Submitted:
08 October 2024
Posted:
09 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Voltage-Gated Calcium Channels (VGCCs)
2.1. General Background
2.2. The a2d Subunits
2.3. Physiological roles of a2d
3. Proposed Calcium & a2d Impairment in ALS
3.1. Motivation
3.2. Calcium Evidence
3.3. Suspect by Subcellular Location
3.4. Suspect by Membrane Location
3.5. Suspect by Elimination
3.6. Calcium Part of the Theory
3.7. a2d Part of the Theory
4. ALS Evidence
4.1. Calcium
4.2. Serum, Ig, CSF Evidence
4.3. Direct MTN Evidence
4.4. Drug Evidence
4.5. Genetic Evidence
4.6. Other Tissue
4.7. Explanatory Power for ALS Facts
4.8. a2d
4.9. Patient IgG interacts with a2d, with the predicted effects
4.10. a2d is Decreased in ALS
4.11. a2d Suppression Increases Risk
4.12. a2d Suppression Accelerates Symptoms
4.13. a2d Suppression is Associated with Motor Diseases
4.14. Animal Models
4.15. Insulin
4.16. Insulin Impairment
4.17. Insulin and ALS Processes
4.18. Insulin and Diabetes
4.19. Trajectories
4.20. Calcium
4.21. Cholesterol
5. Autoimmunity
5.1. Calcium-Related Antibodies
5.2. Immune Complement
5.3. Association with Autoimmune Diseases
5.4. Association with Myasthenia Gravis (MG)
5.5. Muscular Autoimmune Diseases Targeting VGCCs
5.6. NMJ Exposure
5.7. Ocular MTNs
5.8. Adaptive Immune Trajectories in ALS
6. frontotemporal Dementia (FTD)
6.1. Background
6.2. Theory
6.3. Glucose Evidence
6.4. Calcium Evidence
6.5. Autoimmunity Evidence
6.6. Additional VEN and Areal Evidence
7. Discussion
7.1. TDP43
7.2. Calcium
7.3. Autoimmunity
7.4. Insulin
7.5. FTD
7.6. Theory Predictions
7.7. Treatment
Acknowledgments
References
- Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, et al. Amyotrophic lateral sclerosis. Nature Reviews Disease Primers. 2017;3(1):1-19.
- Leigh N, Sreedharan J, Wijesekera L. Motor neuron disease: Amyotrophic lateral sclerosis. In: Neuroscience in the 21st Century: From Basic to Clinical, Second Edition. Springer New York; 2016. p. 3799-841.
- Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS drugs. 2010;24:375-98.
- Van Den Bosch, L. Amyotrophic lateral sclerosis: mechanisms and therapeutic strategies. In: Disease-Modifying Targets in Neurodegenerative Disorders. Elsevier; 2017. p. 277-96.
- Catterall, WA. Voltage-gated calcium channels. Cold Spring Harbor perspectives in biology. 2011;3(8):a003947.
- Dolphin, AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. The Journal of physiology. 2016;594(19):5369-90.
- Striessnig J, Pinggera A, Kaur G, Bock G, Tuluc P. L-type Ca2+ channels in heart and brain. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling. 2014;3(2):15-38.
- Geisler S, Schöpf CL, Obermair GJ. Emerging evidence for specific neuronal functions of auxiliary calcium channel α2δ subunits. General physiology and biophysics. 2015;34(2):105.
- Gandía L, Mayorgas I, Michelena P, Cuchillo I, de Pascual R, Abad F, et al. Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells. Pflügers Archiv. 1998;436(5):696-704.
- Lee SE, Lee SH. Skin barrier and calcium. Annals of dermatology. 2018;30(3):265-75.
- Hetzenauer A, Sinnegger-Brauns M, Striessnig J, Singewald N. Brain activation pattern induced by stimulation of L-type Ca2+-channels: contribution of Cav1.3 and Cav1.2 isoforms. Neuroscience. 2006;139(3):1005-15.
- Pilch KS, Ramgoolam KH, Dolphin AC. Involvement of CaV2.2 channels and α2δ-1 in hippocampal homeostatic synaptic plasticity. bioRxiv. 2022.
- Akha AAS, Willmott NJ, Brickley K, Dolphin AC, Galione A, Hunt SV. Anti-Ig-induced Calcium Influx in Rat B Lymphocytes Mediated by cGMP through a Dihydropyridine-sensitive Channel. Journal of Biological Chemistry. 1996;271(13):7297-300.
- Hoek KL, Antony P, Lowe J, Shinners N, Sarmah B, Wente SR, et al. Transitional B cell fate is associated with developmental stage-specific regulation of diacylglycerol and calcium signaling upon B cell receptor engagement. The Journal of Immunology. 2006;177(8):5405-13.
- Grafton G, Stokes L, Toellner KM, Gordon J. A non-voltage-gated calcium channel with L-type characteristics activated by B cell receptor ligation. Biochemical pharmacology. 2003;66(10):2001-9.
- Pelletier L, Moreau M. Cav1 channels is also a story of non excitable cells: Application to calcium signalling in two different non related models. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2021;1868(6):118996.
- Rosa N, Triffaux E, Robert V, Mars M, Klein M, Bouchaud G, et al. The β and α2δ auxiliary subunits of voltage-gated calcium channel 1 (Cav1) are required for TH2 lymphocyte function and acute allergic airway inflammation. Journal of Allergy and Clinical Immunology. 2018;142(3):892-903.
- Kadurin I, Ferron L, Rothwell SW, Meyer JO, Douglas LR, Bauer CS, et al. Proteolytic maturation of α2δ represents a checkpoint for activation and neuronal trafficking of latent calcium channels. Elife. 2016;5:e21143.
- Davies A, Kadurin I, Alvarez-Laviada A, Douglas L, Nieto-Rostro M, Bauer CS, et al. The α2δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a posttranslational modification essential for function. Proceedings of the National Academy of Sciences. 2010;107(4):1654-9.
- Cole RL, Lechner SM, Williams ME, Prodanovich P, Bleicher L, Varney MA, et al. Differential distribution of voltage-gated calcium channel alpha-2 delta (α2δ) subunit mRNA-containing cells in the rat central nervous system and the dorsal root ganglia. Journal of Comparative Neurology. 2005;491(3):246-69.
- Taylor C, Garrido R. Immunostaining of rat brain, spinal cord, sensory neurons and skeletal muscle for calcium channel alpha2-delta (α2-δ) type 1 protein. Neuroscience. 2008;155(2):510-21.
- Obermair GJ, Kugler G, Baumgartner S, Tuluc P, Grabner M, Flucher BE. The Ca2+ channel α2δ-1 subunit determines Ca2+ current kinetics in skeletal muscle but not targeting of α1S or excitation-contraction coupling. Journal of Biological Chemistry. 2005;280(3):2229-37.
- Mastrolia V, Flucher SM, Obermair GJ, Drach M, Hofer H, Renström E, et al. Loss of α2δ-1 calcium channel subunit function increases the susceptibility for diabetes. Diabetes. 2017;66(4):897-907.
- Pérez de Sevilla Müller L, Sargoy A, Fernández-Sánchez L, Rodriguez A, Liu J, Cuenca N, et al. Expression and cellular localization of the voltage-gated calcium channel α2δ3 in the rodent retina. Journal of Comparative Neurology. 2015;523(10):1443-60.
- Klomp A, Omichi R, Iwasa Y, Smith RJ, Usachev YM, Russo AF, et al. The voltage-gated Ca2+ channel subunit α2δ-4 regulates locomotor behavior and sensorimotor gating in mice. PloS one. 2022;17(3):e0263197.
- Ferron L, Koshti S, Zamponi GW. The life cycle of voltage-gated Ca2+ channels in neurons: an update on the trafficking of neuronal calcium channels. Neuronal signaling. 2021;5(1).
- Cassidy JS, Ferron L, Kadurin I, Pratt WS, Dolphin AC. Functional exofacially tagged N-type calcium channels elucidate the interaction with auxiliary α2δ-1 subunits. Proceedings of the National Academy of Sciences. 2014;111(24):8979-84.
- Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA. α2δ expression sets presynaptic calcium channel abundance and release probability. Nature. 2012;486(7401):122-5.
- Risher WC, Kim N, Koh S, Choi JE, Mitev P, Spence EF, et al. Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1. Journal of Cell Biology. 2018;217(10):3747-65.
- Tedeschi A, Dupraz S, Laskowski CJ, Xue J, Ulas T, Beyer M, et al. The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron. 2016;92(2):419-34.
- Schöpf CL, Ablinger C, Geisler SM, Stanika RI, Campiglio M, Kaufmann WA, et al. Presynaptic α2δ subunits are key organizers of glutamatergic synapses. Proceedings of the National Academy of Sciences. 2021;118(14):e1920827118.
- Wang Y, Fehlhaber KE, Sarria I, Cao Y, Ingram NT, Guerrero-Given D, et al. The auxiliary calcium channel subunit α2δ4 is required for axonal elaboration, synaptic transmission, and wiring of rod photoreceptors. Neuron. 2017;93(6):1359-74.
- Kadurin I, Alvarez-Laviada A, Ng SFJ, Walker-Gray R, D’Arco M, Fadel MG, et al. Calcium currents are enhanced by α2δ-1 lacking its membrane anchor. Journal of Biological Chemistry. 2012;287(40):33554-66.
- Bernstein GM, Jones OT. Kinetics of internalization and degradation of N-type voltage-gated calcium channels: Role of the α2/δ subunit. Cell calcium. 2007;41(1):27-40.
- Rougier JS, Albesa M, Syam N, Halet G, Abriel H, Viard P. Ubiquitin-specific protease USP2-45 acts as a molecular switch to promote α 2 δ-1-induced downregulation of Cav 1.2 channels. Pflügers Archiv-European Journal of Physiology. 2015;467:1919-29.
- Chen J, Li L, Chen SR, Chen H, Xie JD, Sirrieh RE, et al. The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell reports. 2018;22(9):2307-21.
- Zhou JJ, Li DP, Chen SR, Luo Y, Pan HL. The α2δ-1–NMDA receptor coupling is essential for corticostriatal long-term potentiation and is involved in learning and memory. Journal of Biological Chemistry. 2018;293(50):19354-64.
- Savalli N, Pantazis A, Sigg D, Weiss JN, Neely A, Olcese R. The α2δ-1 subunit remodels CaV1.2 voltage sensors and allows Ca2+ influx at physiological membrane potentials. Journal of General Physiology. 2016;148(2):147-59.
- Robinson P, Etheridge S, Song L, Armenise P, Jones OT, Fitzgerald EM. Formation of N-type (Cav2.2) voltage-gated calcium channel membrane microdomains: lipid raft association and clustering. Cell calcium. 2010;48(4):183-94.
- Davies A, Douglas L, Hendrich J, Wratten J, Van Minh AT, Foucault I, et al. The calcium channel α2δ-2 subunit partitions with CaV2.1 into lipid rafts in cerebellum: implications for localization and function. Journal of Neuroscience. 2006;26(34):8748-57.
- García K, Nabhani T, García J. The calcium channel α2/δ1 subunit is involved in extracellular signalling. The Journal of physiology. 2008;586(3):727-38.
- Fell B, Eckrich S, Blum K, Eckrich T, Hecker D, Obermair GJ, et al. α2δ2 controls the function and trans-synaptic coupling of Cav1.3 channels in mouse inner hair cells and is essential for normal hearing. Journal of Neuroscience. 2016;36(43):11024-36.
- Canti C, Nieto-Rostro M, Foucault I, Heblich F, Wratten J, Richards M, et al. The metal-ion-dependent adhesion site in the Von Willebrand factor-A domain of α2δ subunits is key to trafficking voltage-gated Ca2+ channels. Proceedings of the National Academy of Sciences. 2005;102(32):11230-5.
- Brockhaus J, Schreitmüller M, Repetto D, Klatt O, Reissner C, Elmslie K, et al. α-Neurexins together with α2δ-1 auxiliary subunits regulate Ca2+ influx through Cav2.1 channels. Journal of Neuroscience. 2018;38(38):8277-94.
- Caylor RC, Jin Y, Ackley BD. The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology. Neural Development. 2013;8(1):1-13.
- Kurshan PT, Oztan A, Schwarz TL. Presynaptic α2δ-3 is required for synaptic morphogenesis independent of its Ca2+-channel functions. Nature neuroscience. 2009;12(11):1415-23.
- Biederer T, Kaeser PS, Blanpied TA. Transcellular nanoalignment of synaptic function. Neuron. 2017;96(3):680-96.
- Dennys EH, Norris FH. Amyotrophic lateral sclerosis: impairment of neuromuscular transmission. Archives of neurology. 1979;36(4):202-5.
- Maselli RA, Wollman RL, Leung C, Distad B, Palombi S, Richman DP, et al. Neuromuscular transmission in amyotrophic lateral sclerosis. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine. 1993;16(11):1193-203.
- Bruneteau G, Bauché S, Gonzalez de Aguilar JL, Brochier G, Mandjee N, Tanguy ML, et al. Endplate denervation correlates with Nogo-A muscle expression in amyotrophic lateral sclerosis patients. Annals of clinical and translational neurology. 2015;2(4):362-72.
- Dadon-Nachum M, Melamed E, Offen D. The “dying-back” phenomenon of motor neurons in ALS. Journal of Molecular Neuroscience. 2011;43(3):470-7.
- Loeffler JP, Picchiarelli G, Dupuis L, Gonzalez De Aguilar JL. The role of skeletal muscle in amyotrophic lateral sclerosis. Brain Pathology. 2016;26(2):227-36.
- Penniston J, Enyedi A. Modulation of the plasma membrane Ca2+ pump. The Journal of membrane biology. 1998;165(2):101-9.
- Iacobucci GJ, Popescu GK. Ca2+-dependent inactivation of GluN2A and GluN2B NMDA receptors occurs by a common kinetic mechanism. Biophysical journal. 2020;118(4):798-812.
- Ben-Johny M, Yue DT. Calmodulin regulation (calmodulation) of voltage-gated calcium channels. Journal of General Physiology. 2014;143(6):679-92.
- Liang H, DeMaria CD, Erickson MG, Mori MX, Alseikhan BA, Yue DT. Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron. 2003;39(6):951-60.
- Tadross MR, Tsien RW, Yue DT. Ca2+ channel nanodomains boost local Ca2+ amplitude. Proceedings of the National Academy of Sciences. 2013;110(39):15794-9.
- Heine M, Heck J, Ciuraszkiewicz A, Bikbaev A. Dynamic compartmentalization of calcium channel signalling in neurons. Neuropharmacology. 2020;169:107556.
- Loehrer PA, Zieger L, Simon OJ. Update on paraneoplastic cerebellar degeneration. Brain Sciences. 2021;11(11):1414.
- Uchitel OD, Appel SH, Crawford F, Sczcupak L. Immunoglobulins from amyotrophic lateral sclerosis patients enhance spontaneous transmitter release from motor-nerve terminals. Proceedings of the National Academy of Sciences. 1988;85(19):7371-4.
- Uchitel OD, Scornik F, Protti D, Fumberg C, Alvarez V, Appel SH. Long-term neuromuscular dysfunction produced by passive transfer of amyotrophic lateral sclerosis immunoglobulins. Neurology. 1992;42(11):2175-5.
- Appel SH, Engelhardt JI, Garcia J, Stefani E. Immunoglobulins from animal models of motor neuron disease and from human amyotrophic lateral sclerosis patients passively transfer physiological abnormalities to the neuromuscular junction. Proceedings of the National Academy of Sciences. 1991;88(2):647-51.
- Stefani, E. Calcium current and charge movement of mammalian muscle: action of amyotrophic lateral sclerosis immunoglobulins. The Journal of Physiology. 1991;444(1):723-42.
- Smith RG, Hamilton S, Hofmann F, Schneider T, Nastainczyk W, Birnbaumer L, et al. Serum antibodies to L-type calcium channels in patients with amyotrophic lateral sclerosis. New England Journal of Medicine. 1992;327(24):1721-8.
- Magnelli V, Sawada T, Delbono O, Smith RG, Appel SH, Stefani E. The action of amyotrophic lateral sclerosis immunoglobulins on mammalian single skeletal muscle Ca2+ channels. The Journal of Physiology. 1993;461(1):103-18.
- Delbono O, Magnelli V, Sawada T, Smith RG, Appel SH, Stefani E. Fab fragments from amyotrophic lateral sclerosis IgG affect calcium channels of skeletal muscle. American Journal of Physiology-Cell Physiology. 1993;264(3):C537-43.
- Llinas R, Sugimori M, Cherksey B, Smith RG, Delbono O, Stefani E, et al. IgG from amyotrophic lateral sclerosis patients increases current through P-type calcium channels in mammalian cerebellar Purkinje cells and in isolated channel protein in lipid bilayer. Proceedings of the National Academy of Sciences. 1993;90(24):11743-7.
- Smith RG, Alexianu ME, Crawford G, Nyormoi O, Stefani E, Appel SH. Cytotoxicity of immunoglobulins from amyotrophic lateral sclerosis patients on a hybrid motoneuron cell line. Proceedings of the National Academy of Sciences. 1994;91(8):3393-7.
- Zhainazarov A, Annunziata P, Toneatto S, Cherubini E, Nistri A. Serum fractions from amyotrophic lateral sclerosis patients depress voltage-activated Ca2+ currents of rat cerebellar granule cells in culture. Neuroscience letters. 1994;172(1-2):111-4.
- Kimura F, Smith RG, Delbono O, Nyormoi O, Schneider T, Nastainczyk W, et al. Amyotrophic lateral sclerosis patient antibodies label Ca2+ channel α1 subunit. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1994;35(2):164-71.
- Mosier DR, Baldelli P, Delbono O, Smith RG, Alexianu ME, Appel SH, et al. Amyotrophic lateral sclerosis immunoglobulins increase Ca2+ currents in a motoneuron cell line. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1995;37(1):102-9.
- Engelhardt JI, Siklós L, Komuves L, Smith RG, Appel SH. Antibodies to calcium channels from ALS patients passively transferred to mice selectively increase intracellular calcium and induce ultrastructural changes in motoneurons. Synapse. 1995;20(3):185-99.
- Lennon VA, Kryzer TJ, Griesmann GE, O’Suilleabhain PE, Windebank AJ, Woppmann A, et al. Calcium-channel antibodies in the Lambert–Eaton syndrome and other paraneoplastic syndromes. New England Journal of Medicine. 1995;332(22):1467-75.
- Andjus PR, Khiroug L, Nistri A, Cherubini E. ALS IgGs suppress Ca2+i rise through P/Q-type calcium channels in central neurones in culture. Neuroreport. 1996;7(12):1914-6.
- Andjus PR, Stevic-Marinkovic Z, Cherubim E. Immunoglobulins from motoneurone disease patients enhance glutamate release from rat hippocampal neurones in culture. The Journal of Physiology. 1997;504(1):103-12.
- Yan HD, Lim W, Lee KW, Kim J. Sera from amyotrophic lateral sclerosis patients reduce high-voltage activated Ca2+ currents in mice dorsal root ganglion neurons. Neuroscience letters. 1997;235(1-2):69-72.
- Colom LV, Alexianu ME, Mosier DR, Smith RG, Appel SH. Amyotrophic lateral sclerosis immunoglobulins increase intracellular calcium in a motoneuron cell line. Experimental neurology. 1997;146(2):354-60.
- La Bella V, Goodman JC, Appel SH. Increased CSF glutamate following injection of ALS immunoglobulins. Neurology. 1997;48(5):1270-2.
- Offen D, Halevi S, Orion D, Mosberg R, Stern-Goldberg H, Melamed E, et al. Antibodies from ALS patients inhibit dopamine release mediated by L-type calcium channels. Neurology. 1998;51(4):1100-3.
- O’Shaughnessy TJ, Yan H, Kim J, Middlekauff EH, Lee KW, Phillips LH, et al. Amyotrophic lateral sclerosis: serum factors enhance spontaneous and evoked transmitter release at the neuromuscular junction. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine. 1998;21(1):81-90.
- Grassi C, Martire M, Altobelli D, Azzena G, Preziosi P. Characterization of Ca2+-channels responsible for K+-evoked [3H] noradrenaline release from rat brain cortex synaptosomes and their response to amyotrophic lateral sclerosis IgGs. Experimental neurology. 1999;159(2):520-7.
- Pullen A, Humphreys P. Ultrastructural analysis of spinal motoneurones from mice treated with IgG from ALS patients, healthy individuals, or disease controls. Journal of the neurological sciences. 2000;180(1-2):35-45.
- Muchnik S, Losavio A, De Lorenzo S. Effect of amyotrophic lateral sclerosis serum on calcium channels related to spontaneous acetylcholine release. Clinical neurophysiology. 2002;113(7):1066-71.
- Fratantoni SA, Weisz G, Pardal AM, Reisin RC, Uchitel OD. Amyotrophic lateral sclerosis IgG-treated neuromuscular junctions develop sensitivity to L-type calcium channel blocker. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine. 2000;23(4):543-50.
- Carter JR, Mynlieff M. Amyotrophic lateral sclerosis patient IgG alters voltage dependence of Ca2+ channels in dissociated rat motoneurons. Neuroscience letters. 2003;353(3):221-5.
- Pullen A, Demestre M, Howard R, Orrell R. Passive transfer of purified IgG from patients with amyotrophic lateral sclerosis to mice results in degeneration of motor neurons accompanied by Ca2+ enhancement. Acta neuropathologica. 2004;107(1):35-46.
- Demestre M, Howard R, Orrell R, Pullen A. Serine proteases purified from sera of patients with amyotrophic lateral sclerosis (ALS) induce contrasting cytopathology in murine motoneurones to IgG. Neuropathology and applied neurobiology. 2006;32(2):141-56.
- Pagani MR, Reisin RC, Uchitel OD. Calcium signaling pathways mediating synaptic potentiation triggered by amyotrophic lateral sclerosis IgG in motor nerve terminals. Journal of Neuroscience. 2006;26(10):2661-72.
- Gonzalez LE, Kotler ML, Vattino LG, Conti E, Reisin RC, Mulatz KJ, et al. Amyotrophic lateral sclerosis-immunoglobulins selectively interact with neuromuscular junctions expressing P/Q-type calcium channels. Journal of neurochemistry. 2011;119(4):826-38.
- Vijayalakshmi K, Alladi PA, Ghosh S, Prasanna V, Sagar B, Nalini A, et al. Evidence of endoplasmic reticular stress in the spinal motor neurons exposed to CSF from sporadic amyotrophic lateral sclerosis patients. Neurobiology of disease. 2011;41(3):695-705.
- Milošević M, Stenovec M, Kreft M, Petrušić V, Stević Z, Trkov S, et al. Immunoglobulins G from patients with sporadic amyotrophic lateral sclerosis affects cytosolic Ca2+ homeostasis in cultured rat astrocytes. Cell Calcium. 2013;54(1):17-25.
- Shi Y, Park KS, Kim SH, Yu J, Zhao K, Yu L, et al. IgGs from patients with amyotrophic lateral sclerosis and diabetes target CaVα2δ1 subunits impairing islet cell function and survival. Proceedings of the National Academy of Sciences. 2019;116(52):26816-22.
- Obál I, Nógrádi B, Meszlényi V, Patai R, Ricken G, Kovacs GG, et al. Experimental motor neuron disease induced in mice with long-term repeated intraperitoneal injections of serum from ALS patients. International journal of molecular sciences. 2019;20(10):2573.
- Meszlényi V, Patai R, Polgár TF, Nógrádi B, Körmöczy L, Kristóf R, et al. Passive Transfer of Sera from ALS Patients with Identified Mutations Evokes an Increased Synaptic Vesicle Number and Elevation of Calcium Levels in Motor Axon Terminals, Similar to Sera from Sporadic Patients. International Journal of Molecular Sciences. 2020;21(15):5566.
- Polgár TF, Meszlényi V, Nógrádi B, Körmöczy L, Spisák K, Tripolszki K, et al. Passive Transfer of Blood Sera from ALS Patients with Identified Mutations Results in Elevated Motoneuronal Calcium Level and Loss of Motor Neurons in the Spinal Cord of Mice. International journal of molecular sciences. 2021;22(18):9994.
- Engelhardt J, Soós J, Obál I, Vigh L, Siklós L. Subcellular localization of IgG from the sera of ALS patients in the nervous system. Acta Neurologica Scandinavica. 2005;112(2):126-33.
- Nyormoi, O. Proteolytic activity in amyotrophic lateral sclerosis IgG preparations. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1996;40(5):701-6.
- Siklós L, Engelhardt J, Harati Y, Smith RG, Joó F, Appel SH. Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophc lateral sclerosis. Annals of neurology. 1996;39(2):203-16.
- Bader, M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annual review of pharmacology and toxicology. 2010;50:439-65.
- Pfeiffer RM, Mayer B, Kuncl RW, Check DP, Cahoon EK, Rivera DR, et al. Identifying potential targets for prevention and treatment of amyotrophic lateral sclerosis based on a screen of medicare prescription drugs. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2020;21(3-4):235-45.
- Hu N, Ji H. Medications on hypertension, hyperlipidemia, diabetes, and risk of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurological Sciences. 2022:1-11.
- Lin FC, Tsai CP, Lee JKW, Wu MT, Lee CTC. Angiotensin-converting enzyme inhibitors and amyotrophic lateral sclerosis risk: a total population–based case-control study. JAMA neurology. 2015;72(1):40-8.
- Bursch F, Kalmbach N, Naujock M, Staege S, Eggenschwiler R, Abo-Rady M, et al. Altered calcium dynamics and glutamate receptor properties in iPSC-derived motor neurons from ALS patients with C9orf72, FUS, SOD1 or TDP43 mutations. Human Molecular Genetics. 2019;28(17):2835-50.
- Quinlan K, Schuster J, Fu R, Siddique T, Heckman C. Altered postnatal maturation of electrical properties in spinal motoneurons in a mouse model of amyotrophic lateral sclerosis. The Journal of physiology. 2011;589(9):2245-60.
- Ringholz G, Appel SH, Bradshaw M, Cooke N, Mosnik D, Schulz P. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology. 2005;65(4):586-90.
- McCombe P, Wray N, Henderson R. Extra-motor abnormalities in amyotrophic lateral sclerosis: another layer of heterogeneity. Expert review of neurotherapeutics. 2017;17(6):561-77.
- Corcia P, Pradat PF, Salachas F, Bruneteau G, le Forestier N, Seilhean D, et al. Causes of death in a post-mortem series of ALS patients. Amyotrophic lateral sclerosis: official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases. 2008;9(1):59-62.
- Rosenbohm A, Schmid B, Buckert D, Rottbauer W, Kassubek J, Ludolph AC, et al. Cardiac findings in amyotrophic lateral sclerosis: a magnetic resonance imaging study. Frontiers in Neurology. 2017;8:479.
- Timmins HC, Saw W, Cheah BC, Lin CS, Vucic S, Ahmed RM, et al. Cardiometabolic health and risk of amyotrophic lateral sclerosis. Muscle & Nerve. 2017;56(4):721-5.
- Mach L, Konecny T, Helanova K, Jaffe AS, Sorenson EJ, Somers VK, et al. Elevation of cardiac troponin T in patients with amyotrophic lateral sclerosis. Acta Neurologica Belgica. 2016;116:557-64.
- Kläppe U, Chamoun S, Shen Q, Finn A, Evertsson B, Zetterberg H, et al. Cardiac troponin T is elevated and increases longitudinally in ALS patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2022;23(1-2):58-65.
- Gdynia H, Kurt A, Endruhn S, Ludolph A, Sperfeld A. Cardiomyopathy in motor neuron diseases. Journal of Neurology, Neurosurgery & Psychiatry. 2006;77(5):671-3.
- Weis J, Katona I, Müller-Newen G, Sommer C, Necula G, Hendrich C, et al. Small-fiber neuropathy in patients with ALS. Neurology. 2011;76(23):2024-9.
- Dalla Bella E, Lombardi R, Porretta-Serapiglia C, Ciano C, Gellera C, Pensato V, et al. Amyotrophic lateral sclerosis causes small fiber pathology. European journal of neurology. 2016;23(2):416-20.
- Nolano M, Provitera V, Manganelli F, Iodice R, Caporaso G, Stancanelli A, et al. Non-motor involvement in amyotrophic lateral sclerosis: new insight from nerve and vessel analysis in skin biopsy. Neuropathology and Applied Neurobiology. 2017;43(2):119-32.
- Chiò A, Mora G, Lauria G. Pain in amyotrophic lateral sclerosis. The Lancet Neurology. 2017;16(2):144-57.
- Rappoport A. Insulin in Amyotrophic Lateral Sclerosis: Impairment, Tests and Treatment; 2023. https://www.preprints.org/manuscript/202212.0297/v3, DOI=10.20944/preprints202212.0297.v3.
- Araki K, Araki A, Honda D, Izumoto T, Hashizume A, Hijikata Y, et al. TDP-43 regulates early-phase insulin secretion via CaV1.2-mediated exocytosis in islets. The Journal of clinical investigation. 2019;129(9):3578-93.
- Coan G, Mitchell CS. An assessment of possible neuropathology and clinical relationships in 46 sporadic amyotrophic lateral sclerosis patient autopsies. Neurodegenerative Diseases. 2015;15(5):301-12.
- Béland LC, Markovinovic A, Jakovac H, De Marchi F, Bilic E, Mazzini L, et al. Immunity in amyotrophic lateral sclerosis: Blurred lines between excessive inflammation and inefficient immune responses. Brain Communications. 2020;2(2):fcaa124.
- Curti D, Malaspina A, Facchetti G, Camana C, Mazzini L, Tosca P, et al. Amyotrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes. Neurology. 1996;47(4):1060-4.
- Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Frontiers in molecular neuroscience. 2019;12:25.
- Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radical Biology and Medicine. 2010;48(5):629-41.
- Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. Journal of neurochemistry. 1997;69(5):2064-74.
- Smith RG, Henry YK, Mattson MP, Appel SH. Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1998;44(4):696-9.
- Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, et al. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Annals of neurology. 1998;44(5):819-24.
- Mitsumoto H, Santella RM, Liu X, Bogdanov M, Zipprich J, Wu HC, et al. Oxidative stress biomarkers in sporadic ALS. Amyotrophic Lateral Sclerosis. 2008;9(3):177-83.
- Blasco H, Veyrat-Durebex C, Bocca C, Patin F, Vourc’h P, Kouassi Nzoughet J, et al. Lipidomics reveals cerebrospinal-fluid signatures of ALS. Scientific reports. 2017;7(1):1-10.
- Simpson E, Henry Y, Henkel J, Smith R, Appel SH. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology. 2004;62(10):1758-65.
- Carrì MT, D’Ambrosi N, Cozzolino M. Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochemical and biophysical research communications. 2017;483(4):1187-93.
- Dupuis L, Pradat PF, Ludolph AC, Loeffler JP. Energy metabolism in amyotrophic lateral sclerosis. The Lancet Neurology. 2011;10(1):75-82.
- Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2020;12(1):e1462.
- Smith IC, Bombardier E, Vigna C, Tupling AR. ATP consumption by sarcoplasmic reticulum Ca2+ pumps accounts for 40-50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. PloS one. 2013;8(7):e68924.
- Osler ME, Zierath JR. Minireview: adenosine 5’-monophosphate-activated protein kinase regulation of fatty acid oxidation in skeletal muscle. Endocrinology. 2008;149(3):935-41.
- Liu YJ, Ju TC, Chen HM, Jang YS, Lee LM, Lai HL, et al. Activation of AMP-activated protein kinase α1 mediates mislocalization of TDP-43 in amyotrophic lateral sclerosis. Human molecular genetics. 2015;24(3):787-801.
- Liu YJ, Lee LM, Lai HL, Chern Y. Aberrant activation of AMP-activated protein kinase contributes to the abnormal distribution of HuR in amyotrophic lateral sclerosis. FEBS letters. 2015;589(4):432-9.
- Takeyama N, Miki S, Hirakawa A, Tanaka T. Role of the mitochondrial permeability transition and cytochrome C release in hydrogen peroxide-induced apoptosis. Experimental cell research. 2002;274(1):16-24.
- Marchi S, Vitto VAM, Patergnani S, Pinton P. High mitochondrial Ca2+ content increases cancer cell proliferation upon inhibition of mitochondrial permeability transition pore (mPTP). Cell Cycle. 2019;18(8):914-6.
- Hansson MJ, Månsson R, Morota S, Uchino H, Kallur T, Sumi T, et al. Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition. Free Radical Biology and Medicine. 2008;45(3):284-94.
- Baumgartner HK, Gerasimenko JV, Thorne C, Ferdek P, Pozzan T, Tepikin AV, et al. Calcium elevation in mitochondria is the main Ca2+ requirement for mitochondrial permeability transition pore (mPTP) opening. Journal of Biological Chemistry. 2009;284(31):20796-803.
- Butler MR, Ma H, Yang F, Belcher J, Le YZ, Mikoshiba K, et al. Endoplasmic reticulum (ER) Ca2+-channel activity contributes to ER stress and cone death in cyclic nucleotide-gated channel deficiency. Journal of Biological Chemistry. 2017;292(27):11189-205.
- Connolly NM, Prehn JH. The metabolic response to excitotoxicity–lessons from single-cell imaging. Journal of bioenergetics and biomembranes. 2015;47(1-2):75-88.
- Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox biology. 2014;2:535-62.
- Tan Y, Ichikawa T, Li J, Si Q, Yang H, Chen X, et al. Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress–induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes. 2011;60(2):625-33.
- Ahn SG, Thiele DJ. Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes & development. 2003;17(4):516-28.
- Ayala V, Granado-Serrano AB, Cacabelos D, Naudí A, Ilieva EV, Boada J, et al. Cell stress induces TDP-43 pathological changes associated with ERK1/2 dysfunction: implications in ALS. Acta neuropathologica. 2011;122(3):259-70.
- Cohen TJ, Hwang AW, Unger T, Trojanowski JQ, Lee VM. Redox signalling directly regulates TDP-43 via cysteine oxidation and disulphide cross-linking. The EMBO journal. 2012;31(5):1241-52.
- Colombrita C, Zennaro E, Fallini C, Weber M, Sommacal A, Buratti E, et al. TDP-43 is recruited to stress granules in conditions of oxidative insult. Journal of neurochemistry. 2009;111(4):1051-61.
- Chang HY, Hou SC, Way TD, Wong CH, Wang IF. Heat-shock protein dysregulation is associated with functional and pathological TDP-43 aggregation. Nature communications. 2013;4(1):1-11.
- Zuo X, Zhou J, Li Y, Wu K, Chen Z, Luo Z, et al. TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nature structural & molecular biology. 2021;28(2):132-42.
- Xu WC, Liang JZ, Li C, He ZX, Yuan HY, Huang BY, et al. Pathological hydrogen peroxide triggers the fibrillization of wild-type SOD1 via sulfenic acid modification of Cys-111. Cell death & disease. 2018;9(2):1-17.
- Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and biophysical research communications. 2006;351(3):602-11.
- Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130-3.
- Hetz C, Zhang K, Kaufman RJ. Mechanisms, regulation and functions of the unfolded protein response. Nature reviews Molecular cell biology. 2020;21(8):421-38.
- Kültz, D. Molecular and evolutionary basis of the cellular stress response. Annual review of physiology. 2005;67(1):225-57.
- Núñez-Santana FL, Oh MM, Antion MD, Lee A, Hell JW, Disterhoft JF. Surface L-type Ca2+ channel expression levels are increased in aged hippocampus. Aging Cell. 2014;13(1):111-20.
- Moore SJ, Murphy GG. The role of L-type calcium channels in neuronal excitability and aging. Neurobiology of learning and memory. 2020;173:107230.
- Kumar A, Bodhinathan K, Foster TC. Susceptibility to calcium dysregulation during brain aging. Frontiers in aging neuroscience. 2009:2.
- Reiner A, Medina L, Figueredo-Cardenas G, Anfinson S. Brainstem motoneuron pools that are selectively resistant in amyotrophic lateral sclerosis are preferentially enriched in parvalbumin: evidence from monkey brainstem for a calcium-mediated mechanism in sporadic ALS. Experimental neurology. 1995;131(2):239-50.
- Vanselow BK, Keller BU. Calcium dynamics and buffering in oculomotor neurones from mouse that are particularly resistant during amyotrophic lateral sclerosis (ALS)-related motoneurone disease. The Journal of physiology. 2000;525(Pt 2):433.
- Laslo P, Lipski J, Nicholson LF, Miles GB, Funk GD. Calcium binding proteins in motoneurons at low and high risk for degeneration in ALS. Neuroreport. 2000;11(15):3305-8.
- von Lewinski F, Keller BU. Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends in neurosciences. 2005;28(9):494-500.
- Miles GB, Lipski J, Lorier AR, Laslo P, Funk GD. Differential expression of voltage-activated calcium channels in III and XII motoneurones during development in the rat. European Journal of Neuroscience. 2004;20(4):903-13.
- Harwood CA, Westgate K, Gunstone S, Brage S, Wareham NJ, McDermott CJ, et al. Long-term physical activity: an exogenous risk factor for sporadic amyotrophic lateral sclerosis? Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2016;17(5-6):377-84.
- Visser AE, Rooney JP, D’Ovidio F, Westeneng HJ, Vermeulen RC, Beghi E, et al. Multicentre, cross-cultural, population-based, case–control study of physical activity as risk factor for amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 2018;89(8):797-803.
- Filippini T, Fiore M, Tesauro M, Malagoli C, Consonni M, Violi F, et al. Clinical and lifestyle factors and risk of amyotrophic lateral sclerosis: A population-based case-control study. International journal of environmental research and public health. 2020;17(3):857.
- Chen GX, Douwes J, van den Berg LH, Glass B, McLean D, ’t Mannetje AM. Sports and trauma as risk factors for Motor Neurone Disease: New Zealand case–control study. Acta Neurologica Scandinavica. 2022;145(6):770-85.
- Daneshvar DH, Mez J, Alosco ML, Baucom ZH, Mahar I, Baugh CM, et al. Incidence of and mortality from amyotrophic lateral sclerosis in National Football League athletes. JAMA network open. 2021;4(12):e2138801-1.
- Fang F, Hållmarker U, James S, Ingre C, Michaëlsson K, Ahlbom A, et al. Amyotrophic lateral sclerosis among cross-country skiers in Sweden. European journal of epidemiology. 2016;31(3):247-53.
- Scarmeas N, Shih T, Stern Y, Ottman R, Rowland LP. Premorbid weight, body mass, and varsity athletics in ALS. Neurology. 2002;59(5):773-5.
- Korner S, Kammeyer J, Zapf A, Kuzma-Kozakiewicz M, Piotrkiewicz M, Kuraszkiewicz B, et al. Influence of environment and lifestyle on incidence and progress of amyotrophic lateral sclerosis in a German ALS population. Aging and disease. 2019;10(2):205.
- Rosenbohm A, Peter R, Dorst J, Kassubek J, Rothenbacher D, Nagel G, et al. Life course of physical activity and risk and prognosis of amyotrophic lateral sclerosis in a German ALS registry. Neurology. 2021;97(19):e1955-63.
- Mamoor, S. Differential expression of CACNA2D1 in amyotrophic lateral sclerosis; 2022. https://osf.io/mnxup, DOI=10.31219/osf.io/mnxup.
- D’Ovidio F, d’Errico A, Farina E, Calvo A, Costa G, Chiò A. Amyotrophic lateral sclerosis incidence and previous prescriptions of drugs for the nervous system. Neuroepidemiology. 2016;47(1):59-66.
- Miller R, Gelinas D, Dronsky V, Mendoza M, Barohn R, Bryan W, et al. Phase III randomized trial of gabapentin in patients with amyotrophic lateral sclerosis. Neurology. 2001;56(7):843-8.
- Recurrent hypoventilation and respiratory failure during gabapentin therapy. Journal of the American Geriatrics Society. 2001;49(4):498.
- Pérez RC, Lechuga MG, Alvarez MML, Albisu AA. Gabapentin-induced central hypoventilation. Medicina clinica. 2007;128(13):519.
- Tuccori M, Lombardo G, Lapi F, Vannacci A, Blandizzi C, Tacca MD. Gabapentin-induced severe myopathy. Annals of Pharmacotherapy. 2007;41(7-8):1301-5.
- Lipson J, Lavoie S, Zimmerman D. Gabapentin-induced myopathy in 2 patients on short daily hemodialysis. American Journal of Kidney Diseases. 2005;45(6):e100-4.
- Siniscalchi A, Mintzer S, De Sarro G, Gallelli L. Myotoxicity Induced by Antiepileptic Drugs: Could be a Rare but Serious Adverse Event? Psychopharmacology Bulletin. 2021;51(4):105-16.
- Ghosh S, Villan S, Al Yazeedi W. Gabapentin-induced myositis in a patient with spinal cord injury–a case report. Qatar Medical Journal. 2020;2020(2):30.
- Coupal TM, Chang DR, Pennycooke K, Ouellette HA, Munk PL. Radiologic findings in gabapentin-induced myositis. Journal of Radiology Case Reports. 2017;11(4):30.
- Choi MS, Jeon H, Kim HS, Jang BH, Lee YH, Park HS, et al. A case of gabapentin-induced rhabdomyolysis requiring renal replacement therapy. Hemodialysis International. 2017;21(1):E4-8.
- Bilgir O, Çalan M, Bilgir F, Kebapçilar L, Yüksel A, Yildiz Y, et al. Gabapentin-induced rhabdomyolysis in a patient with diabetic neuropathy. Internal Medicine. 2009;48(12):1085-7.
- Desai A, Kherallah Y, Szabo C, Marawar R. Gabapentin or pregabalin induced myoclonus: A case series and literature review. Journal of Clinical Neuroscience. 2019;61:225-34.
- Kaufman KR, Parikh A, Chan L, Bridgeman M, Shah M. Myoclonus in renal failure: two cases of gabapentin toxicity. Epilepsy & Behavior Case Reports. 2014;2:8-10.
- Shea Yf, Mok MMy, Chang RSk. Gabapentin-induced myoclonus in an elderly with end-stage renal failure. J Formos Med Assoc. 2014;113(9):660-1.
- Guddati A, Zafar Z, Cheng J, Mohan S. Treatment of gabapentin-induced myoclonus with continuous renal replacement therapy. Indian Journal of Nephrology. 2012;22(1):59.
- Verschuuren JJ, Palace J, Murai H, Tannemaat MR, Kaminski HJ, Bril V. Advances and ongoing research in the treatment of autoimmune neuromuscular junction disorders. The Lancet Neurology. 2022;21(2):189-202.
- Boneva N, Brenner T, Argov Z. Gabapentin may be hazardous in myasthenia gravis. Muscle & Nerve: Official Journal of the American Association of Electrodiagnostic Medicine. 2000;23(8):1204-8.
- Barclay J, Balaguero N, Mione M, Ackerman SL, Letts VA, Brodbeck J, et al. Ducky mouse phenotype of epilepsy and ataxia is associated with mutations in the Cacna2d2 gene and decreased calcium channel current in cerebellar Purkinje cells. Journal of Neuroscience. 2001;21(16):6095-104.
- Fuller-Bicer GA, Varadi G, Koch SE, Ishii M, Bodi I, Kadeer N, et al. Targeted disruption of the voltage-dependent calcium channel α2/δ-1-subunit. American Journal of Physiology-Heart and Circulatory Physiology. 2009;297(1):H117-24.
- Jankovic J, Mazziotta J, Pomeroy S, Newman N. Bradley and daroff’s neurology in clinical practice, 8th edition. Elsevier; 2021.
- Guillot SJ, Bolborea M, Dupuis L. Dysregulation of energy homeostasis in amyotrophic lateral sclerosis. Current Opinion in Neurology. 2021;34(5):773-80.
- D’Amico E, Grosso G, Nieves JW, Zanghì A, Factor-Litvak P, Mitsumoto H. Metabolic abnormalities, dietary risk factors and nutritional management in amyotrophic lateral sclerosis. Nutrients. 2021;13(7):2273.
- Toth C, Hebert V, Gougeon C, Virtanen H, Mah JK, Pacaud D. Motor unit number estimations are smaller in children with type 1 diabetes mellitus: A case–cohort study. Muscle & Nerve. 2014;50(4):593-8.
- Maratova K, Soucek O, Matyskova J, Hlavka Z, Petruzelkova L, Obermannova B, et al. Muscle functions and bone strength are impaired in adolescents with type 1 diabetes. Bone. 2018;106:22-7.
- Muramatsu K, Niwa M, Tamaki T, Ikutomo M, Masu Y, Hasegawa T, et al. Effect of streptozotocin-induced diabetes on motoneurons and muscle spindles in rats. Neuroscience Research. 2017;115:21-8.
- Oveisgharan S, Capuano AW, Nag S, Agrawal S, Barnes LL, Bennett DA, et al. Association of hemoglobin A1C with TDP-43 pathology in community-based elders. Neurology. 2021;96(22):e2694-703.
- Illario M, Monaco S, Cavallo AL, Esposito I, Formisano P, D’Andrea L, et al. Calcium-calmodulin-dependent kinase II (CaMKII) mediates insulin-stimulated proliferation and glucose uptake. Cellular signalling. 2009;21(5):786-92.
- Monaco S, Illario M, Rusciano MR, Gragnaniello G, Di Spigna G, Leggiero E, et al. Insulin stimulates fibroblast proliferation through calcium-calmodulin-dependent kinase II. Cell Cycle. 2009;8(13):2024-30.
- Wright D, Fick C, Olesen J, Lim K, Barnes B, Craig B. A role for calcium/calmodulin kinase in insulin stimulated glucose transport. Life sciences. 2004;74(7):815-25.
- Suzuki R, Lee K, Jing E, Biddinger SB, McDonald JG, Montine TJ, et al. Diabetes and insulin in regulation of brain cholesterol metabolism. Cell metabolism. 2010;12(6):567-79.
- Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology–divergent pathophysiology. Nat Rev Endocrinol. 2017;13(12):710.
- Willmann R, Pun S, Stallmach L, Sadasivam G, Santos AF, Caroni P, et al. Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction. The EMBO journal. 2006;25(17):4050-60.
- Baenziger JE, Domville JA, Therien JD. The role of cholesterol in the activation of nicotinic acetylcholine receptors. In: Current topics in membranes. vol. 80. Elsevier; 2017. p. 95-137.
- Head BP, Patel HH, Insel PA. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2014;1838(2):532-45.
- Whitehead SN, Gangaraju S, Aylsworth A, Hou ST. Membrane raft disruption results in neuritic retraction prior to neuronal death in cortical neurons. Bioscience trends. 2012;6(4):183-91.
- Wuolikainen A, Acimovic J, Lövgren-Sandblom A, Parini P, Andersen PM, Björkhem I. Cholesterol, oxysterol, triglyceride, and coenzyme Q homeostasis in ALS. Evidence against the hypothesis that elevated 27-hydroxycholesterol is a pathogenic factor. PloS one. 2014;9(11):e113619.
- Dodge JC, Jensen EH, Yu J, Sardi SP, Bialas AR, Taksir TV, et al. Neutral lipid cacostasis contributes to disease pathogenesis in amyotrophic lateral sclerosis. Journal of Neuroscience. 2020;40(47):9137-47.
- Schumacher J, Peter R, Nagel G, Rothenbacher D, Rosenbohm A, Ludolph A, et al. Statins, diabetes mellitus and prognosis of amyotrophic lateral sclerosis: data from 501 patients of a population-based registry in southwest Germany. European journal of neurology. 2020;27(8):1405-14.
- Apostolski S, Nikolić J, Bugarski-Prokopljević C, Miletić V, Pavlović S, Filipović S. Serum and CSF immunological findings in ALS. Acta neurologica scandinavica. 1991;83(2):96-8.
- Oldstone M, Perrin L, Wilson C, Norris Jr F. Evidence for immune-complex formation in patients with amyotrophic lateral sclerosis. The Lancet. 1976;308(7978):169-72.
- Saleh IA, Zesiewicz T, Xie Y, Sullivan KL, Miller AM, Kuzmin-Nichols N, et al. Evaluation of humoral immune response in adaptive immunity in ALS patients during disease progression. Journal of neuroimmunology. 2009;215(1-2):96-101.
- Engelhardt JI, Tajti J, Appel SH. Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis. Archives of neurology. 1993;50(1):30-6.
- Beers DR, Zhao W, Wang J, Zhang X, Wen S, Neal D, et al. ALS patients’ regulatory T lymphocytes are dysfunctional, and correlate with disease progression rate and severity. JCI insight. 2017;2(5).
- Sheean RK, McKay FC, Cretney E, Bye CR, Perera ND, Tomas D, et al. Association of regulatory T-cell expansion with progression of amyotrophic lateral sclerosis: a study of humans and a transgenic mouse model. JAMA neurology. 2018;75(6):681-9.
- Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MC, Haller E, Frisina-Deyo A, Mirtyl S, et al. Impaired blood–brain/spinal cord barrier in ALS patients. Brain research. 2012;1469:114-28.
- Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. The Lancet Neurology. 2019;18(2):211-20.
- Feddermann-Demont N, Junge A, Weber KP, Weller M, Dvořák J, Tarnutzer AA. Prevalence of potential sports-associated risk factors in Swiss amyotrophic lateral sclerosis patients. Brain and behavior. 2017;7(4):e00630.
- Kanmogne M, Klein RS. Neuroprotective versus neuroinflammatory roles of complement: From development to disease. Trends in neurosciences. 2021;44(2):97-109.
- Morgan G, Levinsky R. Clinical significance of IgG subclass deficiency. Archives of disease in childhood. 1988;63(7):771.
- Sui X, Geng JH, Li YH, Zhu GY, Wang WH. Calcium channel α2δ1 subunit (CACNA2D1) enhances radioresistance in cancer stem-like cells in non-small cell lung cancer cell lines. Cancer Management and Research. 2018;10:5009.
- Kawamata T, Akiyama H, Yamada T, McGeer P. Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue. The American journal of pathology. 1992;140(3):691.
- Chen X, Feng W, Huang R, Guo X, Chen Y, Zheng Z, et al. Evidence for peripheral immune activation in amyotrophic lateral sclerosis. Journal of the Neurological Sciences. 2014;347(1-2):90-5.
- Wang M, Liu Z, Du J, Yuan Y, Jiao B, Zhang X, et al. Evaluation of Peripheral Immune Activation in Amyotrophic Lateral Sclerosis. Frontiers in neurology. 2021:1028.
- Kjældgaard AL, Pilely K, Olsen KS, Lauritsen A, Pedersen SW, Svenstrup K, et al. Complement profiles in patients with amyotrophic lateral sclerosis: A prospective observational cohort study. Journal of Inflammation Research. 2021;14:1043.
- Donnenfeld H, Kascsak R, Bartfeld H. Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. Journal of neuroimmunology. 1984;6(1):51-7.
- Sta M, Sylva-Steenland R, Casula M, De Jong J, Troost D, Aronica E, et al. Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation. Neurobiology of disease. 2011;42(3):211-20.
- Bahia El Idrissi N, Bosch S, Ramaglia V, Aronica E, Baas F, Troost D. Complement activation at the motor end-plates in amyotrophic lateral sclerosis. Journal of neuroinflammation. 2016;13(1):1-12.
- Turner MR, Goldacre R, Ramagopalan S, Talbot K, Goldacre MJ. Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurology. 2013;81(14):1222-5.
- Cui C, Longinetti E, Larsson H, Andersson J, Pawitan Y, Piehl F, et al. Associations between autoimmune diseases and amyotrophic lateral sclerosis: a register-based study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. 2021;22(3-4):211-9.
- Seelen M, van Doormaal PT, Visser AE, Huisman MH, Roozekrans MH, de Jong SW, et al. Prior medical conditions and the risk of amyotrophic lateral sclerosis. Journal of neurology. 2014;261(10):1949-56.
- Gaimari A, Fusaroli M, Raschi E, Baldin E, Vignatelli L, Nonino F, et al. Amyotrophic Lateral Sclerosis as an Adverse Drug Reaction: A Disproportionality Analysis of the Food and Drug Administration Adverse Event Reporting System. Drug Safety. 2022:1-11.
- Gotaas HT, Skeie GO, Gilhus NE. Myasthenia gravis and amyotrophic lateral sclerosis: A pathogenic overlap. Neuromuscular Disorders. 2016;26(6):337-41.
- del Mar Amador M, Vandenberghe N, Berhoune N, Camdessanché JP, Gronier S, Delmont E, et al. Unusual association of amyotrophic lateral sclerosis and myasthenia gravis: a dysregulation of the adaptive immune system? Neuromuscular Disorders. 2016;26(6):342-6.
- de Pasqua S, Cavallieri F, D’Angelo R, Salvi F, Fini N, D’Alessandro R, et al. Amyotrophic lateral sclerosis and myasthenia gravis: association or chance occurrence? Neurological Sciences. 2017;38:441-4.
- Hajela RK, Huntoon KM, Atchison WD. Lambert–Eaton syndrome antibodies target multiple subunits of voltage-gated Ca2+ channels. Muscle & nerve. 2015;51(2):176-84.
- Zhou R, Caspi RR. Ocular immune privilege. F1000 biology reports. 2010;2.
- Badou A, Jha MK, Matza D, Flavell RA. Emerging roles of L-type voltage-gated and other calcium channels in T lymphocytes. Frontiers in immunology. 2013;4:243.
- McRory JE, Hamid J, Doering CJ, Garcia E, Parker R, Hamming K, et al. The CACNA1F gene encodes an L-type calcium channel with unique biophysical properties and tissue distribution. Journal of Neuroscience. 2004;24(7):1707-18.
- Davenport B, Li Y, Heizer JW, Schmitz C, Perraud AL. Signature channels of excitability no more: L-type channels in immune cells. Frontiers in immunology. 2015;6:375.
- Zhang JY, Zhang PP, Zhou WP, Yu JY, Yao ZH, Chu JF, et al. L-type Cav1.2 calcium channel-α-1C regulates response to rituximab in diffuse large B-cell lymphoma. Clinical Cancer Research. 2019;25(13):4168-78.
- Hemon P, Renaudineau Y, Debant M, Le Goux N, Mukherjee S, Brooks W, et al. Calcium signaling: from normal B cell development to tolerance breakdown and autoimmunity. Clinical Reviews in Allergy & Immunology. 2017;53:141-65.
- Zhang R, Gascon R, Miller RG, Gelinas DF, Mass J, Hadlock K, et al. Evidence for systemic immune system alterations in sporadic amyotrophic lateral sclerosis (sALS). Journal of neuroimmunology. 2005;159(1-2):215-24.
- Troost D, Van den Oord J, JONG JVD. Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis. Neuropathology and applied neurobiology. 1990;16(5):401-10.
- Provinciali L, Laurenzi M, Vesprini L, Giovagnoli A, Bartocci C, Montroni M, et al. Immunity assessment in the early stages of amyotrophic lateral sclerosis: a study of virus antibodies and lymphocyte subsets. Acta neurologica scandinavica. 1988;78(6):449-54.
- Burrell JR, Kiernan MC, Vucic S, Hodges JR. Motor neuron dysfunction in frontotemporal dementia. Brain. 2011;134(9):2582-94.
- Lomen-Hoerth C, Murphy J, Langmore S, Kramer J, Olney R, Miller B. Are amyotrophic lateral sclerosis patients cognitively normal? Neurology. 2003;60(7):1094-7.
- Liu-Yesucevitz L, Bilgutay A, Zhang YJ, Vanderwyde T, Citro A, Mehta T, et al. Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PloS one. 2010;5(10):e13250.
- Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(9):2456-77.
- Schroeter ML, Vogt B, Frisch S, Becker G, Seese A, Barthel H, et al. Dissociating behavioral disorders in early dementia-an FDG-PET study. Psychiatry Research: Neuroimaging. 2011;194(3):235-44.
- Seeley WW, Carlin DA, Allman JM, Macedo MN, Bush C, Miller BL, et al. Early frontotemporal dementia targets neurons unique to apes and humans. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2006;60(6):660-7.
- Kim EJ, Sidhu M, Gaus SE, Huang EJ, Hof PR, Miller BL, et al. Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia. Cerebral cortex. 2012;22(2):251-9.
- Pineda SS, Lee H, Fitzwalter BE, Mohammadi S, Pregent LJ, Gardashli ME, et al. Single-cell profiling of the human primary motor cortex in ALS and FTLD. bioRxiv. 2021.
- Nimchinsky EA, Vogt BA, Morrison JH, Hof PR. Spindle neurons of the human anterior cingulate cortex. Journal of Comparative Neurology. 1995;355(1):27-37.
- Gu X, Gao Z, Wang X, Liu X, Knight RT, Hof PR, et al. Anterior insular cortex is necessary for empathetic pain perception. Brain. 2012;135(9):2726-35.
- Rutgen M, Seidel EM, Silani G, Riecansky I, Hummer A, Windischberger C, et al. Placebo analgesia and its opioidergic regulation suggest that empathy for pain is grounded in self pain. Proceedings of the National Academy of Sciences. 2015;112(41):E5638-46.
- Fletcher PD, Downey LE, Golden HL, Clark CN, Slattery CF, Paterson RW, et al. Pain and temperature processing in dementia: a clinical and neuroanatomical analysis. Brain. 2015;138(11):3360-72.
- Marshall CR, Hardy CJ, Allen M, Russell LL, Clark CN, Bond RL, et al. Cardiac responses to viewing facial emotion differentiate frontotemporal dementias. Annals of clinical and translational neurology. 2018;5(6):687-96.
- Gailliot MT, Baumeister RF. The physiology of willpower: Linking blood glucose to self-control. Personality and social psychology review. 2007;11(4):303-27.
- Adlersberg D, Dolger H. Medico-legal problems of hypoglycemic reactions in diabetes. Annals of Internal Medicine. 1939;12(11):1804-15.
- Piguet O, Petersén Å, Yin Ka Lam B, Gabery S, Murphy K, Hodges JR, et al. Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Annals of neurology. 2011;69(2):312-9.
- Bocchetta M, Gordon E, Manning E, Barnes J, Cash DM, Espak M, et al. Detailed volumetric analysis of the hypothalamus in behavioral variant frontotemporal dementia. Journal of Neurology. 2015;262(12):2635-42.
- Kumfor F, Hazelton JL, Rushby JA, Hodges JR, Piguet O. Facial expressiveness and physiological arousal in frontotemporal dementia: Phenotypic clinical profiles and neural correlates. Cognitive, Affective, & Behavioral Neuroscience. 2019;19:197-210.
- Im I, Jun JP, Hwang S, Ko MH. Swallowing outcomes in patients with subcortical stroke associated with lesions of the caudate nucleus and insula. Journal of International Medical Research. 2018;46(9):3552-62.
- Morbelli S, Ferrara M, Fiz F, Dessi B, Arnaldi D, Picco A, et al. Mapping brain morphological and functional conversion patterns in predementia late-onset bvFTD. European journal of nuclear medicine and molecular imaging. 2016;43(7):1337-47.
- Fukai M, Hirosawa T, Kikuchi M, Hino S, Kitamura T, Ouchi Y, et al. Different patterns of glucose hypometabolism underlie functional decline in frontotemporal dementia and Alzheimer’s disease: FDG-PET study. Neuropsychiatry. 2018;8(2):441-7.
- Ahmed RM, MacMillan M, Bartley L, Halliday GM, Kiernan MC, Hodges JR, et al. Systemic metabolism in frontotemporal dementia. Neurology. 2014;83(20):1812-8.
- Golimstok A, Cámpora N, Rojas JI, Fernandez MC, Elizondo C, Soriano E, et al. Cardiovascular risk factors and frontotemporal dementia: a case–control study. Translational neurodegeneration. 2014;3(1):1-6.
- Zanardini R, Benussi L, Fostinelli S, Saraceno C, Ciani M, Borroni B, et al. Serum C-Peptide, Visfatin, resistin, and ghrelin are altered in sporadic and GRN-Associated frontotemporal lobar degeneration. Journal of Alzheimer’s Disease. 2018;61(3):1053-60.
- Yoon C, Kang M, Shin H, Jeon S, Yang JJ, Kim S, et al. Higher C-peptide levels are associated with regional cortical thinning in 1093 cognitively normal subjects. European Journal of Neurology. 2014;21(10):1318-e81.
- Woolley JD, Khan BK, Natesan A, Karydas A, Dallman M, Havel P, et al. Satiety-related hormonal dysregulation in behavioral variant frontotemporal dementia. Neurology. 2014;82(6):512-20.
- Jensen CS, Gleerup HS, Musaeus CS, Hasselbalch SG, Høgh P, Waldemar G, et al. Cerebrospinal fluid glucose is not altered in patients with dementia. Clinical Biochemistry. 2023;112:1-5.
- Ferrer I, Tuñón T, Serrano M, Casas R, Alcantara S, Zujar M, et al. Calbindin D-28k and parvalbumin immunoreactivity in the frontal cortex in patients with frontal lobe dementia of non-Alzheimer type associated with amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery & Psychiatry. 1993;56(3):257-61.
- Spalloni A, Caioli S, Bonomi E, Zona C, Buratti E, Alberici A, et al. Cerebrospinal fluid from frontotemporal dementia patients is toxic to neurons. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2021;1867(6):166122.
- Katzeff JS, Bright F, Lo K, Kril JJ, Connolly A, Crossett B, et al. Altered serum protein levels in frontotemporal dementia and amyotrophic lateral sclerosis indicate calcium and immunity dysregulation. Scientific reports. 2020;10(1):1-12.
- Phan K, He Y, Pickford R, Bhatia S, Katzeff JS, Hodges JR, et al. Uncovering pathophysiological changes in frontotemporal dementia using serum lipids. Scientific Reports. 2020;10(1):1-13.
- Imamura K, Sahara N, Kanaan NM, Tsukita K, Kondo T, Kutoku Y, et al. Calcium dysregulation contributes to neurodegeneration in FTLD patient iPSC-derived neurons. Scientific reports. 2016;6(1):1-10.
- Palluzzi F, Ferrari R, Graziano F, Novelli V, Rossi G, Galimberti D, et al. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia. PLoS one. 2017;12(10):e0185797.
- Younes K, Lepow LA, Estrada C, Schulz PE. Auto-antibodies against P/Q-and N-type voltage-dependent calcium channels mimicking frontotemporal dementia. SAGE Open Medical Case Reports. 2018;6:2050313X17750928.
- Arshad F, Varghese F, Paplikar A, Gangadhar Y, Ramakrishnan S, Chaudhuri JR, et al. Role of Autoantibodies in Neurodegenerative Dementia: An Emerging Association. Dementia and Geriatric Cognitive Disorders. 2021;50(2):153-60.
- Borroni B, Stanic J, Verpelli C, Mellone M, Bonomi E, Alberici A, et al. Anti-AMPA GluA3 antibodies in Frontotemporal dementia: a new molecular target. Scientific reports. 2017;7(1):1-10.
- Li JY, Cai ZY, Sun XH, Shen DC, Yang XZ, Liu MS, et al. Blood–brain barrier dysfunction and myelin basic protein in survival of amyotrophic lateral sclerosis with or without frontotemporal dementia. Neurological Sciences. 2022;43:3201-10.
- Katisko K, Solje E, Koivisto AM, Krüger J, Kinnunen T, Hartikainen P, et al. Prevalence of immunological diseases in a Finnish frontotemporal lobar degeneration cohort with the C9orf72 repeat expansion carriers and non-carriers. Journal of Neuroimmunology. 2018;321:29-35.
- Gami-Patel P, Scarioni M, Bouwman FH, Boon BD, van Swieten JC, Brain Bank N, et al. The severity of behavioural symptoms in FTD is linked to the loss of GABRQ-expressing VENs and pyramidal neurons. Neuropathology and applied neurobiology. 2022;48(4):e12798.
- Nana AL, Sidhu M, Gaus SE, Hwang JHL, Li L, Park Y, et al. Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta neuropathologica. 2019;137(1):27-46.
- Boccardi M, Sabattoli F, Laakso MP, Testa C, Rossi R, Beltramello A, et al. Frontotemporal dementia as a neural system disease. Neurobiology of aging. 2005;26(1):37-44.
- Seeley WW, Crawford R, Rascovsky K, Kramer JH, Weiner M, Miller BL, et al. Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Archives of neurology. 2008;65(2):249-55.
- Wang Y, Shen D, Hou B, Sun X, Yang X, Gao J, et al. Brain structural and perfusion changes in amyotrophic lateral sclerosis-frontotemporal dementia patients with cognitive and motor onset: a preliminary study. Brain Imaging and Behavior. 2022:1-11.
- Képes Z, Nagy F, Budai Á, Barna S, Esze R, Somodi S, et al. Age, BMI and diabetes as independent predictors of brain hypoperfusion. Nuclear Medicine Review. 2021;24(1):11-5.
- Yaffe K, Falvey CM, Hamilton N, Harris TB, Simonsick EM, Strotmeyer ES, et al. Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus. JAMA internal medicine. 2013;173(14):1300-6.
- Appel SH, Beers D, Siklos L, Engelhardt JI, Mosier DR. Calcium: the darth vader of ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders. 2001;2(1):47-54.
- Patai R, Nógrádi B, Engelhardt JI, Siklós L. Calcium in the pathomechanism of amyotrophic lateral sclerosis–Taking center stage? Biochemical and biophysical research communications. 2017;483(4):1031-9.
- Mackensen A, Müller F, Mougiakakos D, Böltz S, Wilhelm A, Aigner M, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nature Medicine. 2022:1-9.
- Hendrich J, Van Minh AT, Heblich F, Nieto-Rostro M, Watschinger K, Striessnig J, et al. Pharmacological disruption of calcium channel trafficking by the α2δ ligand gabapentin. Proceedings of the National Academy of Sciences. 2008;105(9):3628-33.
| 1 | A more specific mechanism for disease onset is impaired insulin signaling (see below), which also occurs with aging. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).