Submitted:
04 October 2024
Posted:
04 October 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Descriptive Statistics
3.2. GEE
3.3. LGCM
3.4. AUC
3.5. Comparing the Three Methods
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zeger, S.L.; Liang, K.-Y.; Albert, P.S. Models for longitudinal data: a generalized estimating equation approach. Biometrics 1988, 1049–1060. [Google Scholar] [CrossRef]
- Liang, K.-Y.; Zeger, S.L. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- da Silva, J.L.; Colosimo, E.A.; Demarqui, F.N. A general GEE framework for the analysis of longitudinal ordinal missing data and related issues. Statistical Modelling 2019, 19, 174–193. [Google Scholar] [CrossRef]
- Rodriguez, D. Core Statistic: Practial Knowledge for the Health Sciences, 2nd ed.; Kendall Hunt: Dubuque, IA, 2024. [Google Scholar]
- Schober, P.; Vetter, T.R. Repeated Measures Designs and Analysis of Longitudinal Data: If at First You Do Not Succeed-Try, Try Again. Anesthesia and analgesia 2018, 127, 569–575. [Google Scholar] [CrossRef] [PubMed]
- How can I do repeated measures ANOVA with covariates in SPSS? Available online: https://stats.oarc.ucla.edu/spss/faq/how-can-i-do-repeated-measures-anova-with-covariates-in-spss/ (accessed on September 19, 2024).
- Little, R.J.; Rubin, D.B. Statistical analysis with missing data; John Wiley & Sons, 2019; Volume 793. [Google Scholar]
- Lipsitz, S.R.; Fitzmaurice, G.M.; Weiss, R.D. Using Multiple Imputation with GEE with Non-monotone Missing Longitudinal Binary Outcomes. Psychometrika 2020, 85, 890–904. [Google Scholar] [CrossRef]
- Robins, J.M.; Rotnitzky, A.; Zhao, L.P. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the american statistical association 1995, 90, 106–121. [Google Scholar] [CrossRef]
- Yang, C.; Diao, L.; Cook, R.J. Adaptive response-dependent two-phase designs: Some results on robustness and efficiency. Statistics in Medicine 2022, 41, 4403–4425. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, R.; Elashoff, D. Local odds ratio is more efficient than correlation coefficient for modeling longitudinal ordinal data. In Proceedings of the Joint Statistical Meetings, Baltimore, MD; 2017. [Google Scholar]
- Touloumis, A.; Agresti, A.; Kateri, M. GEE for multinomial responses using a local odds ratios parameterization. Biometrics 2013, 69, 633–640. [Google Scholar]
- Duncan, T.E.; Duncan, S.C. An introduction to latent growth curve modeling. Behavior therapy 2004, 35, 333–363. [Google Scholar]
- Duncan, T.E.; Duncan, S.C. The ABC’s of LGM: An introductory guide to latent variable growth curve modeling. Social and personality psychology compass 2009, 3, 979–991. [Google Scholar] [CrossRef]
- Mehta, P.D.; Neale, M.C.; Flay, B.R. Squeezing interval change from ordinal panel data: latent growth curves with ordinal outcomes. Psychological methods 2004, 9, 301. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R. The problem of allowing correlated errors in structural equation modeling: concerns and considerations. Computational Methods in Social Sciences 2015, 3, 5–17. [Google Scholar]
- MacCallum, R.C.; Roznowski, M.; Necowitz, L.B. Model modifications in covariance structure analysis: the problem of capitalization on chance. Psychological bulletin 1992, 111, 490. [Google Scholar] [CrossRef]
- Goffin, R.D. Assessing the adequacy of structural equation models: Golden rules and editorial policies. Personality and Individual Differences 2007, 42, 831–839. [Google Scholar] [CrossRef]
- Masyn, K.E.; Petras, H.; Liu, W. Growth curve models with categorical outcomes. Encyclopedia of criminology and criminal justice 2014, 2013. [Google Scholar]
- Rodriguez, D. Research Methods; Kendall Hunt Publishing Company: Dubuque, IA, USA, 2021. [Google Scholar]
- Schminkey, D.L.; von Oertzen, T.; Bullock, L. Handling missing data with multilevel structural equation modeling and full information maximum likelihood techniques. Research in Nursing & Health 2016, 39, 286–297. [Google Scholar]
- Liu, A.; He, H.; Tu, X.M.; Tang, W. On testing proportional odds assumptions for proportional odds models. General Psychiatry 2023, 36. [Google Scholar] [CrossRef]
- Brant, R. Assessing proportionality in the proportional odds model for ordinal logistic regression. Biometrics 1990, 1171–1178. [Google Scholar] [CrossRef]
- McCullagh, P. Regression models for ordinal data. Journal of the Royal Statistical Society: Series B (Methodological) 1980, 42, 109–127. [Google Scholar] [CrossRef]
- Agresti, A. Categorical data analysis; John Wiley & Sons, 2012; Volume 792. [Google Scholar]
- Rodriguez, D. Assessing area under the curve as an alternative to latent growth curve modeling for repeated measures zero-inflated poisson data: a simulation study. stats 2023, 6, 354–364. [Google Scholar] [CrossRef]
- Rodriguez, D. Area under the curve as an alternative to latent growth curve modeling when assessing the effects of predictor variables on repeated measures of a continuous dependent variable. Stats 2023, 6, 674–688. [Google Scholar] [CrossRef]
- Pruessner, J.C.; Kirschbaum, C.; Meinlschmid, G.; Hellhammer, D.H. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 2003, 28, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, M.E. Tobacco product use among adults–United States, 2021. MMWR. Morbidity and mortality weekly report 2023, 72. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.P.; Luo, M.; McMenamin, S.B.; Stone, M.D.; Leas, E.C.; Strong, D.; Shi, Y.; Kealey, S.; Benmarhnia, T.; Messer, K. Declines in cigarette smoking among US adolescents and young adults: indications of independence from e-cigarette vaping surge. Tobacco Control 2023, tc-2022-057907. [Google Scholar] [CrossRef] [PubMed]
- Bandi, P.; Star, J.; Minihan, A.K.; Patel, M.; Nargis, N.; Jemal, A. Changes in E-Cigarette Use Among U.S. Adults, 2019–2021. American Journal of Preventive Medicine 2023, 65, 322–326. [Google Scholar] [CrossRef]
- Becker, T.D.; Arnold, M.K.; Ro, V.; Martin, L.; Rice, T.R. Systematic Review of Electronic Cigarette Use (Vaping) and Mental Health Comorbidity Among Adolescents and Young Adults. Nicotine & Tobacco Research 2020, 23, 415–425. [Google Scholar] [CrossRef]
- Romm, K.F.; Cohn, A.M.; Wang, Y.; Berg, C.J. Psychosocial predictors of trajectories of dual cigarette and e-cigarette use among young adults in the US. Addictive Behaviors 2023, 141, 107658. [Google Scholar] [CrossRef]
- Moustafa, A.F.; Testa, S.; Rodriguez, D.; Pianin, S.; Audrain-McGovern, J. Adolescent depression symptoms and e-cigarette progression. Drug and alcohol dependence 2021, 228, 109072. [Google Scholar] [CrossRef]
- Collins, S.; Hoare, E.; Allender, S.; Olive, L.; Leech, R.M.; Winpenny, E.M.; Jacka, F.; Lotfalian, M. A longitudinal study of lifestyle behaviours in emerging adulthood and risk for symptoms of depression, anxiety, and stress. Journal of Affective Disorders 2023, 327, 244–253. [Google Scholar] [CrossRef]
- Rodriguez, D.; Moss, H.B.; Audrain-McGovern, J. Developmental Heterogeneity in Adolescent Depressive Symptoms: Associations With Smoking Behavior. Psychosomatic Medicine 2005, 67. [Google Scholar] [CrossRef]
- Zimmermann, M.; Chong, A.K.; Vechiu, C.; Papa, A. Modifiable risk and protective factors for anxiety disorders among adults: A systematic review. Psychiatry Research 2020, 285, 112705. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wu, L. Healthy people 2020: social determinants of cigarette smoking and electronic cigarette smoking among youth in the United States 2010–2018. International journal of environmental research and public health 2020, 17, 7503. [Google Scholar] [CrossRef] [PubMed]
- Panel Study of Income Dynamics, public use dataset. 2012.
- Cangür, Ş.; Ercan, I. Comparison of model fit indices used in structural equation modeling under multivariate normality. 2015. [Google Scholar]
- MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power analysis and determination of sample size for covariance structure modeling. Psychological methods 1996, 1, 130. [Google Scholar] [CrossRef]
- Shi, D.; Lee, T.; Maydeu-Olivares, A. Understanding the Model Size Effect on SEM Fit Indices. Educational and Psychological Measurement 2019, 79, 310–334. [Google Scholar] [CrossRef]
- McNeish, D. Should we use F-tests for model fit instead of chi-square in overidentified structural equation models? Organizational Research Methods 2020, 23, 487–510. [Google Scholar] [CrossRef]
- Zhang, X.; Astivia, O.L.O.; Kroc, E.; Zumbo, B.D. How to think clearly about the central limit theorem. Psychological Methods 2023, 28, 1427. [Google Scholar] [CrossRef]


| Discrete variables | |||
| Variable | Level | N | % |
| Race | White | 1097 | 26.0 |
| Non-White | 1414 | 33.5 | |
| System missing | 1711 | 40.5 | |
| Education | ≤High School | 1055 | 25.0 |
| >High School | 1471 | 34.8 | |
| System missing | 1696 | 40.2 | |
| Nicotine use 2017 | Does not smoke | 1674 | 39.6 |
| Vapes/vaped | 473 | 11.2 | |
| Smokes | 185 | 4.4 | |
| Smokes and vapes/vaped | 188 | 4.5 | |
| System missing | 1702 | 40.3 | |
| Nicotine use 2019 | Does not smoke | 1642 | 38.9 |
| Vapes/vaped | 642 | 15.2 | |
| Smokes | 122 | 2.9 | |
| Smokes and vapes/vaped | 142 | 3.4 | |
| System missing | 1674 | 39.6 | |
| Nicotine use 2021 | Does not smoke | 1438 | 34.1 |
| Vapes/vaped | 729 | 17.3 | |
| Smokes | 54 | 1.3 | |
| Smokes and vapes/vaped | 88 | 2.1 | |
| System missing | 1913 | 45.3 | |
| Continuous variables | |||
| Variable | N | Mean | SD |
| Distress 2017 | 2512 | 4.91 | 4.00 |
| System missing | 1710 | ||
| Distress 2019 | 2519 | 6.10 | 5.35 |
| System missing | 1703 | ||
| Distress 2021 | 2309 | 6.72 | 5.73 |
| System missing | 1913 | ||
| Variable | B | SE | 95% CI | |||
| Lower | Upper | Wald | p-value | |||
| ≤High school | 0.139 | 0.2258 | -0.304 | 0.581 | 0.377 | 0.539 |
| White race | 0.191 | 0.2368 | -0.273 | 0.655 | 0.651 | 0.420 |
| Psychological distress | 0.052 | 0.0116 | 0.029 | 0.075 | 20.274 | <0.001 |
| Time 3 | 0.720 | 0.0932 | 0.537 | 0.903 | 59.705 | <0.001 |
| Time 2 | 0.293 | 0.0677 | 0.160 | 0.426 | 18.759 | <0.001 |
| High school*Time 3 | 0.117 | 0.1174 | -0.113 | 0.347 | 0.994 | 0.319 |
| High school*Time 2 | 0.053 | 0.0868 | -0.117 | 0.223 | 0.378 | 0.539 |
| Race*Time 3 | -0.143 | 0.1161 | -0.371 | 0.084 | 1.519 | 0.218 |
| Race*Time 2 | -0.049 | 0.0838 | -0.213 | 0.115 | 0.342 | 0.559 |
| Intercept | Slope | |||||||
| Smoking | ||||||||
| b | SE | z-value | p-value | b | SE | z-value | p-value | |
| Distress slope | - | - | - | - | 0.011 | 0.01 | 1.129 | 0.259 |
| Distress intercept | - | - | - | - | 0.037 | 0.005 | 6.777 | <0.001 |
| High school | 0.364 | 0.05 | 7.363 | <0.001 | -0.082 | 0.027 | -3.063 | 0.002 |
| White | 0.251 | 0.049 | 5.095 | <0.001 | -0.058 | 0.027 | -2.176 | 0.03 |
| Psychological distress | ||||||||
| b | SE | z-value | p-value | b | SE | z-value | p-value | |
| Smoke slope | - | - | - | - | - | - | - | - |
| Smoke intercept | - | - | - | - | -0.008 | 0.055 | -0.138 | 0.89 |
| HS | 0.295 | 0.159 | 1.852 | 0.064 | 0.226 | 0.152 | 1.488 | 0.137 |
| WHITE | 0.164 | 0.16 | 1.023 | 0.306 | 0.379 | 0.151 | 2.514 | 0.012 |
| Original data (N=1,095) | Multiple imputation (n=2,511) | |||||||
| Predictor | b | SE | t-value | p-value | b | SE | t-value | p-value |
| Intercept | 0.335 | 0.053 | 6.314 | p<0.001 | 0.498 | 0.085 | 5.845 | 0.000 |
| High school | 0.451 | 0.050 | 8.989 | p<0.001 | 0.512 | 0.069 | 7.392 | 0.000 |
| White | 0.317 | 0.050 | 6.358 | p<0.001 | 0.286 | 0.066 | 4.309 | 0.000 |
| AUC distress | 0.033 | 0.003 | 11.102 | p<0.001 | 0.033 | 0.005 | 7.189 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
