Submitted:
09 October 2024
Posted:
14 October 2024
You are already at the latest version
Abstract
Keywords:
Introduction
1. Resonances in Small, Doublelayered, High-Contrast, Nonlinear Scatterers with Arbitrary Geometry
1.1. The Original Work
1.2. Case 1: Single-Layer Kerr Effect

1.3. Case 2: Dual-Layer Kerr Effect

2. Resonances in Small, Multilayered, High-Contrast, Nonlinear Scatterers with Arbitrary Geometry
References
- Zhou, D.; Biswas, R. Trapping light in solar cells. Journal of Applied Physics 2010, 107, 094501. [Google Scholar]
- Cummer, S.A.; Christensen, J.; Alu, A. Controlling sound with acoustic metamaterials. Nature Reviews Materials 2016, 1, 1–13. [Google Scholar] [CrossRef]
- Alu, A.; Engheta, N. Plasmonic materials for optical transformation and invisibility cloaking. Journal of Optics A: Pure and Applied Optics 2007, 10, 093002. [Google Scholar]
- Meklachi, T.; Schotland, J.C.; Moskow, S. Asymptotic analysis of resonances of small volume high contrast linear and nonlinear scatterers. Journal of Mathematical Physics 2018, 59, 20. [Google Scholar] [CrossRef]
- Meklachi, T. Theorem of resonance of Small Volume High Contrast multilayered materials. 2022; arXiv:math-ph/2205.00674]. [Google Scholar]
- Ammari, H.; Millien, P.; Ruiz, M. Mathematical analysis of plasmonic resonances for nanoparticles: the scalar case. Archive for Rational Mechanics and Analysis 2018, 227, 1011–1069. [Google Scholar]
- Moskow, S. Nonlinear eigenvalue approximation for compact operators. Journal of Mathematical Physics 2015, 56. [Google Scholar] [CrossRef]
- Ammari, H.; Challa, D.P.; Li, M. Layer potential techniques for the approximation of resonances in high-contrast plasmonic media. SIAM Journal on Mathematical Analysis 2022, 54, 1759–1785. [Google Scholar]
- Boyd, R.W. Nonlinear optic, Elsevier, 2020.
- Poutrina, E.; Huang, D.; Urzhumov, Y.; Smith, D.R. Nonlinear and tunable metamaterials. Advanced materials 2010, 22, 867–870. [Google Scholar]
- Suchkov, S.V.; Dmitriev, A.L.; Dotsenko, I.E.; Levchenko, V.A.; Zaitsev, S.V. Resonant properties of dielectric microspheres with a high refractive index. Journal of the Optical Society of America B 2000, 17, 674–682. [Google Scholar]
- Soukoulis, C.M.; Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics 2011, 5, 523–530. [Google Scholar] [CrossRef]
- Ma, G.; Yang, M.; Xiao, S.; Yang, Z.; Sheng, P. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Nature materials 2014, 13, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, A.; Ghandriche, A.; Sini, M. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. 2020; arXiv:math.AP/2004.07808]. [Google Scholar]
- Kircher, M.F.; Alcaraz de La Osa, R.; Nelson, B.D.; Manjavacas, A.; Nordlander, P.; Halas, N.J. Resonant infrared nanostructures for sensing, spectroscopy, and optical switching. ACS photonics 2014, 1, 1066–1076. [Google Scholar]
- Alitalo, P.; Koppens, F.H. Graphene antenna for terahertz photodetection. Nano letters 2015, 15, 4685–4689. [Google Scholar]
- Atwater, H.A.; Polman, A. Plasmonics for improved photovoltaic devices. Nature materials 2010, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Adams, B.; Li, K.; Meklachi, T. Spectral analysis of scattering resonances with application on high-contrast nanospheres. Letters in Mathematical Physics 2022, 112, 70. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
