.G.; Hanselmann, L.; Spengler, C.M. Effects of Combined Interventions to Optimize Recovery During High-Intensity Exercises in Trained Individuals. Curr. Issues Sport Sci. 2023, 8, 021. [Google Scholar] [CrossRef]
- Brennan, L.; de Roos, B. Role of Metabolomics in the Delivery of Precision Nutrition. Redox Biol. 2023, 65, 102808. [Google Scholar] [CrossRef]
- Hillesheim, E.; Yin, X.; Sundaramoorthy, G.P.; Brennan, L. Using a Metabotype Framework to Deliver Personalized Nutrition Improves Dietary Quality and Metabolic Health Parameters: A 12-Week Randomized Controlled Trial. Mol. Nutr. Food Res. 2023, 67, e2200620. [Google Scholar] [CrossRef]
- Hadi, P. A Review of the Methods and Approaches for Integrating Genetics and Metabolomics into Personalized Nutrition. J. Pharm. Negat. Results 2023, 14, 3823–3830. [Google Scholar] [CrossRef]
- Neu, J. The Evolution of Personalized Nutrition. Nat. Med. 2024, 30, 1826–1827. [Google Scholar] [CrossRef]
- Malcomson, F.C.; Mathers, J.C. Translation of Nutrigenomic Research for Personalised and Precision Nutrition for Cancer Prevention and for Cancer Survivors. Redox Biol. 2023, 62, 102710. [Google Scholar] [CrossRef]
- Fronczek, M.; Osadnik, T.; Banach, M. Impact of Vitamin D Receptor Polymorphisms in Selected Metabolic Disorders. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zheng, J.; Cheng, J.; Zou, H.; Li, M.; Deng, B.; Luo, R.; Wang, F.; Huang, D.; Li, G.; Zhang, R.; Ding, X.; Li, Y.; Du, J.; Yang, Y.; Kan, J. Personalized Nutrition: A Review of Genotype-Based Nutritional Supplementation. Front. Nutr. 2022, 9, 992986. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C.; Raczyk, M.; Zawrotna, N. Vitamin D: A Master Example of Nutrigenomics. Redox Biol. 2023, 62, 102695. [Google Scholar] [CrossRef]
- Lal, M.K.; Sharma, E.; Tiwari, R.K.; Devi, R.; Mishra, U.N.; Thakur, R.; Gupta, R.; Dey, A.; Lal, P.; Kumar, A.; et al. Nutrient-Mediated Perception and Signalling in Human Metabolism: A Perspective of Nutrigenomics. Int. J. Mol. Sci. 2022, 23, 11305. [Google Scholar] [CrossRef]
- Hillesheim, E.; Brennan, L. Metabotyping: A Tool for Identifying Subgroups for Tailored Nutrition Advice. Proc. Nutr. Soc. 2023, 82, 130–141. [Google Scholar] [CrossRef]
- Park, Y.E.; Kim, J.H. Revolutionizing Gut Health: Exploring the Role of Gut Microbiota and the Potential of Microbiome-Based Therapies in Lower Gastrointestinal Diseases. Kosin Med. J. 2023, 38, 98–106. [Google Scholar] [CrossRef]
- McClements, D.J. Nano-Enabled Personalized Nutrition: Developing Multicomponent-Bioactive Colloidal Delivery Systems. Adv. Colloid Interface Sci. 2020, 282, 102211. [Google Scholar] [CrossRef]
- Subramanian, P. Lipid-Based Nanocarrier System for the Effective Delivery of Nutraceuticals. Molecules 2021, 26, 5510. [Google Scholar] [CrossRef]
- Gorantla, S.; Wadhwa, G.; Jain, S.; Sankar, S.; Nuwal, K.; Mahmood, A.; Dubey, S.K.; Taliyan, R.; Kesharwani, P.; Singhvi, G. Recent Advances in Nanocarriers for Nutrient Delivery. Drug Deliv. Transl. Res. 2022, 12, 2359–2384. [Google Scholar] [CrossRef]
- Oh, S.; Cave, G.; Lu, C. Vitamin B12 (Cobalamin) and Micronutrient Fortification in Food Crops Using Nanoparticle Technology. Front. Plant Sci. 2021, 12, 668819. [Google Scholar] [CrossRef]
- Puri, V.; Nagpal, M.; Singh, I.; Singh, M.; Dhingra, G.A.; Huanbutta, K.; Dheer, D.; Sharma, A.; Sangnim, T. A Comprehensive Review on Nutraceuticals: Therapy Support and Formulation Challenges. Nutrients 2022, 14, 4637. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Tao, G.; Yang, L.; Wu, X.; Liu, J.W.; Dagher, F.; Ou, S.Y.; Song, Y.; Huang, J.Q. Dietary Phytochemical and Metabolic Disease Prevention: Focus on Plant Proteins. Front. Nutr. 2023, 10, 1089487. [Google Scholar] [CrossRef] [PubMed]
- Franca-Oliveira, G.; Martinez-Rodriguez, A.J.; Morato, E.; Hernández-Ledesma, B. Contribution of Proteins and Peptides to the Impact of a Soy Protein Isolate on Oxidative Stress and Inflammation-Associated Biomarkers in an Innate Immune Cell Model. Plants 2023, 12, 2011. [Google Scholar] [CrossRef] [PubMed]
- Chala, D.B.; Emire, S.A. Development of Plant-Based Functional Food Products: A Review. Ann. Univ. Dunarea Jos Galati, Fascicle VI. Food Technol. 2022, 46, 169–183. [Google Scholar] [CrossRef]
- O’Connor, E.; Mündel, T.; Barnes, M.J. Nutritional Compounds to Improve Post-Exercise Recovery. Nutrients 2022, 14, 5069. [Google Scholar] [CrossRef]
- Carey, C.; Lucey, A.; Doyle, L. Flavonoid Containing Polyphenol Consumption and Recovery from Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 1293–1316. [Google Scholar] [CrossRef]
- Calella, P.; Cerullo, G.; Dio, M.; Liguori, F.; Onofrio, V.; Gallé, F.; Liguori, G. Antioxidant, Anti-Inflammatory and Immunomodulatory Effects of Spirulina in Exercise and Sport: A Systematic Review. Front. Nutr. 2022, 9, 1048258. [Google Scholar] [CrossRef]
- Joshi, V. Phyto-Nutrients, Nutraceutical, Fermented Foods and Traditional Medicine in Human Health: Issues, Concerns and Strategies. NTNF 2018, 1, 1–9. [Google Scholar] [CrossRef]
- Muñoz, M.; Galán, A.; Palacios, E.; Diez, M.; Muguerza, B.; Cobaleda, C.; Calvo, J.; Aruoma, O.; Sánchez-García, I.; Jiménez, R. Effect of an Antioxidant Functional Food Beverage on Exercise-Induced Oxidative Stress: A Long-Term and Large-Scale Clinical Intervention Study. Toxicology 2010, 278, 101–111. [Google Scholar] [CrossRef]
| Supplement Name | Supplement Key Feature | Benefits of Post-Exercise Recovery | Cited References |
|---|---|---|---|
| Whey Protein | Rapid digestion and absorption; rich in essential amino acids (EAAs) | Accelerates muscle protein synthesis (MPS) and optimizes post-exercise recovery in the anabolic window. | Gu [9], Snijders et al. [8], Dreyer et al. [27], White [26], Bonilla et al. [3] |
| Casein Protein | Slow-digesting, prolonged amino acid release | It provides sustained amino acid delivery, supports overnight muscle repair, and reduces catabolism. | Abbott et al. [46], Dela Cruz & Kahan [47], Liu et al. [48], McGlory et al. [35], Chargé & Rudnicki [25] |
| Plant-Based Proteins | Non-dairy alternatives derived from soy, pea, hemp | It provides essential amino acids for muscle repair, is suitable for vegans, and supports nitrogen balance. | Zhang et al. [49], Zhao et al. [50], Lorinczova et al. [15], Howatson et al. [16], Marr [78] |
| Branched-Chain Amino Acids (BCAAs) | Contains leucine, isoleucine, and valine; influences mTOR signaling | Reduces muscle soreness and exercise-induced muscle damage (EIMD), stimulates mTOR pathway. | Kaspy et al. [55], Bieńkowski et al. [56], Lane et al. [28], Srinivasan [58], Fachada et al. [59] |
| Creatine | Enhances ATP resynthesis, boosts phosphocreatine stores | It enhances energy replenishment, supports high-intensity performance, and reduces fatigue. | Wax et al. [63], Yokota et al. [64], Forbes et al. [65], Sandkühler et al. [66], Forbes et al. [67] |
| Electrolytes | Replenishes sodium, potassium, magnesium, and calcium lost through sweat | Restores electrolyte balance, prevents dehydration, and reduces muscle cramps. | Peden et al. [68], Garrison et al. [69], Shirreffs & Sawka [12], Evans et al. [30], Trangmar & González-Alonso [32] |
| Functional Food Name | Functional Food Key Feature | Benefits on Post-Exercise Recovery | Cited References |
|---|---|---|---|
| Tart Cherry Juice | Rich in anthocyanins, antioxidant properties | Reduces muscle soreness, accelerates recovery, mitigates oxidative stress | Kimble et al. [19], Nieman et al. [97], Nieman et al. [96] |
| Turmeric (Curcumin) | Contains curcumin, anti-inflammatory compound | Reduces muscle inflammation, supports joint health, enhances recovery | Wan Nur Zahidah et al. [99], Volpe-Fix et al. [98], Dhiman & Kapri [7], Zhang et al. [39] |
| Blueberries | High in antioxidants and polyphenols | Reduces inflammation, enhances muscle recovery, promotes antioxidant defense | Nieman et al. [97], Hurst et al. [96], Zhang et al. [49], Lane et al. [28] |
| Beetroot Juice | Rich in nitrates, enhances blood flow | Improves endurance, enhances blood flow and oxygen delivery to muscles | Lane et al. [28], Trangmar & González-Alonso [32], Evans et al. [30], Tomczyk et al. 101] |
| Green Tea Extract | Contains catechins, antioxidant properties | Reduces oxidative stress, promotes fat oxidation, improves recovery | Dhiman & Kapri [7], Ballini et al. [83], Hurst et al. [96], Shirreffs & Sawka [12] |
| Pineapple Juice | Contains bromelain, an enzyme with anti-inflammatory properties | Reduces inflammation, supports muscle recovery, aids digestion | Wan Nur Zahidah et al. [99], Dhiman & Kapri [7], Hurst et al. [96] |
| Pomegranate Juice | Rich in polyphenols and antioxidants | Enhances recovery by reducing inflammation, supports heart health | Nieman et al. [97], Volpe-Fix et al. [98], Zhang et al. [49], Dhiman & Kapri [7] |
| Spinach | High in nitrates and vitamins | Enhances blood flow, reduces muscle soreness, supports recovery | Ballini et al. [83], Wan Nur Zahidah et al. [99], Zhang et al. [49] |
| Yogurt | Contains probiotics and calcium | Supports gut health, aids digestion, enhances muscle recovery | Hadjimbei et al. [93], Yao [92], Hurst et al. [96], Dhiman & Kapri [7], Kaufman et al. [22] |
| Ginger | Contains gingerol, anti-inflammatory properties | Reduces muscle soreness, enhances anti-inflammatory response | Ballini et al. [83], Wan Nur Zahidah et al. [99], Volpe-Fix et al. [98], Zhang et al. [49], Hurst et al. [96] |
| Fish Oil(Omega-3 Fatty Acids) | Anti-inflammatory; contains EPA and DHA | Reduces inflammation, promotes faster muscle repair and recovery | Fernández-Lázaro et al. [33], Tomczyk et al. [101] |
| Aspect | Comparison | Cited References |
|---|---|---|
| Nutritional Efficacy |
Food Supplements: Rapid concentrated protein absorption (e.g., whey/casein) for muscle protein synthesis post-exercise. | Gu [14], Snijders et al. [104], Dreyer et al. [27], White [26], Bonilla et al. [3] |
| Functional Foods: Natural sources like dairy provide extended recovery with broader nutrients (e.g., calcium, vitamin D). | Zhao et al. [50], Lorinczova et al. [89], Zhang et al. [92], McGlory et al. [35], Chargé & Rudnicki [25] | |
| Anti-Inflammatory & Oxidative Stress |
Food Supplements: Antioxidants (vitamins C, E) and omega-3 supplements reduce inflammation and oxidative stress. | Kaspy et al. [11], Bieńkowski et al. [71], Srinivasan [86], Nieman et al. [97], Carey et al. [130] |
| Functional Foods: Polyphenol-rich foods (e.g., tart cherry, turmeric) reduce inflammation with additional vitamins, minerals, and fiber. | Kimble et al. [19], Nieman et al. [97], Carey et al. [98], Wan Nur Zahidah et al. [99], Tomczyk et al. [101] | |
| Practicality & Usage |
Food Supplements: Convenient for athletes needing quick nutrient solutions (e.g., protein, electrolytes, creatine). | Abbott et al. [13], Bonilla et al. [73], Kaufman et al. [22], Ballini et al. [83] |
| Functional Foods: Sustainable nutrition promoting long-term recovery and overall health, including probiotics for digestive health. | Carey et al. [32], Wan Nur Zahidah et al. [85], Dhiman & Kapri [7], Zhang et al. [39] | |
| Risks & Limitations |
Food Supplements: Overuse can lead to side effects, nutrient imbalances, and issues with regulation and purity. | Sandkühler et al. [79], Bonilla et al. [82], Kaufman et al. [106], Forbes et al. [67] |
| Functional Foods: May lack targeted support for high-intensity athletes, and natural variability in nutrients can limit effectiveness. | Carey et al. [107], Trangmar & González-Alonso [109], O’Connor et al. [13], Hurst et al. [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
