Submitted:
20 October 2024
Posted:
21 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Location and Data Collection
2.2. Questionnaire Design and Pretesting
2.3. Confidentiality and Incentives, and Coding
2.4. Survey Administration and Data Characteristics
2.5. Descriptive Statistics
2.6. Regression Model
3. Results
3.1. Descriptive Statistics of Responses
3.2. Willingness to Participate in Agroforestry (WTPA)
3.3. Cross-Tabulation Analysis: WTPA against HopeCCA, WTPA against CFSDFLD
3.3. Regression Results
- HopeCCA: Reflects respondents' hopefulness about climate change adaptations.
- CFSDFLD and LSFSDFLD: Address perceptions of cultivation and livestock farming systems’ roles in environmental degradation.
- IPPF, AACC, ITSCC, UAT: Explore attitudes towards indigenous practices, agroforestry, and governmental efforts concerning agroforestry as an adaptation means in combating climate change.
- Demographic Variables: Gender, Age, Employment, and Income levels are included to assess their influence on WTPA.
4. Discussion
4.1. Hopefulness about Climate Change Adaptations
4.2. Awareness of Environmental Degradation and Practices
4.3. Knowledge of Indigenous Tree Species and Practices and Agroforestry
4.4. Demographic Dynamics: Engaging Youth and Women
4.5. Policy Implications for Youth Engagement
5. Conclusions
- Hope and Change: Participants' optimism regarding adapting to climate change plays a role in determining their readiness to participate in agroforestry projects.
- Recognizing the effects of agricultural practices, including crop cultivation and animal husbandry, is closely linked to people's willingness to engage in tree plantation efforts.
- Beliefs about how the government is addressing environmental degradation influence people’s willingness to get involved.
- Demographics play a role in shaping things, especially regarding gender and job status.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kagezi, G.; Ssebulime, G.; Nyombi, K.; Mpiira, S.; Kucel, P.; Byabagambi, S.; Tushemereirwe, K.; Kubiriba, J.; Karamura, B.; Stave, C. Farmers’ knowledge of the banana (Musa sp.) agro-forestry systems in Kiboga district, central Uganda. Afr. J. Food, Agric. Nutr. Dev. 2017, 17, 12556–12572. [Google Scholar] [CrossRef]
- Kyarikunda, M.; Nyamukuru, A.; Mulindwa, D.; Tabuti, J.R.S. Agroforestry and Management of Trees in Bunya County, Mayuge District, Uganda. Int. J. For. Res. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Latynskiy, E.; Berger, T. Assessing the Income Effects of Group Certification for Smallholder Coffee Farmers: Agent-based Simulation in Uganda. J. Agric. Econ. 2017, 68, 727–748. [Google Scholar] [CrossRef]
- Rakotondratandra, D. Structural and cultural constraints on adopting tsabo-based agroforestry as an alternative to tavy around Betampona Reserve, Madagascar. BOIS FORETS DES Trop. 2023, 356, 13–28. [Google Scholar] [CrossRef]
- Okullo, J.B.L.; Omujal, F.; Enuru, T.; Bigirimana, C.; Isubikalu, P.; Agea, J.G.; Bizuru, E.; Obua, J. Farmers’ Use of Indigenous Fruit Trees to Cope with Climate Variability in the Lake Victoria Basin Districts of Uganda. Curr. Res. Agric. Sci. 2022, 9, 59–83. [Google Scholar] [CrossRef]
- Yami, M.; van Asten, P.; Hauser, M.; Schut, M.; Pali, P. Participation without Negotiating: Influence of Stakeholder Power Imbalances and Engagement Models on Agricultural Policy Development in Uganda. Rural. Sociol. 2018, 84, 390–415. [Google Scholar] [CrossRef]
- Kawooya, R.; Mugisa, C.; Namutebi, V.; Mutebi, D.J.; Turyahebwa, V.; Mugenyi, L.; Atugonza, K.; Ssemyalo, J. Analysis of Tea Agroforestry System: The Case of Kyenjojo District in Uganda. Eur. J. Agric. Food Sci. 2023, 5, 68–74. [Google Scholar] [CrossRef]
- Strong, R.; Baker, M.; Dooley, K.; Ray, N. The Often-Forgotten Innovation to Improve Sustainability: Assessing Food and Agricultural Sciences Curricula as Interventions in Uganda. Sustainability 2023, 15, 15461. [Google Scholar] [CrossRef]
- McLennan, M.R.; Hill, C.M. Troublesome neighbours: Changing attitudes towards chimpanzees (Pan troglodytes) in a human-dominated landscape in Uganda. J. Nat. Conserv. 2012, 20, 219–227. [Google Scholar] [CrossRef]
- Okao, M.; Otim, A.G.; Mutonyi, G.; Ogwal, L.; Komakech, A.; Turyagyenda, L.F.; Bharati, R.; (Prelnor), G.R.B.P.F.T.R.O.L.I.N.R. Yield advantage and profitability of selected climate-smart technologies: Findings from demonstration plots in Northern Uganda. Afr. J. Agric. Resour. Econ. 2023, 18, 203–215. [Google Scholar] [CrossRef]
- Piemontese, L.; Kamugisha, R.N.; Barron, J.; Tukahirwa, J.M.B.; Harari, N.; Jaramillo, F. Investing in sustainable intensification for smallholders: quantifying large-scale costs and benefits in Uganda. Environ. Res. Lett. 2022, 17, 045010. [Google Scholar] [CrossRef]
- Hauser, M.; Lindtner, M. Organic agriculture in post-war Uganda: emergence of pioneer-led niches between 1986 and 1993. Renew. Agric. Food Syst. 2016, 32, 169–178. [Google Scholar] [CrossRef]
- Schepp, C.; Diekkrüger, B.; Becker, M. Hillslope Hydrology in a Deeply Weathered Saprolite and Associated Nitrate Transport to a Valley Bottom Wetland in Central Uganda. Hydrology 2022, 9, 229. [Google Scholar] [CrossRef]
- Bjørkhaug, I. Revisiting the Refugee–Host Relationship in Nakivale Refugee Settlement: A Dialogue with the Oxford Refugee Studies Centre. J. Migr. Hum. Secur. 2020, 8. [Google Scholar] [CrossRef]
- Pienkowski, T.; Keane, A.; Kinyanda, E.; Asiimwe, C.; Milner-Gulland, E.J. Predicting the impacts of land management for sustainable development on depression risk in a Ugandan case study. Sci. Rep. 2022, 12, 1–16. [Google Scholar] [CrossRef]
- Baguma, G.; Bamanya, G.; Gonzaga, A.; Ampaire, W.; Onen, P. A Systematic Review of Contaminants of Concern in Uganda: Occurrence, Sources, Potential Risks, and Removal Strategies. Pollutants 2023, 3, 544–586. [Google Scholar] [CrossRef]
- Happy, K.; Gang, R.; Ban, Y.; Yang, S.; Rahmat, E.; Okello, D.; Komakech, R.; Cyrus, O.; David, K.O.; Kang, Y. Agricultural sustainability through smart farming systems: A comparative analysis between the Republic of Korea and Republic of Uganda. J. Plant Biotechnol. 2024, 51, 167–201. [Google Scholar] [CrossRef]
- Vetter, S. With Power Comes Responsibility – A Rangelands Perspective on Forest Landscape Restoration. Front. Sustain. Food Syst. 2020, 4. [Google Scholar] [CrossRef]
- Pali, P.N.; Schut, M.; Kibwika, P.; Wairegi, L.; Yami, M.; van Asten, P.J.A.; Manyong, V.M. Opportunities and pitfalls for researchers to contribute to the design of evidence-based agricultural policies: lessons from Uganda. Int. J. Agric. Sustain. 2018, 16, 272–285. [Google Scholar] [CrossRef]
- Villarino, M.E.J.; Tejada, M.G.B.; Patterson, S.E. From agricultural statistics to zero hunger: How the 50x2030 Initiative is closing data gaps for SDG2 and beyond. Stat. J. IAOS 2022, 38, 63–73. [Google Scholar] [CrossRef]
- Tumwebaze, S.B.; Bevilacqua, E.; Briggs, R.; Volk, T. Soil organic carbon under a linear simultaneous agroforestry system in Uganda. Agrofor. Syst. 2011, 84, 11–23. [Google Scholar] [CrossRef]
- Buyinza, J.; Muthuri, C.W.; Downey, A.; Njoroge, J.; Denton, M.D.; Nuberg, I.K. Contrasting water use patterns of two important agroforestry tree species in the Mt Elgon region of Uganda. Aust. For. 2019, 82, 57–65. [Google Scholar] [CrossRef]
- Gram, G.; Vaast, P.; van der Wolf, J.; Jassogne, L. Local tree knowledge can fast-track agroforestry recommendations for coffee smallholders along a climate gradient in Mount Elgon, Uganda. Agrofor. Syst. 2017, 92, 1625–1638. [Google Scholar] [CrossRef]
- Lamm, K.; Mulvaney, C.; Lamm, A.; Davis, K.; Masambuka-Kanchewa, F. Model of Success: Extension Services Helping Ugandan Youth Find A Career in Agriculture. J. Int. Agric. Ext. Educ. 2021, 28, 7–13. [Google Scholar] [CrossRef]
- Mubiru, D.N.; Radeny, M.; Kyazze, F.B.; Zziwa, A.; Lwasa, J.; Kinyangi, J.; Mungai, C. Climate trends, risks and coping strategies in smallholder farming systems in Uganda. Clim. Risk Manag. 2018, 22, 4–21. [Google Scholar] [CrossRef]
- Mukadasi, B. Mixed Cropping Systems for Sustainable Domestic Food Supply of the Smallholder Farming Communities in Nakasongola District, Central Uganda. Can. J. Agric. Crop. 2018, 3, 42–54. [Google Scholar] [CrossRef]
- Wienhold, K.; Goulao, L.F. The Embedded Agroecology of Coffee Agroforestry: A Contextualized Review of Smallholder Farmers’ Adoption and Resistance. Sustainability 2023, 15, 6827. [Google Scholar] [CrossRef]
- Kalanzi, F.; Isubikalu, P.; Kyazze, F.B.; Orikiriza, L.J.B.; Kiyingi, I.; Assefa, H. Intra-household decision-making among smallholder agroforestry farmers in the eastern highlands of Uganda. Int. J. Agric. Ext. 2020, 8, 97–111. [Google Scholar] [CrossRef]
- Mdege, N.; Mayanja, S.; Mudege, N.N. Youth engagement in sweetpotato production and agribusiness: the case of Northern Uganda. Third World Q. 2022, 43, 2430–2449. [Google Scholar] [CrossRef]
- Rahman, S.A.; Jacobsen, J.B.; Healey, J.R.; Roshetko, J.M.; Sunderland, T. Finding alternatives to swidden agriculture: does agroforestry improve livelihood options and reduce pressure on existing forest? Agrofor. Syst. 2016, 91, 185–199. [Google Scholar] [CrossRef]
- Ramirez, M.A.J.; Visco, R.; Predo, C.; Galang, M. Assessment of Soil Condition Using Soil Quality Index of Different Land Use Types in Liliw, Laguna, Philippines. Philipp. J. Sci. 2022, 151. [Google Scholar] [CrossRef]
- Martin, D.A.; Osen, K.; Grass, I.; Hölscher, D.; Tscharntke, T.; Wurz, A.; Kreft, H. Land-use history determines ecosystem services and conservation value in tropical agroforestry. Conserv. Lett. 2020, 13. [Google Scholar] [CrossRef]
- Budiastuti, M.T.S.; Purnomo, D.; Setyaningrum, D. Agroforestry System as the Best Vegetation Management to Face Forest Degradation in Indonesia. Rev. Agric. Sci. 2021, 10, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Kaua, C.G. Socio-economic Factors Affecting Adoption of Agroforestry Practices in Forest Adjacent Communities: The Case of Ndabibi Location, Nakuru County, Kenya. East Afr. J. For. Agrofor. 2020, 2, 59–67. [Google Scholar] [CrossRef]
- Ibrahim, F.M.; Adeoye, A.S.; Ajanaku, A.O.; Ugege, B.H.; Odeyale, O.C.; Olayemi, O.O.; Oke, O.O. Understanding commitment to agroforestry a crosssectional study among a sample of Nigerian farmers. Acta Silvae et Ligni 2023, 132, 39–51. [Google Scholar] [CrossRef]
- Reith, E.; Gosling, E.; Knoke, T.; Paul, C. How Much Agroforestry Is Needed to Achieve Multifunctional Landscapes at the Forest Frontier?—Coupling Expert Opinion with Robust Goal Programming. Sustainability 2020, 12, 6077. [Google Scholar] [CrossRef]
- Zo-Bi, I.C.; Hérault, B. Fostering agroforestry? Lessons from the Republic of Côte d'Ivoire. BOIS FORETS DES Trop. 2023, 356, 99–104. [Google Scholar] [CrossRef]
- Zaca, F.N.; Ngidi, M.S.C.; Chipfupa, U.; Ojo, T.O.; Managa, L.R. Factors Influencing the Uptake of Agroforestry Practices among Rural Households: Empirical Evidence from the KwaZulu-Natal Province, South Africa. Forests 2023, 14, 2056. [Google Scholar] [CrossRef]
- Magagula, B.; Tsvakirai, C.Z. Youth perceptions of agriculture: influence of cognitive processes on participation in agripreneurship. Dev. Pr. 2019, 30, 234–243. [Google Scholar] [CrossRef]
- Grovermann, C.; Rees, C.; Beye, A.; Wossen, T.; Abdoulaye, T.; Cicek, H. Uptake of agroforestry-based crop management in the semi-arid Sahel – Analysis of joint decisions and adoption determinants. Front. Sustain. Food Syst. 2023, 7. [Google Scholar] [CrossRef]
- A. , E.I. Challenges and enhancement of youth participation in agricultural education for sustainable food security. Afr. Educ. Res. J. 2019, 7, 174–182. [Google Scholar] [CrossRef]
- Madende, P.; Henning, J.I.F.; Jordaan, H. Accounting for Heterogeneity among Youth: A Missing Link in Enhancing Youth Participation in Agriculture—A South African Case Study. Sustainability 2023, 15, 4981. [Google Scholar] [CrossRef]
- Mutinda, J.; Chepngeno, V.; Mugendi, T. Attitudinal Individualities Affecting Youth Participation in Agriculture: A Case of Seven Selected Counties in Kenya. Int. J. Acad. Res. Bus. Soc. Sci. 2021, 11, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Madende, P.; Henning, J.I.F.; Jordaan, H. Tailor-Made Development Pathways: A Framework to Enhance Active Participation of Youth in Agriculture. Soc. Sci. 2023, 12, 630. [Google Scholar] [CrossRef]
- Pomar, E.G.; Concina, V.A.; Samide, A.; Westgate, P.M.; Bada, H.S. Bronchopulmonary Dysplasia: Comparison Between the Two Most Used Diagnostic Criteria. Front. Pediatr. 2018, 6, 397. [Google Scholar] [CrossRef]
- Pelekamoyo, J.K.; Libati, H.M. Considerations of an efficiency-intelligent geo-localised mobile application for personalised SME market predictions. Meas. Control. 2023, 56, 1788–1797. [Google Scholar] [CrossRef]
- Hall, A.R.; Han, S.; Boldea, O. Inference regarding multiple structural changes in linear models with endogenous regressors. J. Econ. 2012, 170, 281–302. [Google Scholar] [CrossRef]
- Karlsson, A. Quantile Regression by R. Koenker. J. R. Stat. Soc. Ser. A (Statistics Soc. 2006, 170, 256–256. [Google Scholar] [CrossRef]
- Kilmer, J.T.; Rodríguez, R.L. Ordinary least squares regression is indicated for studies of allometry. J. Evol. Biol. 2016, 30, 4–12. [Google Scholar] [CrossRef]
- Long, R.G. The Crux of the Method: Assumptions in Ordinary Least Squares and Logistic Regression. Psychol. Rep. 2008, 103, 431–4. [Google Scholar] [CrossRef]
- Schwartz, S. H. , et al. Youth, Hope, and Environmental Responsibility: A Review of Evidence. Journal of Youth Studies, 2020, 23(8), 1014-1030.
- Zilberman, D. , et al. The Economic and Environmental Dimensions of Agroecology. Agricultural Economics, 2019, 50(3), 275-287.
- Berkes, F. Sacred Ecology. Routledge. 2018.
- Parker, J. J. , et al. Youth in Action: Mobilizing the Next Generation for Climate Action. Environmental Education Research, 2021, 27(4), 569-582.
- Renn, O. , et al. Trust and Transparency in Climate Policies: A Case Study of the Climate Action Plan. Environmental Science & Policy, 2020, 112, 22–29. [Google Scholar]
- Ojala, M. Hope and climate change: the importance of hope for environmental engagement among young people. Environ. Educ. Res. 2012, 18, 625–642. [Google Scholar] [CrossRef]
- Khan, A.N. Elucidating the effects of environmental consciousness and environmental attitude on green travel behavior: Moderating role of green self-efficacy. Sustain. Dev. 2023, 32, 2223–2232. [Google Scholar] [CrossRef]
- Paswan, A.; Guzmán, F.; Lewin, J. Attitudinal determinants of environmentally sustainable behavior. J. Consum. Mark. 2017, 34, 414–426. [Google Scholar] [CrossRef]
- De Young, R. New ways to promote proenvironmental behavior: Expanding and evaluating motives for environmentally responsible behavior. Journal of social issues, 2000, 56(3), pp.509-526.
- Robelia, B.A.; Greenhow, C.; Burton, L. Environmental learning in online social networks: adopting environmentally responsible behaviors. Environ. Educ. Res. 2011, 17, 553–575. [Google Scholar] [CrossRef]
- Skeirytė, A. , Krikštolaitis, R. and Liobikienė, G. The differences of climate change perception, responsibility and climate-friendly behavior among generations and the main determinants of youth's climate-friendly actions in the EU. Journal of environmental management, 2022, 323, p116277. [Google Scholar]
- Grønhøj, A.; Thøgersen, J. Like father, like son? Intergenerational transmission of values, attitudes, and behaviours in the environmental domain. J. Environ. Psychol. 2009, 29, 414–421. [Google Scholar] [CrossRef]
- McDougle, L.M.; Greenspan, I.; Handy, F. Generation green: understanding the motivations and mechanisms influencing young adults' environmental volunteering. Int. J. Nonprofit Volunt. Sect. Mark. 2011, 16, 325–341. [Google Scholar] [CrossRef]
- Glover, D.; Sumberg, J. Youth and Food Systems Transformation. Front. Sustain. Food Syst. 2020, 4. [Google Scholar] [CrossRef]
- Kremen, C.; Iles, A.; Bacon, C. Diversified Farming Systems: An Agroecological, Systems-based Alternative to Modern Industrial Agriculture. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef]
- Dutta, D.; Chandrasekharan, S. Doing to being: farming actions in a community coalesce into pro-environment motivations and values. Environ. Educ. Res. 2018, 24, 1192–1210. [Google Scholar] [CrossRef]
- Flemsæter, F. , Bjørkhaug, H., Brobakk, J. Farmers as climate citizens. Journal of Environmental Planning and Management, 2018, 61(12), pp.2050-2066.
- Carolan, M. Lands changing hands: Experiences of succession and farm (knowledge) acquisition among first-generation, multigenerational, and aspiring farmers. Land Use Policy 2018, 79, 179–189. [Google Scholar] [CrossRef]
- Bradley, R. A. , Gonzalez, J., Stafford, R. The role of indigenous knowledge in sustainable land management: A review of global practices. Sustainable Practices in Environmental Management, 2020, 58(2), 112-130.
- Bamwesigye, D.; Doli, A.; Hlavackova, P. REDD+: An Analysis of Initiatives in East Africa Amidst Increasing Deforestation. Eur. J. Sustain. Dev. 2020, 9, 224–237. [Google Scholar] [CrossRef]
- Bamwesigye, D. , Hlavackova, P. Forest wood production in Tropical Africa. J. Landsc. Manag, 2018, 9, pp.39–45. [Google Scholar]
- Bamwesigye, D.; Akwari, F.N.; Hlavackova, P. FOREST PRODUCT EXPORT PERFORMANCE IN TROPICAL AFRICA: AN EMPIRICAL ANALYSIS. 2019; 83. [Google Scholar] [CrossRef]
- Bamwesigye, D.; Kupec, P.; Chekuimo, G.; Pavlis, J.; Asamoah, O.; Darkwah, S.A.; Hlaváčková, P. Charcoal and Wood Biomass Utilization in Uganda: The Socioeconomic and Environmental Dynamics and Implications. Sustainability 2020, 12, 8337. [Google Scholar] [CrossRef]
- Bamwesigye, D.; Hlavackova, P.; Sujova, A.; Fialova, J.; Kupec, P. Willingness to Pay for Forest Existence Value and Sustainability. Sustainability 2020, 12, 891. [Google Scholar] [CrossRef]
- Westermann, O.; Ashby, J.; Pretty, J. Gender and social capital: The importance of gender differences for the maturity and effectiveness of natural resource management groups. World Dev. 2005, 33, 1783–1799. [Google Scholar] [CrossRef]
- Elmhirst, R. , Resurreccion, B.P. Gender, environment and natural resource management: New dimensions, new debates. In Gender and natural resource management (pp. 3-20). Routledge, 2020.
- Agarwal, B. Environmental action, gender equity and women's participation. Development and change, 1997, 28(1), pp.1-44.
- Agrawal, A.; Gibson, C.C. Enchantment and Disenchantment: The Role of Community in Natural Resource Conservation. World Dev. 1999, 27, 629–649. [Google Scholar] [CrossRef]
- Stringer, L.C. , Dougill, A.J., Fraser, E., Hubacek, K., Prell, C., Reed, M.S. Unpacking “participation” in the adaptive management of social–ecological systems: a critical review. Ecology and society, 2006, 11(2).
- Bamwesigye, D. , Doli, A., Adamu, K.J., Mansaray, S.K. A review of the political economy of agriculture in Uganda: Women, property rights, and other challenges. Universal Journal of Agricultural Research, 2020, 8(1), pp.1-10.
- Broch, S.W.; Strange, N.; Jacobsen, J.B.; Wilson, K.A. Farmers' willingness to provide ecosystem services and effects of their spatial distribution. Ecol. Econ. 2013, 92, 78–86. [Google Scholar] [CrossRef]
- Obeng, E.A.; Oduro, K.A.; Obiri, B.D.; Abukari, H.; Guuroh, R.T.; Djagbletey, G.D.; Appiah-Korang, J.; Appiah, M. Impact of illegal mining activities on forest ecosystem services: local communities’ attitudes and willingness to participate in restoration activities in Ghana. Heliyon 2019, 5, e02617. [Google Scholar] [CrossRef] [PubMed]
- Larson, L.R.; Whiting, J.W.; Green, G.T. Exploring the influence of outdoor recreation participation on pro-environmental behaviour in a demographically diverse population. Local Environ. 2011, 16, 67–86. [Google Scholar] [CrossRef]
- Dardanoni, V.; Guerriero, C. Young people' s willingness to pay for environmental protection. Ecol. Econ. 2020, 179, 106853. [Google Scholar] [CrossRef]
| Are you hopeful about climate change adaptations? | HopeCCA | Yes No |
1 2 |
| Do you agree that the Cultivation Farming system in Uganda is responsible for deforestation and land degradation? | CFS-DFLD | Yes No Don't know |
1 2 3 |
| Do you agree that the Livestock Farming system in Uganda is responsible for deforestation and land degradation? | LSFS- DFLD | Yes No Don't know |
1 2 3 |
| Do you think indigenous people lived well and preserved the forests? | IPPF | Yes No Don't know |
1 2 3 |
| Do you think that agroforestry could help in the adaptation measures to Climate Change? | AACC | Yes No |
1 2 |
| Do you think indigenous tree species are good for climate change adaptation? | ITSCC | Yes No |
1 2 |
| Do you think that Ugandans are ready for the highland agroforestry transition? | UAT | Yes No Don't know |
1 2 3 |
| Do you think that the government of Uganda is doing enough to combat environmental degradation? | GoUED | Yes No Don't know |
1 2 3 |
| Would you be willing to participate in highland agroforestry tree planting? | WTP-A | Yes No |
1 2 |
| Gender | Gender | Female Male |
1 2 |
| Employment | E | Student Employed Unemployed |
1 2 3 |
| Age | Age | 18-25 26-35 36-45 |
1 2 3 |
| GENDER | RESPONSES | RATIO |
|---|---|---|
| Female | 408 | 36% |
| Male | 730 | 64% |
| Age | Responses | Ratio |
| 18-25 | 687 | 60.4% |
| 26-35 | 360 | 31.6% |
| 36-45 | 91 | 8.0% |
| Employment | Responses | Ratio |
| Employed | 347 | 30.5% |
| Student | 596 | 52.4% |
| Unemployed | 195 | 17.1% |
| Hopefulness about Climate Change Adaptations (HopeCCA) | ||
| Response | Count | Percentage (%) |
| Yes | 1,014 | 89.3% |
| No | 124 | 10.7% |
| Total | 1,138 | 100% |
| Cultivation Farming System and Deforestation (CFSDFLD) | ||
| Response | Count | Percentage (%) |
| Yes | 879 | 92.3% |
| No | 259 | 7.7% |
| Total | 1,138 | 100% |
| Livestock Farming System and Deforestation (LSFSDFLD) | ||
| Response | Count | Percentage (%) |
| Yes | 1,032 | 90.7% |
| No | 106 | 9.3% |
| Total | 1,138 | 100% |
| Indigenous Tree Species Role on Climate Change | ||
| Response | Count | Percentage (%) |
| Yes | 925 | 81.3% |
| No | 68 | 6.0% |
| Don't know | 145 | 12.7% |
| Total | 1,138 | 100% |
| Agroforestry as a Climate Change Adaptation Strategy (AACC) | ||
| Response | Count | Percentage (%) |
| Yes | 1,038 | 91.2% |
| No | 44 | 3.9% |
| Don't know | 56 | 4.9% |
| Total | 1138 | 100% |
| Opinion on Indigenous Tree Species (ITSCC; | ||
| Response | Count | Percentage (%) |
| Yes | 925 | 81.3% |
| No | 68 | 6.0% |
| Don't know | 145 | 12.7% |
| Total | 1,138 | 100% |
| WTPA against HopeCCA | ||
| WTPA | HopeCCA | |
| Yes | 90.1% | 82.3% |
| No | 9.9% | 17.7% |
| Total | 100% | 100% |
| WTPA against CFSDFLD | ||
| WTPA | CFSDFLD | |
| Yes | 92.3% | 78.8% |
| No | 7.7% | 21.2% |
| Total | 100% | 100% |
| Coefficient | Std. Error | t-ratio | p-value | ||
| HopeCCA | 0.200115 | 0.0274421 | 7.292 | <0.0001 | *** |
| AACC | 0.144351 | 0.0199085 | 7.251 | <0.0001 | *** |
| IPPF | 0.0496757 | 0.0140531 | 3.535 | 0.0004 | *** |
| ITSCC | 0.0647325 | 0.0139876 | 4.628 | <0.0001 | *** |
| UAT | 0.0124333 | 0.0123332 | 1.008 | 0.3136 | |
| Gender | 0.144180 | 0.0170504 | 8.456 | <0.0001 | *** |
| Age | 0.00689068 | 0.0158803 | 0.4339 | 0.6644 | |
| CFSDFLD | 0.0667611 | 0.0148720 | 4.489 | <0.0001 | *** |
| LSFSDFLD | 0.0258345 | 0.0134539 | 1.920 | 0.0551 | * |
| GoUED | 0.0464518 | 0.0136766 | 3.396 | 0.0007 | *** |
| Employment | 0.0504938 | 0.0134290 | 3.760 | 0.0002 | *** |
| Income | −4.66333e-010 | 5.42972e-010 | −0.8589 | 0.3906 |
| Coefficient | Std. Error | t-ratio | p-value | ||
| HopeCCA | 0.207205 | 0.0265047 | 7.818 | <0.0001 | *** |
| AACC | 0.146944 | 0.0197621 | 7.436 | <0.0001 | *** |
| IPPF | 0.0529200 | 0.0137689 | 3.843 | 0.0001 | *** |
| ITSCC | 0.0653825 | 0.0139634 | 4.682 | <0.0001 | *** |
| Gender | 0.146969 | 0.0165386 | 8.886 | <0.0001 | *** |
| CFSDFLD | 0.0677354 | 0.0148466 | 4.562 | <0.0001 | *** |
| LSFSDFLD | 0.0275921 | 0.0133074 | 2.073 | 0.0384 | ** |
| GoUED | 0.0465399 | 0.0136550 | 3.408 | 0.0007 | *** |
| Employment | 0.0530426 | 0.0120847 | 4.389 | <0.0001 | *** |
| Coefficient | Std. Error | t-ratio | p-value | ||
| CFSDFLD | 0.246848 | 0.0164864 | 14.97 | <0.0001 | *** |
| LSFSDFLD | 0.201068 | 0.0143705 | 13.99 | <0.0001 | *** |
| GoUED | 0.234715 | 0.0145276 | 16.16 | <0.0001 | *** |
| Coefficient | Std. Error | t-ratio | p-value | ||
| HopeCCA | 0.405598 | 0.0247809 | 16.37 | <0.0001 | *** |
| AACC | 0.219320 | 0.0206950 | 10.60 | <0.0001 | *** |
| IPPF | 0.109231 | 0.0143100 | 7.633 | <0.0001 | *** |
| ITSCC | 0.124857 | 0.0140099 | 8.912 | <0.0001 | *** |
| UAT | 0.0421726 | 0.0131314 | 3.212 | 0.0014 | *** |
| Coefficient | Std. Error | t-ratio | p-value | ||
| Gender | 0.405856 | 0.0156024 | 26.01 | <0.0001 | *** |
| Age | 0.0929712 | 0.0187752 | 4.952 | <0.0001 | *** |
| Employment | 0.155260 | 0.0154806 | 10.03 | <0.0001 | *** |
| Income | −1.01292e-09 | 6.62861e-010 | −1.528 | 0.1268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
