Submitted:
12 October 2024
Posted:
14 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Plant and Physiological Parameter Measurements
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gonçalves, B.; Moutinho-Pereira, J.; Santos, A.; Silva, A. P.; Bacelar, E.; Correia, C.; Rosa, E. Scion–rootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiology, 2006, 26(1),93–104. [CrossRef]
- Jimenez, S.; Pinochet, J.; Gogorcena, Y.; Betran, J.A.; Moreno, M. A. Influence of different vigour cherry rootstocks on leaves and shoots mineral composition. Sci. Hort.,2007,112: 73–79. [CrossRef]
- Cantın, C. M.; Pinochet, J.; Gogorcena, Y.; Moreno, M. A. Growth, yield and fruit quality of ‘Van’ and ‘Stark Hardy Giant’ sweet cherry cultivars as influenced by grafting on different rootstocks. Sci. Hortic. 2010, 123: 329–335. [CrossRef]
- Sitarek, M.; Grzyb, Z. S. Growth, productivity and fruit quality of ‘Kordia’ sweet cherry trees on eight clonal rootstocks. J. Fruit Ornam. Plant Res., 2010, 18(2): 169-176.
- Sitarek, M.; Bartosiewicz, B. Influence of five clonal rootstocks on the growth, productivity and fruit quality of ‘Sylvia’ and ‘Karina’ sweet cherry trees. J. Fruit Ornam. Plant Res., 2012, 20(2): 5-1. [CrossRef]
- Baryła, P.; Kapłan, M.; Krawiec, M. The effect of different types of rootstock on the quality of maiden trees of sweet cherry (Prunus avium L.) cv. ‘Regina’. Acta Agrobotanica, 2014, 67 (4): 43–50. [CrossRef]
- Zec, G.; Čolović, V.; Milatović, D.; Čolić, S.; Vulić, T.; Dordević, B.; Durović, D. Rootstock influence on vigor and generative potential of young sweet cherry trees. J. Agric. Food Env. Sci., 2017, 71(2): 137-141. https://journals.ukim.mk/index. 1229. [Google Scholar]
- Zimmermann, A. ‘Gisela 5’, a dwarfing rootstock for sweet cherries from Giessen in a trial. Obstbau (Germany), 1994, 19:62–63.
- Walter, E. , Franken B.S. Evaluation of new German rootstocks for sweet cherry. ‘Gisela 5’ and other hybrids of P. cerasus · P. canescens [Prunus avium L.]. Rivista di Frutticoltura e di Ortofloricoltura, 1998, 60:24–28.
- Bassi, G. Influence of rootstocks on cherry production. Informatore Agrario, 2005, 61:55–59.
- Liu, Q. ; Zhang,L.; Li,B.; Zhao, H.A new cherry dwarf rootstock variety ‘Gisela 5’. Acta Hort. Sinica, 2005, 32:760.
- Sitarek, M. ; Grzyb,Z. S.; Omiecińska, B. Performance of sweet cherry trees on ‘Gisela 5’ rootstock. Acta Hort., 2005, 667, 389–391. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, L. ; Li,B. ; Liu, Q. Brief report on the sweet cherry cultivars and rootstocks grown in Germany. China Fruits, 2005, 4, 61–62. [Google Scholar]
- Kumar, A.; Sharma, V.; Thakur, M. In vitro rooting and hardening of clonal cherry rootstock Gisela5 (Pruns cerasus x Prunus canescesns). Indian J. Agric. Scienc., 2020, 90(5), 1032-1035. [CrossRef]
- Trobec, M.; Stampar, F.; Veberic, R.; Osterc, G. Fluctuations of different endogenous phenolic compounds and cinnamic acid in the first days of the rooting process of cherry rootstock ‘GiSelA 5’ leafy cuttings. J. Plant Phys. 2005, 162, 589—597. [Google Scholar] [CrossRef]
- Štefančič, M. , Štampar, F., Osterc, G. Influence of IAA and IBA on root development and quality of Prunus 'GiSelA 5' leafy cuttings. HortScience, 2005, 40(7), 2052-2055. Retrieved Feb 14, 2024. [CrossRef]
- Świerczyński, S. Assessment of the Effect of Treating ‘GiSelA 5’Softwood Cuttings with Biostimulants and Synthetic Auxin on Their Root Formation and Some of Their Physiological Parameters. Plants, 2023, 12(3), 658. [CrossRef]
- Baryła, P.; Kapłan, M. The estimation of the growth and branching of the six stocks under the cherry and the sweet cherry trees. Acta Sci. Pol., Hort. Cultus, 2005, 4(1): 119-129.
- Papachatzis, A. Influence of rootstock on growth and reproductive characteristics of cherry cultivar ‘Stella’ during the period of complete fruiting. Lithuanian Institute of Horticulture and Lithuanian University of Agriculture, 2006, 25(3), 212-217.
- Biśko, A.; Vujević, P.; Jelačić, T.; Milinović, B.; Halapija Kazija, D.; Kovačić, D. Evaluation of four dwarfing cherry rootstocks combined with ‘Kordia’ and ‘Regina’ in the agroenvironmental conditions of northwest Croatia. Acta Hortic., 2017, 1161: 273-280. [CrossRef]
- Bielick, P.; Rozpara, E. Growth and Yield of ‘Kordia’ sweet cherry trees with various rootstock and interstem combinations. J. Fruit Ornam. Plant Res.,2010, 18(1): 45-50.
- Stehr, R. Further experiences with dwarfing sweet cherry rootstocks in northern Germany. Acta Hortic., 2008, 795, 185–190. [Google Scholar] [CrossRef]
- Franken-Bembenek, S. GiSelAs, PIKUs und neue Giessener Klone: Ergebnisse aus europäischen und nordamerikanischen Kirschenunterlagenversuchen. Erwerbs-Obstbau, 2010, 52, 17–25. [Google Scholar] [CrossRef]
- Atkinson, C.; Else, M. Understanding how rootstocks dwarf fruit trees. Horticulture Research International. Compact Fruit Tree, 2001, 34 (2), 46-49.
- Franken-Bembenek, S. GiSelA 5 (148/2) – dwarfing rootstock for sweet cherries. Act. Hort., 1998, 468, 279–283. [Google Scholar] [CrossRef]
- Lugli, S.; Correale, R.; Gaiani, A.; Grandi, M.; Muzzi, E. ; Quartier,i M.; Sansavini, S. New cherry rootstocks for intensive plantations. Rivista di Frutticoltura e di Ortofloricoltura. 2005, 67:41–47.
- Sitarek, M. Incompatibility problems in sweet cherry trees on dwarfing rootstocks. Agronomijas Vēstis, Latvian Journal of Agronomy, 2006, 9, 140–145. [Google Scholar]
- Zenginbal, H.; Demir, T.; Demirsoy, H.; Beyhan, Ö. The grafting success of fourteen genotypes grafted on three different rootstocks on production of sweet cherry (Prunus avium L.) sapling. Acta Sci. Pol. Hortorum Cultus,2017, 16(1), 133-143.
- Baryła, P.; Kapłan, M.; Krawiec, M.; Kiczorowski, P. The effect of rootstocks on the efficiency of a nursery of sweet cherry (Prunus avium L.) trees cv. ‘Regina’. Acta Agrobotanica, 2013, 66 (4): 121–128. [CrossRef]
- Bujdosó, G.; Hrotkó, K. Nursery value of some dwarfing cherry rootstocks in Hungary. Latvian Journal of Agronomy, Agronomijas Vēstis, 2006, 9: 7-9.
- Zenginbal, H. The effect of different grafting methods on success grafting in different kiwifruit (Actinidia deliciosa, A. chev) cultivars. Inter. J. Agric. Res., 2007, 2(8), 736–740. http://www.academicjournals.net/2/c4p.php?id=2&theme=2&jid=ijar.
- Özçağiran, R.; Ünal, A.; Özeker, E.; İsfendiyaroğlu, M. Mild climate fruit types, stone fruits, vol. 1. Ege Univ. Agric. Fac. Publ., 2003, No 553, Ege University Press, Izmir, Turkey, 229 p.
- Stachowiak, A.; Świerczyński, A. The influence of mycorrhizal vaccine on the growth of maiden sweet cherry trees of selected cultivars in nursery. Acta Sci. Pol. Hortorum Cultus, 2009, 8(1), 3–11.
- Janes, H.; Pae, A. Evaluation of nine sweet cherry clonal rootstocks and one seedling rootstock. Agron. Res.,2004, 2(1): 23-27.
- Sitarek, M.; Grzyb, Z. S. Nursery Results of Bud-Take and Growth of Six Sweet Cherry Cultivars Budded on Four Clonal Rootstocks. Acta Hort., 2007, 732: 345-349. [CrossRef]
- Gjamovski, V.; Kiprijanovski, M.; Arsov, T. Evaluation of some cherry varieties grafted on Gisela 5 root-stock. Turk. J. Agric. For., 2016, 40, 737–745. [Google Scholar] [CrossRef]
- Milić, B.; Kalajdzic, J.; Keserović, Z.; Magazin, N.; Ognjanov, V.; Miodragović, M.; Popara, G. Early performance of four sweet cherry cultivars grafted on Gisela 5 and Colt rootstocks in a high density growing system. Acta Sci. Pol. Hortorum Cultus, 2019,18(1). [CrossRef]
- Bassi, G.; Fajt, N.; Bisko, A.; Donik Purgaj, B.; Draicchio, P.; Folini, L. ; Gusmeroli, F;. Steinbauer, L. Vegetative and productive performances of ‘Kordia’ and ‘Regina’ sweet cherry cultivars grafted on four clonal rootstocks in the Alpe Adria region. Acta Horticulturae, 2016, 1139: 159-166. [CrossRef]
- Świerczyński, S. , Borowiak K., Bosiacki M., Urbaniak M., Malinowska A. Estimation of the growth of ‘Vanda’ maiden sweet cherry trees on three rootstocks and after aplication of foliar fertilization in a nursery. Acta Sci. Pol. Hort. Cultus, 2019, 18(1): 109–118. [CrossRef]
- Perez, C.; Val, J.; Monge, E.; Val, J.; Montanes, L.; Monge, E. Photosynthetic changes of Prunus avium L. grafted on different rootstocks in relation to mineral deficiencies. Acta Hortic., 1997, 448: 81-85, http://www.actahort.org/books/448/448_8.
- Lichev, V.; Berova, M. Effects of rootstock on photosynthetic activity and productivity in the sweet cherry cultivar ‘Stella’. J. Fruit Ornam. Plant Res, 2004, 448 (12/2), 81-85.
- Popescu, M.; Popescu, G. C. Effects of dwarfing ‘Gisela 5’rootstock on reproductive potential, vegetative growth, and physiological features of some sweet cherry cultivars in high-density sweet cherry orchards. Current Trends in Natural Sciences, 2015, 4(8), 82-90. http://www.natsci.upit.ro.
- Romero, P. ; Navarro. J. M.; García, F., Ordaz P. B. Effects of regulated deficit irrigation during the pre-harvest period on gas exchange, leaf development and crop yield of mature almond trees. Tree Physiology, 2004, 24(3): 303–312. [CrossRef]
- Proietti, P.; Nasini, L.; Famiani, F. Effect of different leaf-to-fruit ratios on photosynthesis and fruit growth in olive (Olea europaea L.). Photosynthetica, 2006, 44: 275–285. [CrossRef]
- Almadi, L.; Paoletti, A.; Cinosi, N.; Daher, E.; Rosati, A.; Di Vaio, C.; Famiani, F. A Biostimulant Based on Protein Hydrolysates Promotes the Growth of Young Olive Trees. Agriculture. 2020, 10(12):618. [CrossRef]
- Świerczyński, S.; Antonowicz, A.; Bykowska, J. The effect of the foliar application of biostimulants and fertilisers on the growth and physiological parameters of Maiden apple trees cultivated with limited mineral fertilisation. Agronomy, 2021, 11(6), 1216. [CrossRef]
- Rosati, A. ; Paoletti, A; Al Hariri, R.; Morelli, A., Famiani, F. (2018). Resource investments in reproductive growth proportionately limit investments in whole-tree vegetative growth in young olive trees with varying crop loads. Tree Physiol.,2018, 1;38(9):1267-1277. [CrossRef]
| Year (A) Variety |
Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| ‘Bellise’ | ||||
| 2017 | Stem cutting | 90.88 a | 87.73 a | 88.72 a |
| In vitro | 84.18 a | 84.28 a | ||
| 2018 | Stem cutting | 86.35 a | 85.38 a | |
| In vitro | 84.39 a | |||
| ‘Earlise’ | ||||
| 2017 | Stem cutting | 89.29 b | 85.94 a | 86.65 a |
| In vitro | 82.23 a | 83.59 a | ||
| 2018 | Stem cutting | 83.77 ab | 84.34 a | |
| In vitro | 84.91 ab | |||
| ‘Lapin’ | ||||
| 2017 | Stem cutting | 87.59 a | 87.74 a | 86.54 a |
| In vitro | 87.90 a | 87.24 a | ||
| 2018 | Stem cutting | 85.46 a | 86.02 a | |
| In vitro | 86.58 a | |||
| ‘Vanda’ | ||||
| 2017 | Stem cutting | 83.08 b | 81.16 a | 81.33 a |
| In vitro | 79.17 ab | 77.24 a | ||
| 2018 | Stem cutting | 79.52 ab | 77.43 a | |
| Year (A) Variety |
Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| ‘Bellise’ | ||||
| 2017 | Stem cutting | 210.75 c | 206.17 b | 181.75 a |
| In vitro | 201.60 c | 161.92 a | ||
| 2018 | Stem cutting | 152.75 b | 137.50 a | |
| In vitro | 122.25 a | |||
| ‘Earlise’ | ||||
| 2017 | Stem cutting | 243.20 c | 235.50 b | 191.25 a |
| In vitro | 227.80 c | 170.87 a | ||
| 2018 | Stem cutting | 139.30 b | 126.62 a | |
| In vitro | 113.95 a | |||
| ‘Lapins’ | ||||
| 2017 | Stem cutting | 151.35 a | 147.45 a | 151.35 a |
| In vitro | 143.55 a | 141.17 a | ||
| 2018 | Stem cutting | 151.35 a | 145.07 a | |
| In vitro | 138.80 a | |||
| ‘Vanda’ | ||||
| 2017 | Stem cutting | 213.30 c | 203.15 b | 171.67 a |
| In vitro | 193.00 b | 155.05 a | ||
| 2018 | Stem cutting | 130.05 a | 123.57 a | |
| Year (A) Variety |
Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| ‘Bellise’ | ||||
| 2017 | Stem cutting | 20.49 c | 19.50 b | 17.77 b |
| In vitro | 18.50 c | 15.63 a | ||
| 2018 | Stem cutting | 15.06 b | 13.91 a | |
| In vitro | 12.76 a | |||
| ‘Earlise’ | ||||
| 2017 | Stem cutting | 19.76 d | 18.56 b | 16.80 b |
| In vitro | 17.37 c | 14.20 a | ||
| 2018 | Stem cutting | 13.84 b | 12.44 a | |
| In vitro | 11.03 a | |||
| ‘Lapins’ | ||||
| 2017 | Stem cutting | 15.73 b | 13.00 a | 16.62 b |
| In vitro | 10.27 a | 10.12 a | ||
| 2018 | Stem cutting | 17.50 c | 13.74 a | |
| In vitro | 9.98 a | |||
| ‘Vanda’ | ||||
| 2017 | Stem cutting | 18.15 b | 17.73 b | 15.70 a |
| In vitro | 17.32 b | 14.67 a | ||
| 2018 | Stem cutting | 13.26 a | 12.64 a | |
| Year (A) Variety |
Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| ‘Bellise’ | ||||
| 2017 | Stem cutting | 3.10 b | 2.45 b | 2.23 b |
| In vitro | 1.80 a | 1.22 a | ||
| 2018 | Stem cutting | 1.55 a | 1.10 a | |
| In vitro | 0.65 a | |||
| ‘Earlise’ | ||||
| 2017 | Stem cutting | 4.10 c | 3.05 b | 3.27 b |
| In vitro | 2.00 b | 1.20 a | ||
| 2018 | Stem cutting | 2.45 b | 1.42 a | |
| In vitro | 0.40 a | |||
| ‘Lapins’ | ||||
| 2017 | Stem cutting | 0.00 a | 0.00 a | 0.00 a |
| In vitro | 0.00 a | 0.00 a | ||
| 2018 | Stem cutting | 0.00 a | 0.00 a | |
| In vitro | 0.00 a | |||
| ‘Vanda’ | ||||
| 2017 | Stem cutting | 6.45 c | 4.27 b | 3.80 b |
| In vitro | 3.00 b | 2.00 a | ||
| 2018 | Stem cutting | 1.15 a | 1.07 a | |
| Year (A) Variety |
Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| ‘Bellise’ | ||||
| 2017 | Stem cutting | 180.80 c | 147.70 b | 111.02 b |
| In vitro | 105.60 b | 67.72 a | ||
| 2018 | Stem cutting | 32.25 a | 26.05 a | |
| In vitro | 19.85 a | |||
| ‘Earlise’ | ||||
| 2017 | Stem cutting | 213.50 c | 164.30 b | 146.27 b |
| In vitro | 115.10 b | 62.57 a | ||
| 2018 | Stem cutting | 79.05 ab | 44.55 a | |
| In vitro | 10.05 a | |||
| ‘Lapins’ | ||||
| 2017 | Stem cutting | 0.00 a | 0.00 a | 0.00 a |
| In vitro | 0.00 a | 0.00 a | ||
| 2018 | Stem cutting | 0.00 a | 0.00 a | |
| In vitro | 0.00 a | |||
| ‘Vanda’ | ||||
| 2017 | Stem cutting | 321.75 c | 256.95 b | 179.71 a |
| In vitro | 192.15 b | 107.17 a | ||
| 2018 | Stem cutting | 21.89 a | 22.05 a | |
| Year (A) Variety |
Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| ‘Bellise’ | ||||
| 2017 | Stem cutting | 13.20 b | 12.30 a | 12.95 b |
| In vitro | 11.40 a | 11.10 a | ||
| 2018 | Stem cutting | 12.70 b | 11.75 a | |
| In vitro | 10.80 a | |||
| ‘Earlise’ | ||||
| 2017 | Stem cutting | 14.20 b | 13.82 b | 13.40 a |
| In vitro | 13.45 ab | 12.67 a | ||
| 2018 | Stem cutting | 12.60 ab | 12.25 a | |
| In vitro | 11.90 a | |||
| ‘Lapins’ | ||||
| 2017 | Stem cutting | 17.40 b | 16.25 a | 17.60 b |
| In vitro | 15.10 a | 15.50 a | ||
| 2018 | Stem cutting | 17.80 b | 16.85 a | |
| In vitro | 15.90 ab | |||
| ‘Vanda’ | ||||
| 2017 | Stem cutting | 17.40 c | 15.95 a | 16.85 b |
| In vitro | 14.50 ab | 13.90 a | ||
| 2018 | Stem cutting | 16.30 bc | 14.80 a | |
| Year (A) | Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| ‘Bellise’ | ||||
| 2017 | Stem cutting | 1.28 b | 1.23 b | 1.00 a |
| In vitro | 1.18 b | 0.89 a | ||
| 2018 | Stem cutting | 0.72 a | 0.66 a | |
| In vitro | 0.61 a | |||
| ‘Earlise’ | ||||
| 2017 | Stem cutting | 1.33 c | 1.17 b | 0.97 b |
| In vitro | 1.01 b | 0.77 a | ||
| 2018 | Stem cutting | 0.61 a | 0.57 a | |
| In vitro | 0.53 a | |||
| ‘Lapins’ | ||||
| 2017 | Stem cutting | 1.10 c | 0.99 b | 0.89 a |
| In vitro | 0.88 b | 0.79 a | ||
| 2018 | Stem cutting | 0.71 a | 0.69 a | |
| In vitro | 0.68 a | |||
| ‘Vanda’ | ||||
| 2017 | Stem cutting | 1.35 b | 1.30 b | 1.17 a |
| In vitro | 1.25 b | 1.09 a | ||
| 2018 | Stem cutting | 0.98 a | 0.95 a | |
| Year (A) Variety |
Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| ‘Bellise’ | ||||
| 2017 | Stem cutting | 264.10 c | 263.10 b | 210.55 a |
| In vitro | 262.10 c | 202.78 a | ||
| 2018 | Stem cutting | 157.01 b | 150.23 a | |
| In vitro | 143.46 a | |||
| ‘Earlise’ | ||||
| 2017 | Stem cutting | 256.34 c | 258.84 b | 203.32 a |
| In vitro | 253.34 c | 193.21 a | ||
| 2018 | Stem cutting | 150.30 b | 141.69 a | |
| In vitro | 133.08 a | |||
| ‘Lapins’ | ||||
| 2017 | Stem cutting | 274.67 b | 273.67 b | 217.46 a |
| In vitro | 172.67 b | 210.99 a | ||
| 2018 | Stem cutting | 160.25 a | 154.78 a | |
| In vitro | 149.32 a | |||
| ‘Vanda’ | ||||
| 2017 | Stem cutting | 271.65 b | 266.95 b | 209.26 a |
| In vitro | 262.25 b | 202.61 a | ||
| 2018 | Stem cutting | 146.87 a | 144.92 a | |
| Year (A) Variety |
Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| ‘Bellise’ | ||||
| 2017 | Stem cutting | 9754.52 b | 9822.10 b | 8091.34 a |
| In vitro | 9889.68 b | 8050.06 a | ||
| 2018 | Stem cutting | 6428.16 a | 6319.31 a | |
| In vitro | 6210.45 a | |||
| ‘Earlise’ | ||||
| 2017 | Stem cutting | 9393.50 b | 9353.04 b | 7639.43 a |
| In vitro | 9312.58 b | 7562.03 a | ||
| 2018 | Stem cutting | 5885.37 a | 5848.42 a | |
| In vitro | 5811.48 a | |||
| ‘Lapins’ | ||||
| 2017 | Stem cutting | 9872.21 b | 9877.62 b | 8095.75 a |
| In vitro | 9883,03 b | 8132.25 a | ||
| 2018 | Stem cutting | 6319.30 a | 6350.38 a | |
| In vitro | 6381.47 a | |||
| ‘Vanda’ | ||||
| 2017 | Stem cutting | 9652.63 b | 9597.64 b | 7715.05 a |
| In vitro | 9542.65 b | 7655.63 a | ||
| 2018 | Stem cutting | 5777.47 a | 5773.04 a | |
| Year (A) | Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| Pn- net photosynthetic intensity (μmol CO2·m-2·s-1) | ||||
| 2017 | Stem cutting | 13.26 b | 11.70 a | 14.20 b |
| In vitro | 9.69 a | 11.64 a | ||
| 2018 | Stem cutting | 15.41 c | 14.14 b | |
| In vitro | 13.15 b | |||
| E-leaf transpiration coefficient (μmol H2O· m-2·s-1) | ||||
| 2017 | Stem cutting | 2.86 d | 2.07 a | 2.63 b |
| In vitro | 1.04 a | 1.44 a | ||
| 2018 | Stem cutting | 2.33 c | 2.00 a | |
| In vitro | 1.75 b | |||
| C-stomatal conductivity (mol H2O· m-2·s-1) | ||||
| 2017 | Stem cutting | 101.84 d | 68.93 a | 94.12 b |
| In vitro | 26.62 a | 52,24 a | ||
| 2018 | Stem cutting | 84.19 c | 77.42 a | |
| In vitro | 72.16 b | |||
| Int_CO2- internal carbon dioxide concentration (mol CO2 · mol-1) | ||||
| 2017 | Stem cutting | 410.28 c | 418.47 b | 294.51 a |
| In vitro | 429.01 d | 224.62 a | ||
| 2018 | Stem cutting | 145.66 b | 100.65 a | |
| Year (A) | Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| Pn- net photosynthetic intensity (μmol CO2·m-2·s-1) | ||||
| 2017 | Stem cutting | 10.87 b | 7.13 a | 8.49 a |
| In vitro | 5.26 a | 7.21 a | ||
| 2018 | Stem cutting | 6.10 a | 8.38 a | |
| In vitro | 10.01 b | |||
| E-leaf transpiration coefficient (μmol H2O· m-2·s-1) | ||||
| 2017 | Stem cutting | 2.19 b | 1.60 a | 1.74 a |
| In vitro | 1.30 a | 1.62 a | ||
| 2018 | Stem cutting | 1.29 a | 1.76 a | |
| In vitro | 2.09 b | |||
| C-stomatal conductivity (mol H2O· m-2·s-1) | ||||
| 2017 | Stem cutting | 71.09 b | 42.31 a | 52.00 a |
| In vitro | 27.93 a | 49.13 a | ||
| 2018 | Stem cutting | 32.91 a | 60.04 a | |
| In vitro | 79.42 b | |||
| Int_CO2- internal carbon dioxide concentration (mol CO2 · mol-1) | ||||
| 2017 | Stem cutting | 412.08 c | 420.75 b | 261.68 a |
| In vitro | 425.09 c | 312.54 a | ||
| 2018 | Stem cutting | 111.28 a | 134.89 a | |
| In vitro | 151.76 b | |||
| Year (A) | Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| Pn- net photosynthetic intensity (μmol CO2·m-2·s-1) | ||||
| 2017 | Stem cutting | 10.06 b | 11.99 b | 9.22 a |
| In vitro | 13.12 c | 11.90 b | ||
| 2018 | Stem cutting | 8.70 a | 9.65 a | |
| In vitro | 10.59 b | |||
| E-leaf transpiration coefficient (μmol H2O· m-2·s-1) | ||||
| 2017 | Stem cutting | 1.88 a | 2.56 a | 2.00 a |
| In vitro | 2.98 c | 2.80 b | ||
| 2018 | Stem cutting | 2.07 a | 2.35 a | |
| In vitro | 2.62 b | |||
| C-stomatal conductivity (mol H2O· m-2·s-1) | ||||
| 2017 | Stem cutting | 70.74 a | 82.15 a | 75.52 a |
| In vitro | 89.29 c | 89.03 b | ||
| 2018 | Stem cutting | 78.50 b | 83.63 a | |
| In vitro | 88.76 c | |||
| Int_CO2- internal carbon dioxide concentration (mol CO2 · mol-1) | ||||
| 2017 | Stem cutting | 424.54 a | 435.96 b | 424.88 a |
| In vitro | 443,10 b | 433.92 b | ||
| 2018 | Stem cutting | 425.09 a | 424.91 a | |
| Year (A) | Way of propagation (B) | Interaction A x B |
Mean for A | Mean for B |
| Pn- net photosynthetic intensity (μmol CO2·m-2·s-1) | ||||
| 2017 | Stem cutting | 20.61 d | 15.36 b | 15.38 b |
| In vitro | 8.36 a | 9.75 a | ||
| 2018 | Stem cutting | 9.41 b | 10.20 a | |
| In vitro | 11.14 c | |||
| E-leaf transpiration coefficient (μmol H2O· m-2·s-1) | ||||
| 2017 | Stem cutting | 3.61 c | 2.84 b | 2.98 b |
| In vitro | 1.82 a | 1.87 a | ||
| 2018 | Stem cutting | 2.26 b | 2.10 a | |
| In vitro | 1.92 a | |||
| C-stomatal conductivity (mol H2O· m-2·s-1) | ||||
| 2017 | Stem cutting | 128.71 c | 87. 35 a | 107.97 a |
| In vitro | 32.19 a | 82.24 a | ||
| 2018 | Stem cutting | 84.27 b | 106.43 a | |
| In vitro | 132.28 c | |||
| Int_CO2- internal carbon dioxide concentration (mol CO2 · mol-1) | ||||
| 2017 | Stem cutting | 414.19 b | 438.12 b | 322.04 a |
| In vitro | 470.03 c | 342.65 a | ||
| 2018 | Stem cutting | 216.73 a | 216.05 a | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
