Submitted:
04 October 2024
Posted:
07 October 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Simplified Models for Estimating Global Radiation (Hg)
2.2.1. Simplified Models Based on Insolation (S) – Group I
2.2.2. Simplified Models Based on Air Temperature (S) – Group II
2.2.3. Simplified Models Based on Relative Humidity or Astronomical Variables – Groups III and IV
2.2.4. Hybrid Models – Group V
2.3. Statistical Performance of Empirical Models
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, R.; Li, L.; Wu, L.; Agathokleous, E.; Liu, C.; Zhang, B.; Luo, Y.; Sun, S. Modeling daily global solar radiation using only temperature data: Past, development, and future. Renewable and Sustainable Energy Reviews 2022, 163, e112511. [Google Scholar] [CrossRef]
- Samanta, S.; Banerjee, S.; Patra, P.K.; Sehgal, V.K.; Chowdhury, A.; Kumar, B.; Mukherjee, A. Projection of future daily global horizontal irradiance under four RCP scenarios: An assessment through newly developed temperature and rainfall-based empirical model. Solar Energy 2021, 227, 23–43. [Google Scholar] [CrossRef]
- Souza, A.P.; Zamadei, T.; Borella, D.R.; Martim, C.C.; Almeida, F.T.; Escobedo, J.F. Diurnal evolution and estimates of hourly diffuse radiation based on horizontal global radiation, in Cerrado-Amazon Transition, Brazil. Atmosphere 2023, 14, e1289. [Google Scholar] [CrossRef]
- Chen, J.L.; Li, G.S. Estimation of monthly average daily solar radiation from measured meteorological data in Yangtze River Basian in China. International Journal of Climatology 2013, 33, 487–498. [Google Scholar] [CrossRef]
- Fan, J.; Chen, B.; Wu, L.; Zhang, F.; Lu, X.; Xiang, Y. Evaluation and development of temperature-based empirical models for estimating daily global solar radiation in humid regions. Energy 2018, 144, 903–914. [Google Scholar] [CrossRef]
- Prieto, J-I.; García, D. Global solar radiation models: A critical review from the point of view of homogeneity and case study. Renewable and Sustainable Energy Reviews 2022, 155, e111856. [CrossRef]
- Hassan, G.E.; Youssef, M.E.; Mohamed, Z.E.; Ali, M.A.; Hanafy, A.A. New Temperature-based Models for Predicting Global Radiation. Applied Energy 2016, 179, 437–450. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Deng, S.; Xu, W.; Zhang, Y. A critical review of the models used to estimate solar radiation. Renewable and Sustainable Energy Reviews 2017, 70, 314–329. [Google Scholar] [CrossRef]
- Yildirim, H.B.; Teke, A.; Antonanzas-Torres, F. Evaluation of classical parametric models for estimating solar radiation in the Eastern Mediterranean region of Turkey. Renewable and Sustainable Energy Reviews 2018, 82, 2053–2065. [Google Scholar] [CrossRef]
- Souza, A.P.; Silva, A.C.; Tanaka, A.A.; Uliana, E.M.; Almeida, F.T.; Klar, A.E.; Gomes, A.W.A. Global radiation by simplified models for state of Mato Grosso, Brazil. Pesquisa Agropecuária Brasileira 2017, 52, 215–227. [Google Scholar] [CrossRef]
- Bender, F.D.; Sentelhas, P.C. Solar Radiation Models and Gridded Database to Fill Gaps in Weather Series and to Project Climate Change in Brazil. Advances in Meteorology 2018, 2018(1), e6204382. [Google Scholar] [CrossRef]
- Martim, C.C.; Souza, A.P. Estimativas da radiação global com base na insolação na Amazônia brasileira. Revista Ibero-Americana de Ciências Ambientais, 2021, 12, e10. [Google Scholar] [CrossRef]
- Delgado, R.C.; Santana, R.O.; Gelsleichter, Y.A.; Pereira, M.G. Degradation of South American biomes: What to expect for the future? Environmental Impact Assessment Review 2022, 96, e106815. [Google Scholar] [CrossRef]
- Silva Junior, C.; Lima, M.; Teodoro, P.E.; Oliveira-Júnior, J.F.; Rossi, F.S.; Funatsu, B.M.; Butturi, W.; Lourençoni, T.; Kraeski, A.; Pelissari, T.D.; Moratelli, F.A.; Arvor, D.; Luiz, I.M.S.; Teodoro, L.P.R.; Dubreuil, V.; Teixeira, V.M. Fires Drive Long-Term Environmental Degradation in the Amazon Basin. Remote Sensing. [CrossRef]
- Arévalo, S.M.M.; Delgado, R.C.; Lindemann, D.S.; Gelsleichter, Y.A.; Pereira, M.G.; Rodrigues, R.A.; Justino, F.B.; Wanderley, H.S.; Zonta, E.; Santana, R.O.; Souza, R.S. Past and Future Responses of Soil Water to Climate Change in Tropical and Subtropical Rainforest Systems in South America. Atmosphere 2023, 14(4), e755. [Google Scholar] [CrossRef]
- Jahani, B.; Dinpashoh, Y.; Nafchi, A.R. Evaluation and development of empirical models for estimating daily solar radiation. Renewable and Sustainable Energy Reviews 2017, 73, 878–891. [Google Scholar] [CrossRef]
- Chen, R.; Ersi, K.; Yang, J.; Lu, S.; Zhao, W. Validation of five global radiation models with measured daily data in China. Energy Conversion and Management 2004, 45(11), 1759–1769. [Google Scholar] [CrossRef]
- Abraha, M.G.; Savage, M.J. Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations. Agriculture and Forest Meteorology 2008, 148(3), 401–416. [Google Scholar] [CrossRef]
- Angstrom, A. Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society 1924, 50, 121–125. [Google Scholar] [CrossRef]
- Prescott, J. Evaporation from a Water Surface in Relation to Solar Radiation. Transactions of the Royal Society of South Australia 1940, 46, 114–118. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. Journal of Irrigation and Drainage Engineering 1982, 108(3), 225–230. [Google Scholar] [CrossRef]
- Bristow, K.L.; Campbell, G.S. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agriculural and Forest Meteorology 1984, 31(2), 159–166. [Google Scholar] [CrossRef]
- Adaramola, M.S. Estimating global solar radiation using common meteorological data in Akure, Nigeria. Renewable Energy 2012, 47, 38–44. [Google Scholar] [CrossRef]
- Falayi, E.O.; Adepitan, J.O.; Rabiu, A.B. Empirical models for the correlation of global solar radiation with meteorological data for Iseyin, Nigeria. International Journal of Physical Sciences 2008, 3(9), 210–216. [Google Scholar]
- Santos, C.M.; Teremoto, E.T.; Souza, A.; Aristone, F.; Ilhaddadene, R. Several models to estimate daily global solar irradiation: adjustment and evaluation. Arabian Journal of Geosciences 2021, 14(4), e286. [Google Scholar] [CrossRef]
- Souza, A.P.; Zamadei, T.; Monteiro, E.B.; Casavecchia, B.H. Atmospheric Transmissivity of Global Radiation in the Amazon Region of Mato Grosso. Revista Brasileira de Meteorologia 2016, 31(4), 639–648. [Google Scholar] [CrossRef]
- Li, M-F.; Tang, X-P.; Wu, W.; Liu, H-B. General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Conversion and Management 2013, 70, 139–148. [CrossRef]
- Newland, F.J. A study of solar radiation models for the coastal region of south China. Solar Energy 1989, 43(4), 227–235. [Google Scholar] [CrossRef]
- Almorox, J.; Hontoria, C. Global solar radiation estimation using sunshine duration in Spain. Energy Conversion and Management 2004, 45(9-10), 1529–1535. [Google Scholar] [CrossRef]
- Bakirci, K. Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy 2009, 34(4), 485–501. [Google Scholar] [CrossRef]
- Ögelman, H.; Ecevit, A.; Tasdemiroglu, E. A new method for estimating solar radiation from bright sunshine data. Solar Energy 1984, 33(6), 619–625. [Google Scholar] [CrossRef]
- Togrul, I.T.; Onat, E. A study for estimating solar radiation in Elazig using geographical and meteorological data. Energy Conversion & Management, 1577. [Google Scholar] [CrossRef]
- Togrul, I.T.; Togrul, H.; Evin, D. Estimation of global solar radiation under clear sky radiation in Turkey. Renewable Energy 2000, 21(2), 271–287. [Google Scholar] [CrossRef]
- Elagib, N.A.; Mansell, M.G. New approaches for estimating global solar radiation across Sudan. Energy Conversion & Management 2000, 41(5), 419–434. [Google Scholar] [CrossRef]
- El-Metwally, M. Sunshine and global solar radiation estimation at different sites in Egypt. Journal of Atmospheric and Solar-Terrestrial Physics 2005, 67(14), 1331–1342. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Al-Ghamdi, A.A.; Al-Hazmi, F.S.; Faidah, A.S. Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia. Energy Policy 2009, 37(9), 3645–3649. [Google Scholar] [CrossRef]
- Lee, K.H. Improving the correlation between incoming solar radiation and Sunshine hour using DTR. International Journal of Climatology 2015, 35(3), 361–374. [Google Scholar] [CrossRef]
- Li, M-F.; Fan, L.; Liu, H-B.; Guo, P-T.; Wu, W. A general model for estimation of daily global solar radiation using air temperatures and site geographic parameters in Sothwest Chine. Journal of Atmospheric and Solar-Terrestrial Physics 2013, 92, 145–150. [CrossRef]
- Li, H.; Cao, F.; Wang, X.; Ma, W. A temperature-Based model for estimating monthly average daily global solar radiation in China. The Scientific World Journal 2014, 1, e128754. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Cao, F.; Bu, X.; Zhao, L. Models for calculating daily global solar radiation from air temperature in humid regions – A case study. Environmental Progress & Sustainable Energy 2015, 34(2), 595–599. [Google Scholar] [CrossRef]
- Goodin, D.G.; Hutchimson, J.M.S.; Vanderlip, R.L.; Knapp, M.C. Estimating solar irradiance for crop modeling using daily air temperature data. Agronomy Journal 1999, 91(5), 845–851. [Google Scholar] [CrossRef]
- Thornton, P.E.; Running, S.W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. Agricultural and Forest Meteorology 1999, 93(4), 211–228. [Google Scholar] [CrossRef]
- Weiss, A.; Hays, C.J.; Hu, Q.; Easterling, W.E. Incorporating bias error in calculating solar irradiance: Implications for crop yield simulations. Agronomy Journal 2001, 93(6), 1321–1326. [Google Scholar] [CrossRef]
- Kolebaje, O.T.; Ikusika, A.; Akinyemi, P. Estimating solar radiation in Ikeja and Port Harcourt via correlation with relative humidity and temperature. International Journal of Energy Production and Management 2016, 1(3), 253–262. [Google Scholar] [CrossRef]
- Benghanem, M.; Mellit, A. A simplified calibrated model for estimating daily global solar radiation in Madinah, Saudi Arabia. Theoretical and Aplied Climatology 2014, 115(1), 197–205. [Google Scholar] [CrossRef]
- Hargreaves, G.L.; Asce, A.M.; Hargreaves, G.H.; Asce, F.; Riley, J.P. Irrigation water requirements for Senegal river basin. Journal of Irrigation and Drainage Engineering 1985, 111(3), 265–275. [Google Scholar] [CrossRef]
- Saffaripour, M.H.; Mehrabian, M.A.; Bazargan, H. Predicting solar radiation fluxes for solar energy system applications. International Journal of Environmental Science and Technology 2013, 10, 761–768. [Google Scholar] [CrossRef]
- Panday, C.K.; Katiyar, A.K. Temperature base correlation for the estimation of global solar radiation on horizontal surface. International Journal of Energy and Environment 2010, 1(4), 737–744. [Google Scholar]
- Elagib, N.A.; Babiker, S.F.; Alvi, S.H. New empirical models for global solar radiation over Bahrain. Energy Conversion and Management 1998, 39, 827–835. [Google Scholar] [CrossRef]
- Ertekin, C.; Yaldiz, O. Estimation of monthly average daily global radiation on horizontal surface for Antalya (Turkey). Renewable Energy 1999, 17(1), 95–102. [Google Scholar] [CrossRef]
- Al-Salaymeh, A. Modeling of global daily solar radiation on horizontal surfaces for amman city. Emirates Journal for Engineerring Research 2006, 11(1), 49–56. [Google Scholar]
- Ododo, J.C.; Sulaiman, A.T.; Aidan, J.; Yuguda, M.M.; Ogbu, F.A. The importance of maximum air temperature in the parameterization of solar radiation in Nigeria. Renewable Energy 1995, 6(7), 751–763. [Google Scholar] [CrossRef]
- Swartman, R.K.; Ogunlade, O. Solar radiation estimates from common parameters. Solar Energy 1967, 11(3-4), 170–172. [Google Scholar] [CrossRef]
- Martim, C.C.; Souza, A.P. Estimates of global radiation based on insolation in the Brazilian Amazon. Revista Ibero-Americana de Ciências Ambientais. [CrossRef]
- Ramos, J.P.A.; Vianna, M.S.; Marin, F.R. Estimation of global solar radiation based on thermal amplitude for Brazil. Agrometeoros 2018, 26(1), 37–51. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 2013, 22(6), 711–728. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration guidelines for computing crop water requirements. Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. 333p. (FAO Irrigation and Drainage Paper, 56).
- WMO_Word Meteorological Organization. Guide to Meteorological Instruments and Methods of Observation. 2014. Available online: https://community.wmo.int/en/activity-areas/imop/wmo-no_8 (accessed on 01 Oct. 2024).
- Bahel, V.; Bakhsh, H.; Srinivasan, R. A correlation for estimation of global solar radiation. Energy 1987, 12(2), 131–135. [Google Scholar] [CrossRef]
- Glover, J.; Mcculloch, J.S.G. The empirical relation between solar radiation and hours of sunshine. Quarterly Journal of the Royal Meteorological Society 1958, 84(360), 172–175. [Google Scholar] [CrossRef]
- INMET_Instituto Nacional de Meteorologia. Normais Climatológicas do Brasil 1991 – 2020. Available online: https://portal.inmet.gov.br/ (accessed on 01 Oct. 2024).
- Korachagaon, I.; Bapat, V.N. General formula for the estimation of global solar radiation on earth’s surface around the globe. Renewable Energy 2012, 41, 394–400. [Google Scholar] [CrossRef]
- Badescu, V. Assessing the performance of solar radiation computing models and model selection procedures. Journal of Atmospheric and Solar-Terrestrial Physics 2013, 105, 119–134. [Google Scholar] [CrossRef]
- Teke, A.; Yildirim, H.B.; Çelik, Ö. Evaluation and performance comparison of different models for the estimation of solar radiation. Renewable and Sustainable Energy Reviews 2015, 50, 1097–1107. [Google Scholar] [CrossRef]
- Escobedo, J.F.; Gomes, E.N.; Oliveira, A.P.; Soares, J. Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil. Applied Energy 2009, 86(3), 299–309. [Google Scholar] [CrossRef]
- Araújo, W.F.; Neto, J.L.L.M.; Sander, C.; Albuquerque, J.A.A.; Viana, T.V.A.; Valero, M.A.M. Update on the climate classification of Boa Vista, Roraima, Brazil. Nativa 2024, 12(2), 236–240. [Google Scholar] [CrossRef]
- Sabino, M.; Silva, A.C.; Almeida, F.T.; Souza, A.P. Reference evapotrasnpiration in climate change scenarios in Mato Grosso, Brazil. Hydrology 2024, 11(7), e91. [Google Scholar] [CrossRef]








| State | Meteorological station | CCKP* | Lat. | Lon. | Alt. | Data period |
| Acre (AC) | 1 – Rio Branco | Am | -9.67 | -68.16 | 163 | 2015-2022 |
| Amapá (AP) | 2 – Macapá | Am | 0.035 | -51.08 | 16 | 2013-2022 |
| Amazonas (AM) | 3 – Barcelos | Af | -0.98 | -62.92 | 29 | 2008-2022 |
| 4 – Eirunepé | Af | -6.65 | -69.87 | 121 | 2012-2022 | |
| 5 – Itacoatiara | Af | -3.12 | -58.47 | 41 | 2008-2022 | |
| 6 – Lábrea | Am | -7.25 | -64.78 | 61 | 2008-2018 | |
| 7 – Manaus | Af | -3.1 | -59.95 | 61 | 2000-2022 | |
| 8 – Parintins | Af | -2.63 | -56.75 | 18 | 2008-2018 | |
| 9 – São Gabriel da Cachoeira | Af | -0.12 | -67.05 | 79 | 2011-2022 | |
| Mato Grosso (MT) | 10 – Sinop | Aw | -11.85 | -55.55 | 366 | 2006-2017 |
| Pará (PA) | 11 – Belém | Af | -1.41 | -48.43 | 21 | 2003-2022 |
| 12 – Cametá | Af | -2.23 | -49.48 | 9 | 2008-2022 | |
| 13 – Conceição do Araguaia | Aw | -8.25 | -49.27 | 175 | 2008-2022 | |
| 14 – Itaituba | Af | -4.27 | -56.00 | 24 | 2008-2022 | |
| 15 – Marabá | Aw | -5.36 | -49.37 | 116 | 2009-2022 | |
| 16 – Monte Alegre | Am | -2 | -54.07 | 100 | 2012-2022 | |
| 17 – Óbidos | Am | -1.88 | -55.51 | 89 | 2012-2017 | |
| 18 – Soure | Am | -0.72 | -48.51 | 12 | 2008-2017 | |
| 19 – Tucuruí | Am | -3.82 | -49.67 | 137 | 2008-2017 | |
| Roraima (RR) | 20 – Boa Vista | Am | 2.82 | -60.68 | 82 | 2010-2022 |
| Nº | References | Models |
| 1 | Angström [19]; Prescott [20] | Hg/Ho = a + b (S / So) |
| 2 | Ögelman et al. [31] | Hg/Ho = a + b (S / So) + c (S / So)2 |
| 3 | Bahel [59] | Hg/Ho = a + b (S / So) + c (S / So)2 + d (S / So)3 |
| 4 | Newland [28] | Hg/Ho = a + b (S / So) + c ln (f(S) / So) |
| 5 | Togrul & Onat [32] | Hg/Ho = a + b/Ho + c (S / So) / Ho |
| 6 | Togrul et al. [33] | Hg/Ho = a + b ln (f(S) / So) |
| 7 | Almorox & Hontoria [29] | Hg/Ho = a + b EXP (S / So) |
| 8 | Elagib & Mansell [34] | Hg/Ho = a EXP (b S / So) |
| 9 | Hg/Ho = a (S / So)b | |
| 10 | Hg/Ho = a + b (S / So)c | |
| 11 | El-Metwally [35] | Hg/Ho = a 1/(f(S) / So) |
| 12 | Bakirci [30] | Hg/Ho = a + b EXP (S / So) + c (S / So) |
| 13 | Li et al. [38] | Hg/Ho = a + b/Ho + c S / Ho |
| Nº | References | Models |
| 14 | Hargreaves & Samani [21] | Hg/Ho = a ΔT0.5 |
| 15 | Bristow & Campbell [22] (1984) | Hg/Ho = a (1 - EXP(-b ΔTc)) |
| 16 | Hargreaves et al. [46] | Hg/Ho = a + b ΔT0.5 |
| 17 | Ertekin & Yaldiz [50] | Hg/Ho = a + b / Ho + c Tmed / Ho |
| 18 | Goodin et al. [41] | Hg/Ho = a (1 - EXP(-b ΔTc /Ho)) |
| 19 | Thornton & Running [42] | Hg/Ho = 1 - EXP(- a ΔTb) |
| 20 | Weiss et al. [43] | Hg/Ho = 0.75 (1 - EXP(- a ΔT2 / Ho)) |
| 21 | Chen et al. [17] | Hg/Ho = a + b ln ΔT |
| 22 | Abraha & Savage [18] | Hg/Ho = 0.75 (1 - EXP(- a ΔT2 / ΔTmed) |
| 23 | Falayi et al. [24] | Hg/Ho = a + b Tmin |
| 24 | Hg/Ho = a + b Tmax | |
| 25 | Panday & Katiyar [48] | Hg/Ho = a + b Tmax / Tmin |
| 26 | Hg/Ho = a + b Tmax / Tmin + c (Tmax / Tmin)2 | |
| 27 | Hg/Ho = a + b Tmax / Tmin + c (Tmax / Tmin)2 + d (Tmax / Tmin)3 | |
| 28 | Adaramola [23] | Hg/Ho = a + b Tmed |
| 29 | Hg/Ho = a + b Tmin / Tmax | |
| 30 | Chen & Li [4] | Hg/Ho = a + b ΔT |
| 31 | Hg/Ho = a + b Tmin + c Tmax + d Tmin Tmax | |
| 32 | Hg/Ho = a + b Tmin + c Tmax | |
| 33 | Li et al. [27] | Hg/Ho = a/Ho + b Tmin + c Tmax |
| 34 | Benghanem & Mellit [45] | Hg/Ho = a/Ho + b ΔTc |
| 35 | Li et al. [39] | Hg/Ho = a + (b + c Tmed) ΔT0.5 |
| 36 | Hassan et al. [7] | Hg/Ho = a + b ΔTc |
| 37 | Hg/Ho = a + b Ho Tmedc | |
| 38 | Hg/Ho = a Ho Tmedb | |
| 39 | Hg/Ho = a EXP(b Tmedc) | |
| 40 | Hg/Ho = a + b Tmed + c Tmed2 | |
| 41 | Hg/Ho = (a + b ΔT + c ΔT2) ΔTd | |
| 42 | Jahani et al. [16] | Hg/Ho = a + b ΔT + c ΔT2 + d ΔT3 |
| 43 | Hg/Ho = a + b ΔT0.5 + c ΔT1.5 + d ΔT2.5 | |
| 44 | Fan et al. [5] | Hg/Ho = a + b ΔT + c ΔT0.25 + d ΔT0.5 |
| 45 | Hg/Ho = a + b ΔT + c ΔT0.25 + d ΔT0.5 + e Tmed / Ho |
| Nº | References | Models |
| 46 | Elagib et al. [34] | Hg/Ho = a/Ho + b RHmed/Ho |
| 47 | Hg/Ho = a/Ho + b (RHmed - Ho)/Ho | |
| 48 | Falayi et al. [24] | Hg/Ho = a + b RHmed |
| 49 | Kolebaje et al. [44] | Hg/Ho = a + b RHmed0.5 |
| 50 | Ertekin & Yaldiz [50] | Hg / Ho = a / Ho + b δ / Ho |
| 51 | Togrul & Onat [32] | Hg / Ho = a / Ho + b sen δ / Ho |
| 52 | Togrul & Onat [32] | Hg / Ho = a + b / Ho |
| 53 | Al-Salaymeh [51] | Hg / Ho= a / Ho + b sen (2 π DJ / c + d) / Ho |
| 54 | Al-Salaymeh [51] | Hg / Ho = (a + b DJ + c DJ2 + d DJ3 + e DJ4) / Ho |
| Nº | References | Models |
| 55 | Glover & McCulloch [60] | Hg/Ho = a cos ϕ + b (S / So) |
| 56 | Swartman & Ogunlade [53] | Hg/Ho = a EXP (b (S / So - RHmed)) |
| 57 | Hg/Ho = a + b RHmed + c S / So | |
| 58 | Hg/Ho = a RHmedb (S / So)c | |
| 59 | Ododo et al. [52] | Hg/Ho = a Tmedb RHmedc (S / So)d |
| 60 | Hg/Ho = a + b Tmed + c RHmed + d Tmed + e( S / So) | |
| 61 | Elagib et al. [34] | Hg/Ho = a/Ho + b (RHmed - ΔT - Ho)/Ho |
| 62 | Chen et al. [17] | Hg/Ho = a + b ln ΔT + c (S / So)d |
| 63 | Falayi et al. [24] | Hg/Ho = a + b Tmed + c (S / So) |
| 64 | Hg/Ho = a + b Tmin + c (S / So) | |
| 65 | Hg/Ho = a + b Tmax + c (S / So) | |
| 66 | Hg/Ho = a + b Tmed + c RHmed + d (S / So) | |
| 67 | El-Sebaii et al. [36] | Hg/Ho = a + b Tmed + c RHmed |
| 68 | Adaramola [23] | Hg/Ho = a + b (Tmin/Tmax) RHmed / 100 |
| 69 | Korachagaon & Bapat [62] | Hg/Ho = a + b Tmax + c ΔT + d RHmed |
| 70 | Hg/Ho = a + b Tmax + c Tmin + d ΔT + e RHmed | |
| 71 | Chen & Li [4] | Hg/Ho = a + b ΔT0.5 + c (S / So) |
| 72 | Hg/Ho = a + b Tmin + c Tmax + d (S / So) | |
| 73 | Hg/Ho = a + b Tmax + c Tmin + d RHmed + e (S / So) | |
| 74 | Hg/Ho = a + b ΔT0.5 + c RHmed | |
| 75 | Li et al. [27] | Hg/Ho = a /Ho + b Tmin + c Tmax + d RHmed |
| 76 | Hg/Ho = a /Ho + b Tmin + c Tmax + d RHmed / Ho | |
| 77 | Hg/Ho = a / Ho + b √ (ΔT) + c RHmed | |
| 78 | Hg/Ho = a / Ho + b √ (ΔT) + c (RHmed / Ho) | |
| 79 | Saffaripour et al. [47] | Hg/Ho = a + b / Ho + c Tmax / Ho + d (S / So) / Ho |
| 80 | Hg/Ho = a + b / Ho + c RHmed / Ho + d (S / So) / Ho | |
| 81 | Hg/Ho = a + b sen δ + c (S / So) | |
| 82 | Lee [37] | Hg/Ho = a + b (S / So)c + d ΔTe |
| 83 | Li et al. [40] | Hg/Ho = a (1 + b RHmed) ΔT0.5 |
| 84 | Hg/Ho = a (1 + b RHmed) (1 - EXP(-c ΔTd)) | |
| 85 | Kolebaje et al. [44] | Hg/Ho = a + b ΔT / f(S) |
| 86 | Hg/Ho = a + b ((ΔT + RHmed) / So)0.5 | |
| 87 | Yildirim et al. [9] | Hg/Ho = a + b RHmed + c S / So + d (S / So)2 + e (S / So)3 |
| Stations | Hg (MJ m-2 d-1) |
Ho (MJ m-2 d-1) |
Kt | S (hours) |
Ri | Tmax (ºC) |
Tmed (ºC) |
Tmin (ºC) |
RHmed (%) |
Rainfall (mm year-1) |
| 1 | 17.17±4.80 | 36.23±3.40 | 0.47±0.13 | 5.58±3.11 | 0.46±0.26 | 31.29±2.84 | 25.60±2.04 | 21.68±1.96 | 78.42±12.52 | 2954±139 |
| 2 | 19.86±5.28 | 36.12±1.35 | 0.55±0.14 | 6.95±3.23 | 0.58±0.26 | 31.76±1.65 | 27.54±1.22 | 23.97±0.73 | 76.56±1.22 | 2100±145 |
| 3 | 17.17±5.23 | 35.99±1.34 | 0.48±0.14 | 4.77±3.12 | 0.40±0.08 | 32.02±2.29 | 26.34±1.23 | 22.76±1.18 | 83.88±6.11 | 2443±72 |
| 4 | 15.64±4.25 | 36.36±2.55 | 0.43±0.12 | 3.94±2.70 | 0.33±0.22 | 31.55±2.27 | 25.92±1.48 | 22.24±1.39 | 70.16±14.29 | 1952±75 |
| 5 | 16.12±5.09 | 36.05±1.98 | 0.45±0.14 | 5.78±3.33 | 0.48±0.27 | 31.52±2.24 | 27.24±1.44 | 24.01±0.98 | 79.57±6.57 | 2339±104 |
| 6 | 17.15±3.84 | 35.76±2.95 | 0.48±0.10 | 5.24±3.30 | 0.44±0.25 | 32.75±2.10 | 26.70±1.30 | 22.57±1.51 | 78.86±5.96 | 2230±103 |
| 7 | 16.34±5.04 | 35.91±2.03 | 0.46±0.14 | 5.52±3.23 | 0.46±0.27 | 32.30±2.21 | 27.74±1.64 | 24.32±1.22 | 75.86±9.16 | 2206±99 |
| 8 | 17.52±5.41 | 35.88±1.84 | 0.49±0.14 | 6.17±3.41 | 0.51±0.28 | 31.29±2.07 | 27.15±1.43 | 24.24±1.09 | 81.09±6.72 | 2343±110 |
| 9 | 15.22±4.76 | 36.17±1.30 | 0.42±0.12 | 4.73±2.81 | 0.39±0.23 | 31.30±2.23 | 26.41±1.45 | 23.14±1.19 | 81.46±7.99 | 2867±46 |
| 10 | 19.13±4.19 | 35.95±3.96 | 0.53±0.12 | 6.03±3.04 | 0.50±0.26 | 32.35±2.81 | 25.41±1.63 | 20.16±2.11 | 72.04±15.78 | 1952±132 |
| 11 | 15.09±3.59 | 36.04±1.55 | 0.42±0.10 | 6.48±2.75 | 0.54±0.23 | 32.67±1.35 | 27.27±1.09 | 23.56±0.65 | 78.49±5.75 | 3205±129 |
| 12 | 20.16±3.78 | 35.91±1.79 | 0.56±0.10 | 7.57±2.59 | 0.63±0.21 | 32.47±1.21 | 27.75±1.13 | 24.23±1.02 | 74.36±6.15 | 2230±137 |
| 13 | 18.64±4.46 | 35.79±3.26 | 0.52±0.13 | 6.96±3.26 | 0.58±0.28 | 33.54±2.75 | 26.83±1.69 | 21.60±2.12 | 70.50±12.26 | 1686±104 |
| 14 | 18.75±4.71 | 36.03±2.25 | 0.52±0.13 | 6.24±3.18 | 0.52±0.26 | 32.67±2.17 | 27.58±1.46 | 23.85±0.96 | 74.87±7.16 | 2069±95 |
| 15 | 18.25±3.87 | 35.82±2.57 | 0.51±0.11 | 6.36±3.10 | 0.53±0.26 | 32.26±1.95 | 26.59±1.14 | 22.40±1.37 | 76.53±7.75 | 1885±123 |
| 16 | 20.61±4.19 | 36.13±1.71 | 0.57±0.11 | 7.53±2.79 | 0.63±0.23 | 31.66±1.69 | 27.54±1.29 | 23.97±1.05 | 75.30±6.98 | 1661±104 |
| 17 | 16.64±4.52 | 36.21±2.31 | 0.46±0.12 | 6.70±3.21 | 0.56±0.26 | 33.08±2.45 | 26.84±1.46 | 22.74±0.78 | 78.22±8.71 | 2572±107 |
| 18 | 19.82±4.30 | 35.96±1.38 | 0.55±0.12 | 6.89±3.55 | 0.57±0.29 | 30.94±0.95 | 27.71±1.04 | 25.34±1.51 | 76.98±6.03 | 2093±74 |
| 19 | 16.95±3.48 | 36.06±1.99 | 0.47±0.09 | 6.22±2.81 | 0.52±0.23 | 31.43±1.68 | 26.73±1.15 | 23.36±0.94 | 78.42±7.70 | 2400±157 |
| 20 | 19.35±4.35 | 35.99±1.77 | 0.54±0.11 | 6.49±2.87 | 0.54±0.23 | 33.51±2.22 | 27.83±1.56 | 23.70±1.07 | 68.54±10.17 | 1.616±100 |
| Met. Stations | Model 10 | Model 62 | |||||||
| a | b | c | R2 | a | b | c | d | R2 | |
| 1 | 0.2122 | 0.4784 | 0.7003 | 0.772 | 0.0324 | 0.1163 | 0.3607 | 0.8035 | 0.8052 |
| 2 | 0.1995 | 0.538 | 0.7178 | 0.8958 | 0.0396 | 0.1123 | 0.4516 | 0.8104 | 0.9071 |
| 3 | 0.2142 | 0.4846 | 0.5639 | 0.8045 | 0.0351 | 0.1127 | 0.3832 | 0.6435 | 0.8262 |
| 4 | 0.2233 | 0.4343 | 0.5737 | 0.758 | - | - | - | - | - |
| 5 | 0.1817 | 0.4678 | 0.6911 | 0.8221 | 0.0479 | 0.0936 | 0.3885 | 0.7413 | 0.8376 |
| 6 | 0.2769 | 0.3842 | 0.6852 | 0.7606 | 0.1265 | 0.0815 | 0.3178 | 0.683 | 0.7777 |
| 7 | 0.2041 | 0.4737 | 0.7516 | 0.7846 | 0.0518 | 0.0969 | 0.4094 | 0.8466 | 0.7992 |
| 8 | 0.1672 | 0.527 | 0.6562 | 0.8933 | 0.0733 | 0.0728 | 0.4662 | 0.7124 | 0.9003 |
| 9 | 0.1825 | 0.4718 | 0.6701 | 0.7713 | -0.0453 | 0.1738 | 0.2741 | 0.9689 | 0.8673 |
| 10 | 0.3103 | 0.4191 | 0.852 | 0.6359 | 0.1515 | 0.0821 | 0.3388 | 0.8233 | 0.665 |
| 11 | 0.2171 | 0.3681 | 0.9748 | 0.6563 | 0.0794 | 0.0846 | 0.3203 | 1.25 | 0.6658 |
| 12 | 0.2159 | 0.4893 | 0.7101 | 0.8452 | 0.1109 | 0.0687 | 0.4474 | 0.7844 | 0.852 |
| 13 | 0.197 | 0.494 | 0.6848 | 0.8221 | 0.1327 | 0.041 | 0.4448 | 0.6997 | 0.8263 |
| 14 | 0.2113 | 0.494 | 0.6286 | 0.887 | 0.1042 | 0.0718 | 0.4294 | 0.6683 | 0.8954 |
| 15 | 0.2355 | 0.4382 | 0.6629 | 0.8081 | 0.0935 | 0.0862 | 0.36 | 0.6808 | 0.8256 |
| 16 | 0.2055 | 0.5173 | 0.6947 | 0.9029 | 0.1331 | 0.0499 | 0.4823 | 0.7233 | 0.9068 |
| 17 | 0.1968 | 0.4229 | 0.7587 | 0.794 | 0.0487 | 0.0876 | 0.3483 | 0.8363 | 0.8065 |
| 18 | 0.278 | 0.4029 | 0.6001 | 0.8422 | 0.2053 | 0.045 | 0.4053 | 0.6424 | 0.8477 |
| 19 | 0.2549 | 0.3692 | 0.778 | 0.6905 | 0.123 | 0.0836 | 0.3203 | 0.9069 | 0.7108 |
| 20 | 0.2453 | 0.4656 | 0.7138 | 0.8429 | 0.1176 | 0.0766 | 0.4036 | 0.7679 | 0.8503 |
| Met. Stations | Model 45 | ||||||||
| a | b | c | d | e | R2 | ||||
| 1 | 7.1 | -0.413 | -13.02 | 6.47 | 0.3146 | 0.6513 | |||
| 2 | 18.05 | -1.06 | -32.94 | 16.11 | 1.08 | 0.7264 | |||
| 3 | 6.68 | -0.3971 | -13.03 | 6.39 | 1.04 | 0.7197 | |||
| 4 | 4.56 | -0.2595 | -8.59 | 4.26 | 0.4144 | 0.6825 | |||
| 5 | 12.48 | -0.7875 | -23.28 | 11.62 | 0.7932 | 0.7007 | |||
| 6 | 10.72 | -0.5403 | -18.54 | 8.83 | 0.3082 | 0.6095 | |||
| 7 | 14.57 | -0.8666 | -26.66 | 13.08 | 0.8747 | 0.6124 | |||
| 8 | 13.14 | -0.9469 | -25.69 | 13.19 | 1.17 | 0.7341 | |||
| 9 | 1.52 | -0.0997 | -3.45 | 1.84 | 0.4104 | 0.8 | |||
| 10 | 7.33 | -0.3692 | -12.76 | 6.12 | 0.2696 | 0.4998 | |||
| 11 | 13.04 | -0.6702 | -22.98 | 10.87 | 0.8086 | 0.4661 | |||
| 12 | - | - | - | - | - | - | |||
| 13 | 2.93 | -0.2 | -6.02 | 3.16 | 0.3889 | 0.629 | |||
| 14 | 13.7 | -0.8282 | -25.04 | 12.42 | 0.5538 | 0.6981 | |||
| 15 | 5.06 | -0.3339 | -9.95 | 5.1 | 0.4996 | 0.6639 | |||
| 16 | 27.61 | -1.71 | -50.07 | 24.76 | 1.09 | 0.6741 | |||
| 17 | 13.64 | -0.6925 | -23.86 | 11.31 | 0.5745 | 0.6767 | |||
| 18 | -33.41 | 1.81 | 55.84 | -26.79 | 1.72 | 0.3738 | |||
| 19 | - | - | - | - | - | - | |||
| 20 | 11.07 | -0.5971 | -20.36 | 9.72 | 1.17 | 0.7435 | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
