Submitted:
11 October 2024
Posted:
11 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Database, Descriptors, and Time Range
2.2. Exclusion and Inclusion Criteria
2.3. Documents Selection Procedure
3. Results and Discussion
3.1. Quantitative Analysis of Frequent Keywords
3.2. Botanical Aspects of the Carnauba (Copernicia prunifera)
3.3. Publications by Countries and Institutions
3.4. Scientific Journals with Publications in the Field
3.5. The Most Cited Researchers and Articles
3.6. Residual Carnauba Biomass (Copernicia prunifera)
3.7. Research Areas
3.8. Methods for Determining Kinetic Parameters
4. Conclusions
- -
- The countries with the highest number of publications were Brazil, China, and India;
- -
- The kinetic parameters of biomass pyrolysis were highlighted in this article, with Friedman’s isoconversional method being the most recommended by researchers;
- -
- The research topics were identified through an analysis of keywords, obtaining the following emerged themes: carnauba wax, cellulose, biomass, activation energy, kinetics, pyrolysis, thermogravimetric analysis, and kinetic parameters;
- -
- The Federal University of Piauí (Brazil) is the core institution in a network of 220 organizations engaged in research about pyrolysis, carnauba, and thermogravimetric analysis. It has produced the highest number of publications in this field, followed by the Federal University of Ceará (Brazil).
Author Contributions
Funding
Conflicts of Interest
References
- Queiroz GS de M. Produção de hidrocarbonetos renováveis a partir da pirólise do óleo de macaúba (acrocomia aculeata) utilizando AlSBA-15, Mo/AlSBA-15, HBeta e Mo/HBeta. Tese de Doutorado. Universidade Federal do Rio Grande do Norte, 2023.
- Shu Y, Zhang J, Li W, Zhao P, Zhang Q, Zhou M. Thermogravimetric analysis of the pyrolysis and combustion kinetics of surface dead combustibles in the Daxing’an Mountains. PLoS One 2021;16:e0260790. [CrossRef]
- Miranda MR da S, others. Bagaço do sorgo: estimativa de parâmetros cinéticos e pirólise analítica. Dissertação de Mestrado. Universidade Federal de Uberlândi, 2011.
- Monroe APR, Silva AVS, Melo MS, da Silva JBS, Peña Garcia RR, Rios MA de S, et al. Evaluation of the Bioenergy Potential of Blends (Green Coconut Shells and Fish Scales) as a Feedstock in Thermochemical Processes for Clean Energy Production. Processes 2024;12:710. [CrossRef]
- Silva C, Sousa B, Nunes J, Malveira J, Marques R, Damasceno L, et al. Evaluation of Babassu Cake Generated in the Extraction of the Oil as Feedstock for Biofuel Production. Processes 2023;11:585. [CrossRef]
- Neto FS, Melo Neta M, Sousa A, Damasceno L, Sousa B, Medeiros S, et al. Analysis of the Fuel Properties of the Seed Shell of the Neem Plant (Azadirachta indica). Processes 2023;11:2442. [CrossRef]
- Goldemberg J. Biomassa e energia. Quim Nova 2009;32:582–7. [CrossRef]
- Braga E, Damasceno L, Barros de Sousa Silva C, Silva L, Cavalcante M, Barreto C, et al. 1H NMR and UV-Vis as Analytical Techniques to Evaluate Biodiesel Conversion and Oxidative Stability. Fuels 2024;5:107–22. [CrossRef]
- Santos ALR, Marinho ES, Rufino Bezerra Neto J, Sousa BA, Figueredo IM, Luna FMT, et al. Study of molecular arrangement and density estimation of soybean oil biodiesel-diesel blends employing molecular dynamic simulation. Fuel 2024;377:132760. [CrossRef]
- Rangel NVP, da Silva LP, Pinheiro VS, Figueredo IM, Campos OS, Costa SN, et al. Effect of additives on the oxidative stability and corrosivity of biodiesel samples derived from babassu oil and residual frying oil: An experimental and theoretical assessment. Fuel 2021;289:119939. [CrossRef]
- Mota FAS, Viegas RA, Lima AAS, Santos FFP, Caselli FTR. PIRÓLISE DA BIOMASSA LIGNOCELULÓSICA: UMA REVISÃO. Revista Gestão Inovação e Tecnologias 2015;5:2511–25. [CrossRef]
- Lopes AAS, Carneiro EA, Rios MAS, Hiluy Filho JJ, Carioca JOB, Barros GG, et al. Study of antioxidant property of a thiosphorated compound derived from cashew nut shell liquid in hydrogenated naphthenics oils. Brazilian Journal of Chemical Engineering 2008;25:119–27. [CrossRef]
- Paiva GMS, Freitas AR, Nobre FX, Leite CMS, Matos JME, Rios MAS. Kinetic and thermal stability study of hydrogenated cardanol and alkylated hydrogenated cardanol. J Therm Anal Calorim 2015;120:1617–25. [CrossRef]
- Empresa de Pesquisa Energética (EPE),. Balanço Energético Nacional (BEN), Relatório Síntese 2024, ano Base 2023. Disponível online: https://encurtador.com.br/mlwd9 (acessado em 19/07/2024).
- Aragão ARF. A árvore da vida: terminologia da cera de carnaúba no português do Brasil. Tese de Doutorado. Universidade Federal do Ceará, 2007.
- FERREIRA CDAS, Nunes JAR, Gomes RLF. Manejo de corte das folhas de Copernicia prunifera (Miller) HE Moore no Piauí. Revista Caatinga 2013;26:25–30.
- CARVALHO JNF de. Pobreza e tecnologias sociais no extrativismo da carnaúba. José Natanael Fontenele de Carvalho Teresina 2008.
- Silva RAR, Vieira FA, Fajardo CG, Araújo FS. Padrões Alométricos da Palmeira Carnaúba (Copernicia prunifera (MILL.) H.E. Moore). Nativa 2015;3:56–8. [CrossRef]
- Rocha TGF, Silva RAR, Dantas EX, Vieira F de A. FENOLOGIA DA Copernicia prunifera (ARECACEAE) EM UMA ÁREA DE CAATINGA DO RIO GRANDE DO NORTE. CERNE 2015;21:673–81. [CrossRef]
- Medeiros WJF de. Impactos de fatores do solo e da competição com Cryptostegia madagascariensis sobre as respostas ecofisiológicas de plantas jovens e adultas de Copernicia prunifera. Tese de Doutorado. Universidade Federal do Ceará, 2021.
- Vianna SA. Copernicia in Flora e Funga do Brasil 2024. https://floradobrasil.jbrj.gov.br/FB15706 (accessed July 7, 2024).
- Alves MO, Coelho JD. Tecnologia e relações de produção no extrativismo da carnaúba no nordeste brasileiro 2006.
- Banco do Nordeste. AÇÕES PARA O DESENVOLVIMENTO DO ARTESANATO DO NORDESTE. Disponível online: https://www.bnb.gov.br/s482-dspace/handle/123456789/816 (acessado em 08/07/2024).
- Caselli F. Identificação de aplicações tecnológicas da carnaúba entre 2000 e 2019. Revista Semiárido De Visu 2024;12. [CrossRef]
- MINISTÉRIO DA AGRICULTURA , SECRETARIA DE DESENVOLVIMENTO AGROPECUÁRIO E COOPERATIVISMO. Série boas práticas de manejo para o extrativismo sustentável orgânico - Carnaúba (Copernicia prunifera). Disponível online: https://encurtador.com.br/xwc4h (acessado em 08/07/2024)..
- Paula EA de O, Costa CYM da, Silva LES da, Souza FM de, Melo RR de. Propriedades mecânicas do talo de carnaúba (Copernicia prunifera) obtidas através de ensaios de tração. AGROPECUÁRIA CIENTÍFICA NO SEMIÁRIDO 2020;16:122. [CrossRef]
- de Almeilda JAS, Feitosa NA, Sousa L de C e, Silva RNO, de Morais RF, Monteiro JM, et al. Use, perception, and local management of Copernicia prunifera (Miller) H. E. Moore in rural communities in the Brazilian Savanna. J Ethnobiol Ethnomed 2021;17:16. [CrossRef]
- Chen C, Chitose A, Kusadokoro M, Nie H, Xu W, Yang F, et al. Sustainability and challenges in biodiesel production from waste cooking oil: An advanced bibliometric analysis. Energy Reports 2021;7:4022–34. [CrossRef]
- da Silva Lacerda V, López-Sotelo JB, Correa-Guimarães A, Hernández-Navarro S, Sánchez-Báscones M, Navas-Gracia LM, et al. Rhodamine B removal with activated carbons obtained from lignocellulosic waste. J Environ Manage 2015;155:67–76. [CrossRef]
- Zhang Y, Simpson BK, Dumont M-J. Effect of beeswax and carnauba wax addition on properties of gelatin films: A comparative study. Food Biosci 2018;26:88–95. [CrossRef]
- Carlos del Río J, Rencoret J, Gutiérrez A, Kim H, Ralph J. Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins. Plant Physiol 2017;174:2072–82. [CrossRef]
- Ezeilo UR, Wahab RA, Mahat NA. Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew Energy 2020;156:1301–12. [CrossRef]
- Chen Z, Reznicek WD, Wan C. Aqueous Choline Chloride: A Novel Solvent for Switchgrass Fractionation and Subsequent Hemicellulose Conversion into Furfural. ACS Sustain Chem Eng 2018;6:6910–9. [CrossRef]
- Ribeiro MP, Neuba L de M, da Silveira PHPM, da Luz FS, Figueiredo AB-H da S, Monteiro SN, et al. Mechanical, thermal and ballistic performance of epoxy composites reinforced with Cannabis sativa hemp fabric. Journal of Materials Research and Technology 2021;12:221–33. [CrossRef]
- da Silva Andrade LB, da Silva Julião MS, Carneiro Vera Cruz R, Soares Rodrigues TH, dos Santos Fontenelle RO, da Silva ALC. Antioxidant and antifungal activity of carnauba wax powder extracts. Ind Crops Prod 2018;125:220–7. [CrossRef]
- Atmakuri A, Palevicius A, Siddabathula M, Vilkauskas A, Janusas G. Analysis of Mechanical and Wettability Properties of Natural Fiber-Reinforced Epoxy Hybrid Composites. Polymers (Basel) 2020;12:2827. [CrossRef]
- Abilio TE, Soares BC, José JC, Milani PA, Labuto G, Carrilho ENVM. Hexavalent chromium removal from water: adsorption properties of in natura and magnetic nanomodified sugarcane bagasse. Environmental Science and Pollution Research 2021;28:24816–29. [CrossRef]
- Junio R, Nascimento L, Neuba L, Souza A, Moura J, Garcia Filho F, et al. Copernicia Prunifera Leaf Fiber: A Promising New Reinforcement for Epoxy Composites. Polymers (Basel) 2020;12:2090. [CrossRef]
- Carvalho PR, Medeiros SLS, Paixão RL, Figueredo IM, Mattos ALA, Rios MAS. Thermogravimetric pyrolysis of residual biomasses obtained post-extraction of carnauba wax: Determination of kinetic parameters using Friedman’s isoconversional method. Renew Energy 2023;207:703–13. [CrossRef]
- Lima RN. Avaliação do potencial energético da palha e talo da carnauba. Desertion de Mestrado. Universidade Federal do Ceará, 2018.
- Qin Y, Zhang S, Yu J, Yang J, Xiong L, Sun Q. Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydr Polym 2016;147:372–8. [CrossRef]
- Hoslett J, Ghazal H, Ahmad D, Jouhara H. Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste. Science of The Total Environment 2019;673:777–89. [CrossRef]
- Nguyen DM, Grillet A-C, Diep TMH, Ha Thuc CN, Woloszyn M. Hygrothermal properties of bio-insulation building materials based on bamboo fibers and bio-glues. Constr Build Mater 2017;155:852–66. [CrossRef]
- de Araujo Guilherme A, Dantas PVF, Padilha CE de A, dos Santos ES, de Macedo GR. Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process. J Environ Manage 2019;234:44–51. [CrossRef]
- González-López ME, Pérez-Fonseca AA, Cisneros-López EO, Manríquez-González R, Ramírez-Arreola DE, Rodrigue D, et al. Effect of Maleated PLA on the Properties of Rotomolded PLA-Agave Fiber Biocomposites. J Polym Environ 2019;27:61–73. [CrossRef]
- Zahoor, Wang W, Tan X, Imtiaz M, Wang Q, Miao C, et al. Rice straw pretreatment with KOH/urea for enhancing sugar yield and ethanol production at low temperature. Ind Crops Prod 2021;170:113776. [CrossRef]
- Malik WA, Javed S. Biochemical Characterization of Cellulase From Bacillus subtilis Strain and its Effect on Digestibility and Structural Modifications of Lignocellulose Rich Biomass. Front Bioeng Biotechnol 2021;9:800265. [CrossRef]
- Malik K, Salama E-S, El-Dalatony MM, Jalalah M, Harraz FA, Al-Assiri MS, et al. Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: Long-term investigation. Ind Crops Prod 2021;159:113122. [CrossRef]
- Ferreira da Silva AJ, Paiva de Alencar Moura MC, da Silva Santos E, Saraiva Pereira JE, Lins de Barros Neto E. Copper removal using carnauba straw powder: Equilibrium, kinetics, and thermodynamic studies. J Environ Chem Eng 2018;6:6828–35. [CrossRef]
- Pereira JES, Ferreira RLS, Nascimento PFP, Silva AJF, Padilha CEA, Barros Neto EL. Valorization of carnauba straw and cashew leaf as bioadsorbents to remove copper (II) ions from aqueous solution. Environ Technol Innov 2021;23:101706. [CrossRef]
- Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 2011;520:1–19. [CrossRef]
- Marchese L, Brusamarello CZ, de Amorim SM, Batistella L, Di Domenico M. ESTUDO CINÉTICO DA PIRÓLISE DO BAGAÇO DE MALTE POR MÉTODOS ISOCONVERSIONAIS. Forum Internacional de Resíduos Sólidos - Anais, vol. 11, 2020.
- Souza D, Castillo TE, Rodríguez RJS. Impacto do co-monômero hidroxivalerato na cinética de degradação térmica dos poli(3-hidroxialcanoatos). Matéria (Rio de Janeiro) 2009;14:946–56. [CrossRef]
- Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A Phys Chem 1966;70:487. [CrossRef]
- Vyazovkin S. Kissinger Method in Kinetics of Materials: Things to Beware and Be Aware of. Molecules 2020;25:2813. [CrossRef]
- Spiekermann FL. Caracterização Química e Cinética da Semente de Abacate e dos Biocarvões Obtidos Utilizando Análise Termogravimétrica. Trabalho de conclusão de Curso. Universidade Federal do Rio Grande do Sul, 2021.
- Silva JCG da, others. Estudo dos parâmetros cinéticos da pirólise do bagaço de cana-de-açúcar. Dissertação de Mestrado. Universidade Federal da Paraíba, 2017.
- do Espírito Santo Nóbrega CR, da Silva JBS, Monteiro TO, Crnkovic PM, Cruz G. An investigation on the kinetic behavior and thermodynamic parameters of the oxy-fuel combustion of Brazilian agroindustrial residues. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2023;45:65. [CrossRef]


















| Rank | Keywords | Frequency | TLS* | Rank | Keywords | Frequency | TLS* |
|---|---|---|---|---|---|---|---|
| 1 | carnauba wax | 56 | 15 | 16 | thermal analysis | 9 | 23 |
| 2 | wax | 27 | 9 | 17 | degradation | 9 | 14 |
| 3 | cellulose | 23 | 49 | 18 | DSC | 9 | 14 |
| 4 | carnauba | 21 | 16 | 19 | thermal stability | 9 | 13 |
| 5 | Copernicia prunifera | 21 | 5 | 20 | biodegradable | 9 | 5 |
| 6 | mechanical properties | 20 | 11 | 21 | Fourier transform infrared spectroscopy | 8 | 37 |
| 7 | fibers | 16 | 38 | 22 | Differential Scanning Calorimetry |
8 | 23 |
| 8 | Scanning electron microscopy |
15 | 31 | 23 | extraction | 8 | 10 |
| 9 | biomass | 12 | 15 | 24 | pyrolysis | 8 | 5 |
| 10 | kinetics | 12 | 9 | 25 | Caatinga | 8 | 1 |
| 11 | Brazil | 11 | 2 | 26 | thermal properties | 6 | 9 |
| 12 | composites | 10 | 16 | 27 | thermogravimetry | 6 | 10 |
| 13 | lignin | 10 | 16 | 28 | isotherm | 5 | 8 |
| 14 | physical properties | 10 | 7 | 29 | carnauba straw | 5 | 3 |
| 15 | thermogravimetric analysis | 9 | 36 | 30 | lignocellulosic residues | 5 | 10 |
| Rank | Countries | Nº of Papers | Rank | Countries | Nº of Papers | Rank | Countries | Nº of Papers |
|---|---|---|---|---|---|---|---|---|
| 1 | Brazil | 402 | 12 | Germany | 6 | 23 | France | 2 |
| 2 | China | 34 | 13 | South Korea |
6 | 24 | Ghana | 2 |
| 3 | India | 25 | 14 | Belgium | 5 | 25 | Sweden | 2 |
| 4 | Turkey | 19 | 15 | Ukraine | 5 | 26 | Austria | 1 |
| 5 | Italy | 18 | 16 | Bangladesh | 4 | 27 | Cameroon | 1 |
| 6 | Portugal | 17 | 17 | Czech Republic |
4 | 28 | Chile | 1 |
| 7 | Spain | 15 | 18 | Canada | 3 | 29 | Costa Rica | 1 |
| 8 | USA | 14 | 19 | Mexico | 3 | 30 | Libya | 1 |
| 9 | Iran | 8 | 20 | South Africa |
3 | 31 | Norway | 1 |
| 10 | Malaysia | 8 | 21 | Sudan | 3 | 32 | Russia | 1 |
| 11 | Serbia | 7 | 22 | Australia | 2 | 33 | UK | 1 |
| Rank | Organizations | Documents | TLS* |
|---|---|---|---|
| 1 | Universidade Federal do Piauí | 19 | 42 |
| 2 | Universidade Federal do Ceará | 18 | 33 |
| 3 | Universidade Estadual do Ceará | 10 | 14 |
| 4 | Universidade Federal de Campina Grande | 5 | 11 |
| 5 | Universidade de São Paulo | 5 | 17 |
| 6 | Universidade Estadual de Campinas | 4 | 15 |
| 7 | Universidade Federal de Lavras | 4 | 7 |
| 8 | Universidade Federal do Rio Grande do Norte | 4 | 7 |
| 9 | Embrapa Agroindústria Tropical | 3 | 4 |
| 10 | Universidade Federal do Maranhão | 3 | 4 |
| Rank | Journals | Number of publications | IF | PC |
|---|---|---|---|---|
| 1 | Food Chemistry | 37 | 8.80 | 4.71% |
| 2 | International Journal of Biological Macromolecules | 26 | 8.20 | 3.31% |
| 3 | Powder Technology | 23 | 5.20 | 2.93% |
| 4 | Industrial Crops and Products | 20 | 5.90 | 2.54% |
| 5 | LWT | 20 | 6.00 | 2.54% |
| 6 | Food Hydrocolloids | 19 | 10.70 | 2.42% |
| 7 | Food Research International | 17 | 8.10 | 2.16% |
| 8 | Progress in Organic Coatings | 16 | 6.60 | 2.04% |
| 9 | Chemical Engineering Journal | 15 | 15.10 | 1.91% |
| 10 | International Journal of Pharmaceutics | 15 | 5.80 | 1.91% |
| 11 | Carbohydrate Polymers | 14 | 11.20 | 1.78% |
| 12 | Polymers | 14 | 4.60 | 1.78% |
| 13 | Food Bioscience | 10 | 5.20 | 1.27% |
| 14 | Journal of Food Engineering | 10 | 5.50 | 1.27% |
| 15 | Colloids And Surfaces A: Physicochemical and Engineering Aspects |
9 | 5.20 | 1.15% |
| Rank | Documents | Authors | Citations | Years |
|---|---|---|---|---|
| 1 | Rhodamine b removal with activated carbons obtained from lignocellulosic waste [29] | Da Silva Lacerda, V. |
171 | 2015 |
| 2 | Effect of beeswax and carnauba wax addition on properties of gelatin films: A comparative study [30] | Zhang, Y. | 106 | 2018 |
| 3 | Hydroxystilbenes are monomers in palm fruit endocarp lignins [31] | Del Río, J.C. | 72 | 2017 |
| 4 | Optimization studies on cellulase and xylanase production by rhizopus oryzae uc2 using raw oil palm frond leaves as substrate under solid state fermentation [32] | Ezeilo, U.R. | 63 | 2020 |
| 5 | Aqueous choline chloride: a novel solvent for switchgrass fractionation and subsequent hemicellulose conversion into furfural [33] | Chen, Z. | 58 | 2018 |
| 6 | Mechanical, thermal and ballistic performance of epoxy composites reinforced with cannabis sativa hemp fabric [34] | Ribeiro, M.P. | 46 | 2021 |
| 7 | Antioxidant and antifungal activity of carnauba wax powder extracts [35] | Da Silva Andrade, L.B. | 29 | 2018 |
| 8 | Analysis of mechanical and wettability properties of natural fiber-reinforced epoxy hybrid composites [36] | Atmakuri, A. | 28 | 2020 |
| 9 | Hexavalent chromium removal from water: adsorption properties of in natura and magnetic nanomodified sugarcane bagasse [37] | Abilio, T.E. | 25 | 2021 |
| 10 | Copernicia prunifera leaf fiber: A promising new reinforcement for epoxy composites [38] | Junio, R.F.P. | 19 | 2020 |
| Rank | Authors | Number of publications | TLS* | Year |
|---|---|---|---|---|
| 1 | Monteiro, S. N. | 13 | 7 | 2022 |
| 2 | Guedes, M. I. F. | 9 | 18 | 2019 |
| 3 | Bezerra, L. R. | 7 | 16 | 2021 |
| 4 | Nascimento, L. F. C. | 7 | 7 | 2022 |
| 5 | Bezerra, A. M. E. | 6 | 20 | 2015 |
| 6 | Correa-Guimaraes, A. | 6 | 41 | 2016 |
| 7 | Da Silva, A. L. | 6 | 16 | 2020 |
| 8 | Hernández-Navarro, S. | 6 | 41 | 2016 |
| 9 | López-Sotelo, J. B. | 6 | 41 | 2016 |
| 10 | Martín-Gil, J. | 6 | 41 | 2016 |
| Rank | Keywords | Frequency | TLS* |
|---|---|---|---|
| 1 | cellulose | 12 | 29 |
| 2 | lignin | 10 | 26 |
| 3 | biomass | 9 | 21 |
| 4 | scanning electron microscopy | 9 | 28 |
| 5 | Fourier transform infrared spectroscopy | 8 | 29 |
| 6 | thermogravimetric analysis | 6 | 17 |
| 7 | biodegradable polymers | 3 | 3 |
| 8 | degradation | 3 | 10 |
| 9 | lignocellulosic biomass | 3 | 11 |
| 10 | mechanical properties | 3 | 4 |
| 11 | straw | 3 | 9 |
| 12 | thermal properties | 3 | 4 |
| 13 | activation energy | 2 | 7 |
| 14 | biochar | 2 | 3 |
| 15 | bioconversion | 2 | 4 |
| 16 | kinetics | 2 | 3 |
| 17 | pyrolysis | 2 | 9 |
| 18 | thermodynamics | 2 | 5 |
| 19 | thermogravimetry | 2 | 10 |
| Rank | Documents | Authors | Citations | Years |
|---|---|---|---|---|
| 1 | Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films [41] | Qin, Y.; Zhang, S. | 137 | 2016 |
| 2 | Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste [42] | Hoslett, J.; Ghazal, H. | 81 | 2019 |
| 3 | Hygrothermal properties of bio-insulation building materials based on bamboo fibers and bio-glues[43] | Nguyen, D.M.; Grillet, A | 70 | 2017 |
| 4 | Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process [44] | De Araujo Guilherme, A. | 60 | 2019 |
| 5 | Effect of maleated pla on the properties of rotomolded pla-agave fiber biocomposites [45] | González-López, M.E. | 56 | 2019 |
| 6 | Rice straw pretreatment with koh/urea for enhancing sugar yield and ethanol production at low temperature [46] | Zahoor; Wang, W. | 44 | 2021 |
| 7 | Biochemical characterization of cellulase from bacillus subtilis strain and its effect on digestibility and structural modifications of lignocellulose rich biomass [47] | Malik, W.A.; Javed, S. | 42 | 2021 |
| 8 | Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: long-term investigation[48] | Malik, K.; Salama E.-S. | 35 | 2021 |
| 9 | Copper removal using carnauba straw powder: equilibrium, kinetics, and thermodynamic studies [49] | Ferreira da Silva, A.J. | 17 | 2018 |
| 10 | Valorization of carnauba straw and cashew leaf as bioadsorbents to remove copper (ii) ions from aqueous solution [50] | Pereira, J.E.S. | 11 | 2021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
