Submitted:
07 October 2024
Posted:
10 October 2024
You are already at the latest version
Abstract
Keywords:
MSC: 42C15
1. Introduction
- A. Wigderson-Y. Wigderson UP [19].
- Maccone-Pati UP [20].
- Goh-Goodman UP [21].
- Jiang-Liu-Wu subfactor UP [22].
- Bandeira-Lewis-Mixon numerical sparsity UP [23].
2. Product Entropic Uncertainty Principle
- (i)
- For each , the map is measurable.
- (ii)
- is continuous.
- is decreasing.
- , .
References
- Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 1983, 50, 631–633. [Google Scholar] [CrossRef]
- Mahesh Krishna, K. Functional Deutsch uncertainty principle. J. Class. Anal. 2024, 23, 11–18. [Google Scholar] [CrossRef]
- Schrödinger, E. About Heisenberg uncertainty relation (original annotation by A. Angelow and M.-C. Batoni). Bulgar. J. Phys. 1999, 26, 193–203, Translation of Proc. Prussian Acad. Sci. Phys. Math. Sect. 19 (1930), 296–303. [Google Scholar]
- von Neumann, J. Mathematical foundations of quantum mechanics; Princeton University Press, Princeton, NJ, 2018; pp. xviii+304. [CrossRef]
- Robertson, H.P. The Uncertainty Principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
- Heisenberg, W. The physical content of quantum kinematics and mechanics. In Quantum Theory and Measurement; Wheeler, J.A.; Zurek, W.H., Eds.; Princeton Series in Physics, Princeton University Press, Princeton, NJ, 1983; pp. 62–84.
- Folland, G.B.; Sitaram, A. The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 1997, 3, 207–238. [Google Scholar] [CrossRef]
- Selig, K.K. Uncertainty principles revisited. Electron. Trans. Numer. Anal. 2002, 14, 165–177. [Google Scholar]
- Goh, S.S.; Micchelli, C.A. Uncertainty principles in Hilbert spaces. J. Fourier Anal. Appl. 2002, 8, 335–373. [Google Scholar] [CrossRef]
- Elad, M.; Bruckstein, A.M. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory 2002, 48, 2558–2567. [Google Scholar] [CrossRef]
- Ricaud, B.; Torrésani, B. Refined support and entropic uncertainty inequalities. IEEE Trans. Inform. Theory 2013, 59, 4272–4279. [Google Scholar] [CrossRef]
- Donoho, D.L.; Stark, P.B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 1989, 49, 906–931. [Google Scholar] [CrossRef]
- Smith, K.T. The uncertainty principle on groups. SIAM J. Appl. Math. 1990, 50, 876–882. [Google Scholar] [CrossRef]
- Alagic, G.; Russell, A. Uncertainty principles for compact groups. Illinois J. Math. 2008, 52, 1315–1324. [Google Scholar] [CrossRef]
- Chua, K.S.; Ng, W.S. A simple proof of the uncertainty principle for compact groups. Expo. Math. 2005, 23, 147–150. [Google Scholar] [CrossRef]
- Meshulam, R. An uncertainty inequality for groups of order pq. European J. Combin. 1992, 13, 401–407. [Google Scholar] [CrossRef]
- Kuppinger, P.; Durisi, G.; Bölcskei, H. Uncertainty relations and sparse signal recovery for pairs of general signal sets. IEEE Trans. Inform. Theory 2012, 58, 263–277. [Google Scholar] [CrossRef]
- Studer, C.; Kuppinger, P.; Pope, G.; Bölcskei, H. Recovery of sparsely corrupted signals. IEEE Trans. Inform. Theory 2012, 58, 3115–3130. [Google Scholar] [CrossRef]
- Wigderson, A.; Wigderson, Y. The uncertainty principle: variations on a theme. Bull. Amer. Math. Soc. (N.S.) 2021, 58, 225–261. [Google Scholar] [CrossRef]
- Maccone, L.; Pati, A.K. Stronger Uncertainty Relations for All Incompatible Observables. Phys. Rev. Lett. 2014, 113, 260401. [Google Scholar] [CrossRef]
- Goh, S.S.; Goodman, T.N.T. Uncertainty principles in Banach spaces and signal recovery. J. Approx. Theory 2006, 143, 26–35. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, Z.; Wu, J. Noncommutative uncertainty principles. J. Funct. Anal. 2016, 270, 264–311. [Google Scholar] [CrossRef]
- Bandeira, A.S.; Lewis, M.E.; Mixon, D.G. Discrete uncertainty principles and sparse signal processing. J. Fourier Anal. Appl. 2018, 24, 935–956. [Google Scholar] [CrossRef]
- Evra, S.; Kowalski, E.; Lubotzky, A. Good cyclic codes and the uncertainty principle. Enseign. Math. 2017, 63, 305–332. [Google Scholar] [CrossRef]
- Borello, M.; Willems, W.; Zini, G. On ideals in group algebras: an uncertainty principle and the Schur product. Forum Math. 2022, 34, 1345–1354. [Google Scholar] [CrossRef]
- Feng, T.; Hollmann, H.D.L.; Xiang, Q. The shift bound for abelian codes and generalizations of the Donoho-Stark uncertainty principle. IEEE Trans. Inform. Theory 2019, 65, 4673–4682. [Google Scholar] [CrossRef]
- Bosso, P.; Luciano, G.G.; Petruzziello, L.; Wagner, F. 30 years in: quo vadis generalized uncertainty principle? Classical Quantum Gravity 2023, 40, 195014. [Google Scholar] [CrossRef]
- Tawfik, A.; Diab, A. Generalized uncertainty principle: Approaches and applications. International Journal of Modern Physics D 2014, 23, 1430025. [Google Scholar] [CrossRef]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D (3) 1995, 52, 1108–1118. [Google Scholar] [CrossRef]
- Ali, S.T.; Antoine, J.P.; Gazeau, J.P. Continuous frames in Hilbert space. Ann. Physics 1993, 222, 1–37. [Google Scholar] [CrossRef]
- Kaiser, G. A friendly guide to wavelets; Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2011; pp. xx+300. [CrossRef]
- Buzano, M.L. Generalizzazione della diseguaglianza di Cauchy-Schwarz. Rend. Sem. Mat. Univ. e Politec. Torino 1971/73, 31, 405–409 (1974).
- Fujii, M.; Kubo, F. Buzano’s inequality and bounds for roots of algebraic equations. Proc. Amer. Math. Soc. 1993, 117, 359–361. [Google Scholar] [CrossRef]
- Steele, J.M. The Cauchy-Schwarz master class; Cambridge University Press, Cambridge, 2004; pp. x+306. [CrossRef]
- Kraus, K. Complementary observables and uncertainty relations. Phys. Rev. D (3) 1987, 35, 3070–3075. [Google Scholar] [CrossRef]
- Maassen, H.; Uffink, J.B.M. Generalized entropic uncertainty relations. Phys. Rev. Lett. 1988, 60, 1103–1106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).