Submitted:
13 October 2024
Posted:
15 October 2024
You are already at the latest version
Abstract
Keywords:
MSC: 16W25; 16R50; 16N60
1. Introduction
2. Preliminaries
3. The Main Results
- 1.
- for all ,
- 2.
- , for all ,
- 3.
- , for all
- 1.
- , for all ,
- 2.
- , for all ,
- 3.
- , for all
- 1.
- , for all ,
- 2.
- , for all ,
- 3.
- , for all
4. Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aboubakr, A.; Gonzalez, S. Generalized reverse derivation on semi prime rings. Sib. Math. J. 2015, 56(2), 199-205. [CrossRef]
- Ali, S.; Alsuraiheed, T. M.; Parveen, N.; Varshney V. Action of n-derivations and n-multipliers on ideals of (semi)-prime rings. AIMS Mathematics 2023, 8(7), 17208-17228. [CrossRef]
- Ashraf, M. On symmetric bi-derivations in rings. Rend. Istit. Mat. Univ. Trieste 1999, 31, 25-36.
- Ashraf, M.; Khan, A.; Jamal, M. R. Traces of permuting generalized n-derivations of rings. Miskolc Math. Notes 2018, 19, 731-740. [CrossRef]
- Ashraf, M.; Jamal, M. R. Traces of permuting n-additive maps and permuting n-derivations of rings. Mediterr. J. Math. 2014, 11, 287-297. [CrossRef]
- Ashraf, M.; Jamal, M. R.; Mozumder, M. R. On the traces of certain classes of permuting mappings in rings, Georgian Math. J. 2016, 23(1), 15-23. [CrossRef]
- De Barros, D. A. S.; Ferreira, B. L. M.; Guzzo Jr. H. ∗-Reverse Derivations on Alternative Algebras, J. Algebra Appl. 2024. [CrossRef]
- Brešar, M. Centralizing mappings and derivations in prime rings. J. Algebra 1993, 156, 385-394. [CrossRef]
- Daif, M. N.; Bell, H. E. Remarks on derivations on semiprime rings. Int. J. Math. Math. Sci. 1992, 15, 205-206. [CrossRef]
- Herstein, I. N. Jordan derivations of prime rings. Proc. Amer. Math. Soc. 1957, 8, 1104–1110. [CrossRef]
- Maksa, G. On the trace of symmetric biderivations. C. R. Math. Rep. Acad. Sci. Canada IX 1987, 303-308.
- Maksa, G. A remark on symmetric bi-additive functions having nonnegative diagonalization. Glas. Math 1980 15, 279-282.
- Öztürk, M. A. Permuting tri-derivations in prime and semi-prime rings. East Asian Math. J.1999, 15, 177-190.
- Park, K. H. On prime and semi-prime rings with symmetric n-derivations. J. Chungcheong Math. Soc. 2009, 22, 451-458.
- Posner, E. C. Derivations in prime rings, Proc. Amer. Math. Soc. 1957, 8, 1093-1100. [CrossRef]
- Samman, M. S.; Thaheem, A. B. Derivations on semiprime rings. Int. J. Pure. Appl. Math. 2003, 5(4), 465-472.
- KoçSögütcü, E. Multiplicative (generalized)-reverse derivations in rings and Banach algebras. Georgian Math. J., 2023, 30(4), 555-567. [CrossRef]
- KoçSögütcü, E; Gölbasi, O. Some result on Lie ideals with symmetric reverse bi-derivations in semiprime rings I. Facta Univ. Ser. Math. Inform. 2021, 36(2), 309-319. [CrossRef]
- KoçSögütcü, E.; Huang, S. Note on lie ideals with symmetric bi-derivations in semiprime rings. Indian J. Pure Appl. Math. 2023, 54, 608–618. [CrossRef]
- Vukman, J. Symmetric bi-derivations on prime and semiprime rings. Aeq. Math. 1989, 38, 245-254. [CrossRef]
- Vukman, J. Two results concerning symmetric bi-derivations on prime and semiprime rings. Aeq. Math. 1990, 40, 181-189. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
