Submitted:
12 October 2024
Posted:
14 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Brain networks via weigheted graphs
2.1. Structural Connectome
2.2. Intrinsic Proximity Connectome
2.3. Cumulative Connectome
3. The models
![]() |
(5a) |
| (5b) | |
| (5c) |
![]() |
(9a) |
| (9b) | |
| (9c) | |
| (9d) |
3.1. Model 1: diffusion of along the structural connectome
3.2. Model 2: diffusion of along the cumulative connectome
3.3. Model 3: spreading of via convolution on
3.4. Model 4: spreading of via convolution on
4. Methods
4.1. Data Availability
4.2. Subjects
4.3. PET acquisition and processing
4.4. MRI structural imaging acquisition and processing
4.5. PET and MRI co-registration and quantification of
4.6. Statistical analysis
- For the statistical analysis, we used Python libraries.
5. Results
5.1. Experimental setting
5.2. Identification of the parameter
5.3. Numerical results
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Region of interest | Network |
| Nucleus accumbens | Limbic |
| Amygdala | Limbic |
| Bankssts | Temporal |
| Brain Stem | Limbic |
| Caudal anterior cingulate gyrus | Limbic |
| Caudal middle frontal gyrus | Frontal |
| Caudate | Basal ganglia |
| Cuneus | Occipital |
| Entorhinal gyrus | Limbic |
| Frontal pole | Frontal |
| Fusiform gyrus | Occipital |
| Hippocampus | Limbic |
| Inferior parietal gyrus | Parietal |
| Inferior temporal gyrus | Temporal |
| Insula | Limbic |
| Isthmus cingulate gyrus | Limbic |
| Lateral occipital gyrus | Occipital |
| Lateral orbito frontal gyrus | Limbic |
| Lingual gyrus | Occipital |
| Medial orbito frontal gyrus | Limbic |
| Middle temporal gyrus | Temporal |
| Pallidum | Basal ganglia |
| Paracentral gyrus | Sensorimotor |
| Parahippocampal gyrus | Limbic |
| Pars opercularis | Frontal |
| Pars orbitalis | Frontal |
| Pars triangularis | Frontal |
| Peri calcarine gyrus | Occipital |
| Postcentral gyrus | Sensorimotor |
| Posterior cingulate gyrus | Limbic |
| Precentral gyrus | Sensorimotor |
| Precuneus | Parietal |
| Putamen | Basal ganglia |
| Rostral anterior cingulate gyrus | Limbic |
| Rostral middle frontal gyrus | Frontal |
| Superior frontal gyrus | Sensorimotor |
| Superior parietal gyrus | Parietal |
| Superior temporal gyrus | Temporal |
| Supramarginal gyrus | Parietal |
| Temporal pole | Temporal |
| Transverse temporal gyrus | Temporal |
References
- Ossenkoppele, R.; Rabinovici, G.D.; Smith, R.; Cho, H.; Schöll, M.; Strandberg, O.; Palmqvist, S.; Mattsson, N.; Janelidze, S.; Santillo, A.; et al. Discriminative accuracy of [18F] flortaucipir positron emission tomography for Alzheimer disease vs other neurodegenerative disorders. Jama 2018, 320, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica 1991, 82, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Grothe, M.J.; Barthel, H.; Sepulcre, J.; Dyrba, M.; Sabri, O.; Teipel, S.J.; Initiative, A.D.N.; Initiative, A.D.N. In vivo staging of regional amyloid deposition. Neurology 2017, 89, 2031–2038. [Google Scholar] [CrossRef] [PubMed]
- Busche, M.A.; Hyman, B.T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nature neuroscience 2020, 23, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Thompson, T.B.; Chaggar, P.; Kuhl, E.; Goriely, A.; Initiative, A.D.N. Protein-protein interactions in neurodegenerative diseases: A conspiracy theory. PLoS computational biology 2020, 16, e1008267. [Google Scholar] [CrossRef]
- Bertsch, M.; Franchi, B.; Raj, A.; Tesi, M.C. Macroscopic modelling of Alzheimer’s disease: difficulties and challenges. Brain Multiphysics 2021, 2, 100040. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, M.; Stiles, W.R.; Choi, H.S. Neuroimaging modalities in Alzheimer’s disease: diagnosis and clinical features. International journal of molecular sciences 2022, 23, 6079. [Google Scholar] [CrossRef]
- Bassett, D.S.; Bullmore, E.T. Human brain networks in health and disease. Current opinion in neurology 2009, 22, 340–347. [Google Scholar] [CrossRef]
- Sporns, O.; Zwi, J.D. The small world of the cerebral cortex. Neuroinformatics 2004, 2, 145–162. [Google Scholar] [CrossRef]
- Torok, J.; Anand, C.; Verma, P.; Raj, A. Connectome-based biophysics models of Alzheimer’s disease diagnosis and prognosis. Translational Research 2023, 254, 13–23. [Google Scholar] [CrossRef]
- Bertsch, M.; Franchi, B.; Tesi, M.C.; Tora, V. The role of A β and Tau proteins in Alzheimer’s disease: a mathematical model on graphs. Journal of Mathematical Biology 2023, 87, 49. [Google Scholar] [CrossRef] [PubMed]
- Catani, M.; Mesulam, M. What is a disconnection syndrome? 2008.
- Mesulam, M.M. A cortical network for directed attention and unilateral neglect. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 1981, 10, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Szalkai, B.; Kerepesi, C.; Varga, B.; Grolmusz, V. High-resolution directed human connectomes and the consensus connectome dynamics. PLoS One 2019, 14, e0215473. [Google Scholar] [CrossRef] [PubMed]
- Szalkai, B.; Kerepesi, C.; Varga, B.; Grolmusz, V. Parameterizable consensus connectomes from the human connectome project: the budapest reference connectome server v3. 0. Cognitive neurodynamics 2017, 11, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Grigor’yan, A. Introduction to analysis on graphs; Vol. 71, American Mathematical Soc., 2018.
- McNab, J.A.; Edlow, B.L.; Witzel, T.; Huang, S.Y.; Bhat, H.; Heberlein, K.; Feiweier, T.; Liu, K.; Keil, B.; Cohen-Adad, J.; et al. The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. Neuroimage 2013, 80, 234–245. [Google Scholar] [CrossRef]
- Giuffrida, M.L.; Caraci, F.; Pignataro, B.; Cataldo, S.; De Bona, P.; Bruno, V.; Molinaro, G.; Pappalardo, G.; Messina, A.; Palmigiano, A.; et al. β-amyloid monomers are neuroprotective. Journal of Neuroscience 2009, 29, 10582–10587. [Google Scholar] [CrossRef]
- Haass, C.; Selkoe, D.J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nature reviews Molecular cell biology 2007, 8, 101–112. [Google Scholar] [CrossRef]
- Ono, K.; Condron, M.M.; Teplow, D.B. Structure–neurotoxicity relationships of amyloid β-protein oligomers. Proceedings of the National Academy of Sciences 2009, 106, 14745–14750. [Google Scholar] [CrossRef]
- Meyer-Luehmann, M.; Spires-Jones, T.L.; Prada, C.; Garcia-Alloza, M.; De Calignon, A.; Rozkalne, A.; Koenigsknecht-Talboo, J.; Holtzman, D.M.; Bacskai, B.J.; Hyman, B.T. Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 2008, 451, 720–724. [Google Scholar] [CrossRef]
- Grundke-Iqbal, I.; Iqbal, K.; Tung, Y.; Quinlan, M.; Wisniewski, H.; Binder, L. Abnormal phosphorylation of the microtubule-associated protein?(tau) in Alzheimer cytoskeletal pathology. Alzheimer Disease & Associated Disorders 1987, 1, 202. [Google Scholar]
- Ittner, L.M.; Götz, J. Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nature Reviews Neuroscience 2011, 12, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Ricciarelli, R.; Fedele, E. The amyloid cascade hypothesis in Alzheimer’s disease: it’s time to change our mind. Current neuropharmacology 2017, 15, 926–935. [Google Scholar] [CrossRef]
- Bloom, G.S. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA neurology 2014, 71, 505–508. [Google Scholar] [CrossRef]
- Bennett, R.E.; DeVos, S.L.; Dujardin, S.; Corjuc, B.; Gor, R.; Gonzalez, J.; Roe, A.D.; Frosch, M.P.; Pitstick, R.; Carlson, G.A.; et al. Enhanced tau aggregation in the presence of amyloid β. The American journal of pathology 2017, 187, 1601–1612. [Google Scholar] [CrossRef] [PubMed]
- Small, S.A.; Duff, K. Linking Aβ and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 2008, 60, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Del Tredici, K. Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta neuropathologica 2011, 121, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Goedert, M.; Spillantini, M.G. Propagation of Tau aggregates. Molecular brain 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Tatarnikova, O.; Orlov, M.; Bobkova, N. Beta-amyloid and tau-protein: Structure, interaction, and prion-like properties. Biochemistry (Moscow) 2015, 80, 1800–1819. [Google Scholar] [CrossRef]
- Dujardin, S.; Hyman, B.T. Tau prion-like propagation: state of the art and current challenges. Tau Biology 2020, 305–325. [Google Scholar]
- Ahmed, Z.; Cooper, J.; Murray, T.K.; Garn, K.; McNaughton, E.; Clarke, H.; Parhizkar, S.; Ward, M.A.; Cavallini, A.; Jackson, S.; et al. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta neuropathologica 2014, 127, 667–683. [Google Scholar] [CrossRef]
- Raj, A.; Kuceyeski, A.; Weiner, M. A network diffusion model of disease progression in dementia. Neuron 2012, 73, 1204–1215. [Google Scholar] [CrossRef]
- Raj, A.; Tora, V.; Gao, X.; Cho, H.; Choi, J.Y.; Ryu, Y.H.; Lyoo, C.H.; Franchi, B. Combined model of aggregation and network diffusion recapitulates Alzheimer’s regional tau-positron emission tomography. Brain connectivity 2021, 11, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Raj, A. Graph models of pathology spread in Alzheimer’s disease: an alternative to conventional graph theoretic analysis. Brain connectivity 2021, 11, 799–814. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Melnik, R. Nonlocal multiscale interactions in brain neurodegenerative protein dynamics and coupled proteopathic processes. In Proceedings of the Proceedings of the 9th Edition of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (Coupled Problems 2021), Online Event, 2021; pp. 14–16.
- Pal, S.; Melnik, R. Nonlocal models in the analysis of brain neurodegenerative protein dynamics with application to Alzheimer’s disease. Scientific Reports 2022, 12, 7328. [Google Scholar] [CrossRef] [PubMed]
- Fornari, S.; Schäfer, A.; Jucker, M.; Goriely, A.; Kuhl, E. Prion-like spreading of Alzheimer’s disease within the brain’s connectome. Journal of the Royal Society Interface 2019, 16, 20190356. [Google Scholar] [CrossRef]
- Fornari, S.; Schäfer, A.; Kuhl, E.; Goriely, A. Spatially-extended nucleation-aggregation-fragmentation models for the dynamics of prion-like neurodegenerative protein-spreading in the brain and its connectome. Journal of theoretical biology 2020, 486, 110102. [Google Scholar] [CrossRef]
- Goriely, A.; Kuhl, E.; Bick, C. Neuronal oscillations on evolving networks: dynamics, damage, degradation, decline, dementia, and death. Physical review letters 2020, 125, 128102. [Google Scholar] [CrossRef]
- Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE signal processing magazine 2013, 30, 83–98. [Google Scholar] [CrossRef]
- Evangelisti, S.; Testa, C.; Ferri, L.; Gramegna, L.L.; Manners, D.N.; Rizzo, G.; Remondini, D.; Castellani, G.; Naldi, I.; Bisulli, F.; et al. Brain functional connectivity in sleep-related hypermotor epilepsy. NeuroImage: Clinical 2018, 17, 873–881. [Google Scholar] [CrossRef]
- Mesulam, M.M. From sensation to cognition. Brain: a journal of neurology 1998, 121, 1013–1052. [Google Scholar] [CrossRef]
- Dormand, J.R.; Prince, P.J. A family of embedded Runge-Kutta formulae. Journal of computational and applied mathematics 1980, 6, 19–26. [Google Scholar] [CrossRef]
- Hutcheson, K. A test for comparing diversities based on Shannon formula. Journal of theoretical Biology 1970, 29, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Moravveji, S.; Doyon, N.; Mashreghi, J.; Duchesne, S. A scoping review of mathematical models covering Alzheimer’s disease progression. Frontiers in Neuroinformatics 2024, 18, 1281656. [Google Scholar] [CrossRef] [PubMed]



| 0.001 | 0.001 | 0.12 | 0.1 | 0.5 | 0.1 | 0.1 | 0.1 | 0.11 |
| 25 | 30 | 15 | 5 |
| ROI | significance | concentration |
| Fusiform region | 1.553 | |
| Inferior temporal region | 1.665 | |
| Middle temporal region | 1.551 | |
| Lingual region | 1.377 | |
| Lateral orbitofrontal region | 1.520 | |
| Amygdala | 1.428 |
| Model 1 | Model 2 | Model 3 | Model 4 |
| 0.001 | 0.001 | 150 | 0.05 |
| Clinical Data | Model 1 | Model 2 | Model 3 | Model 4 |
| T | L | T | L | L |
| L | T | L | S | S |
| O | O | O | T | O |
| S | S | S | O | T |
| Model 1 | Model 2 | Model 3 | Model 4 | |
| HD | 2 | 0 | 4 | 3 |
| RMSE | 0.11574 | 0.11543 | 0.10931 | 0.10615 |
| MAE | 0.09256 | 0.09212 | 0.08911 | 0.08950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).


