Submitted:
06 December 2024
Posted:
10 December 2024
You are already at the latest version
Abstract
Allogeneic hematopoietic stem cell (HSC) transplants are usually used in cases where patients have active cancerous illness in their bone marrow, but allogeneic transplants can cause graft vs. host disease. If autologous HSCs could be purged of cancer cells, they could then be used for transplantation purposes without concern. A novel method of purging is discussed herein that does not require chemotherapy and is targeted for each patient. It could be applied either in vitroor in vivo.
Keywords:
Introduction
Purging Strategy
Blood Cancer Elimination Strategy
Discussion
Conflicts of interest
Funding
References
- Malard F, Holler E, Sandmaier BM, et al. Acute graft-versus-host disease. Nat Rev Dis Primers 2023;9(1):1–18; [CrossRef]
- Mo F, Watanabe N, Omdahl KI, et al. Engineering T cells to suppress acute GVHD and leukemia relapse after allogeneic hematopoietic stem cell transplantation. Blood 2023;141(10):1194–1208; [CrossRef]
- Rui X, Alvarez Calderon F, Wobma H, et al. Human OX40L–CAR-Tregs target activated antigen-presenting cells and control T cell alloreactivity. Sci Transl Med 2024;16(769):eadj9331; [CrossRef]
- Crees ZD, Rettig MP, Jayasinghe RG, et al. Motixafortide and G-CSF to mobilize hematopoietic stem cells for autologous transplantation in multiple myeloma: a randomized phase 3 trial. Nat Med 2023;29(4):869–879; [CrossRef]
- Ishitsuka K, Nishikii H, Kimura T, et al. Purging myeloma cell contaminants and simultaneous expansion of peripheral blood-mobilized stem cells. Experimental Hematology 2024;131:104138; [CrossRef]
- Landau DA, Carter SL, Getz G, et al. Clonal evolution in hematologic malignancies and therapeutic implications. Leukemia 2014;28(1):34–43; [CrossRef]
- Renteln, M. Conditional replication of oncolytic viruses based on detection of oncogenic mRNA. Gene Ther 2018;25(1):1–3; [CrossRef]
- Renteln, MA. Promoting Oncolytic Vector Replication with Switches that Detect Ubiquitous Mutations. CCTR 2024;20(1):40–52; [CrossRef]
- Renteln, M. Targeting Clonal Mutations with Synthetic Microbes. 2024; [CrossRef]
- Adamala KP, Martin-Alarcon DA, Boyden ES. Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci USA 2016;113(19):E2579–E2588; [CrossRef]
- Wang H, Georgakopoulou A, Zhang W, et al. HDAd6/35++ - A new helper-dependent adenovirus vector platform for in vivo transduction of hematopoietic stem cells. Mol Ther Methods Clin Dev 2023;29:213–226; [CrossRef]
- Lampe GD, King RT, Halpin-Healy TS, et al. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nat Biotechnol 2024;42(1):87–98; [CrossRef]
- Pandey S, Gao XD, Krasnow NA, et al. Efficient site-specific integration of large genes in mammalian cells via continuously evolved recombinases and prime editing. Nat Biomed Eng 2024;1–18; [CrossRef]
- Liew PS, Tan TH, Wong YC, et al. A Self-Replicating Linear DNA. ACS Synth Biol 2020;9(4):804–813; [CrossRef]
- Bozza M, Green EW, Espinet E, et al. Novel Non-integrating DNA Nano-S/MAR Vectors Restore Gene Function in Isogenic Patient-Derived Pancreatic Tumor Models. Molecular Therapy - Methods & Clinical Development 2020;17:957–968; [CrossRef]
- Berckmueller K, Thomas J, Taha EA, et al. CD90-targeted lentiviral vectors for HSC gene therapy. Mol Ther 2023;31(10):2901–2913; [CrossRef]
- Garaudé S, Marone R, Lepore R, et al. Selective haematological cancer eradication with preserved haematopoiesis. Nature 2024;630(8017):728–735; [CrossRef]
- Dever DP, Bak RO, Reinisch A, et al. CRISPR/Cas9 Beta-globin Gene Targeting in Human Hematopoietic Stem Cells. Nature 2016;539(7629):384–389; [CrossRef]
- Haltalli MLR, Wilkinson AC, Rodriguez-Fraticelli A, et al. Hematopoietic stem cell gene editing and expansion: State-of-the-art technologies and recent applications. Experimental Hematology 2022;107:9–13; [CrossRef]
- Meaker GA, Wilkinson AC. Ex vivo hematopoietic stem cell expansion technologies: recent progress, applications, and open questions. Experimental Hematology 2024;130; [CrossRef]
- Uchida N, Nassehi T, Drysdale CM, et al. High-Efficiency Lentiviral Transduction of Human CD34+ Cells in High-Density Culture with Poloxamer and Prostaglandin E2. Molecular Therapy Methods & Clinical Development 2019;13:187–196; [CrossRef]
- Verghese SC, Goloviznina NA, Skinner AM, et al. S/MAR sequence confers long-term mitotic stability on non-integrating lentiviral vector episomes without selection. Nucleic Acids Research 2014;42(7):e53; [CrossRef]
- Dilloo D, Rill D, Entwistle C, et al. A Novel Herpes Vector for the High-Efficiency Transduction of Normal and Malignant Human Hematopoietic Cells. Blood 1997;89(1):119–127; [CrossRef]
- Sena-Esteves M, Saeki Y, Fraefel C, et al. HSV-1 Amplicon Vectors—Simplicity and Versatility. Molecular Therapy 2000;2(1):9–15; [CrossRef]
- Rodriguez PL, Harada T, Christian DA, et al. Minimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 2013;339(6122):971–975; [CrossRef]
- Milani M, Annoni A, Moalli F, et al. Phagocytosis-shielded lentiviral vectors improve liver gene therapy in nonhuman primates. Science Translational Medicine 2019;11(493):eaav7325; [CrossRef]
- Richter M, Stone D, Miao C, et al. In vivo hematopoietic stem cell transduction. Hematol Oncol Clin North Am 2017;31(5):771–785; [CrossRef]
- Kaseniit KE, Katz N, Kolber NS, et al. Modular, programmable RNA sensing using ADAR editing in living cells. Nat Biotechnol 2023;41(4):482–487; [CrossRef]
- Gayet RV, Ilia K, Razavi S, et al. Autocatalytic base editing for RNA-responsive translational control. Nat Commun 2023;14(1):1339; [CrossRef]
- Hu C, van Beljouw SPB, Nam KH, et al. Craspase is a CRISPR RNA-guided, RNA-activated protease. Science 2022;377(6612):1278–1285; [CrossRef]
- Liu X, Zhang L, Wang H, et al. Target RNA activates the protease activity of Craspase to confer antiviral defense. Molecular Cell 2022;82(23):4503-4518.e8; [CrossRef]
- Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017;356(6336):438–442; [CrossRef]
- Yang Z, Maruri-Avidal L, Sisler J, et al. Cascade regulation of vaccinia virus gene expression is modulated by multistage promoters. Virology 2013;447(0):10.1016/j.virol.2013.09.007; [CrossRef]
- Zhang R, Li J, Melendez-Alvarez J, et al. Topology-Dependent Interference of Synthetic Gene Circuit Function by Growth Feedback. Nat Chem Biol 2020;16(6):695–701; [CrossRef]
- Ferdosi SR, Ewaisha R, Moghadam F, et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun 2019;10(1):1842; [CrossRef]
- Hoyng SA, Gnavi S, de Winter F, et al. Developing a potentially immunologically inert tetracycline-regulatable viral vector for gene therapy in the peripheral nerve. Gene Ther 2014;21(6):549–557; [CrossRef]
- Wang X, Cabrera FG, Sharp KL, et al. Engineering Tolerance toward Allogeneic CAR-T Cells by Regulation of MHC Surface Expression with Human Herpes Virus-8 Proteins. Molecular Therapy 2021;29(2):718–733; [CrossRef]
- Willis JCW, Silva-Pinheiro P, Widdup L, et al. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat Commun 2022;13(1):7204; [CrossRef]
- Fauser F, Kadam BN, Arangundy-Franklin S, et al. Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells. Nat Commun 2024;15:1181; [CrossRef]
- Luo L, Jea JD-Y, Wang Y, et al. Control of mammalian gene expression by modulation of polyA signal cleavage at 5′ UTR. Nat Biotechnol 2024;1–13; [CrossRef]
- Rupprecht S, Hagedorn C, Seruggia D, et al. Controlled removal of a nonviral episomal vector from transfected cells. Gene 2010;466(1):36–42; [CrossRef]
- Pfeifer A, Brandon EP, Kootstra N, et al. Delivery of the Cre recombinase by a self-deleting lentiviral vector: Efficient gene targeting in vivo. Proc Natl Acad Sci U S A 2001;98(20):11450–11455; [CrossRef]
- Zhao Y, Pan Z, Hong Z, et al. Protocol for scarless genome editing of human pluripotent stem cell based on orthogonal selective reporters. STAR Protocols 2024;5(2):103084; [CrossRef]
- Wellhausen N, O’Connell RP, Lesch S, et al. Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Sci Transl Med 2023;15(714):eadi1145; [CrossRef]
- Jo S, Das S, Williams A, et al. Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing. Nat Commun 2022;13(1):3453; [CrossRef]
- Stavrou M, Philip B, Traynor-White C, et al. A Rapamycin-Activated Caspase 9-Based Suicide Gene. Mol Ther 2018;26(5):1266–1276; [CrossRef]
- Casirati G, Cosentino A, Mucci A, et al. Epitope editing enables targeted immunotherapy of acute myeloid leukaemia. Nature 2023;621(7978):404–414; [CrossRef]
- Hayal TB, Wu C, Abraham D, et al. The Impact of CD45-Antibody-Drug Conjugate Conditioning on Clonal Dynamics and Immune Tolerance Post HSPC Transplantation in Rhesus Macaques. Blood 2023;142:3419; [CrossRef]
- Miller ST, Xavier KB, Campagna SR, et al. Salmonella typhimurium Recognizes a Chemically Distinct Form of the Bacterial Quorum-Sensing Signal AI-2. Molecular Cell 2004;15(5):677–687; [CrossRef]
- Inoue Y, Saga T, Aikawa T, et al. Complete fusion of a transposon and herpesvirus created the Teratorn mobile element in medaka fish. Nat Commun 2017;8(1):551; [CrossRef]
- Lufino MMP, Manservigi R, Wade-Martins R. An S/MAR-based infectious episomal genomic DNA expression vector provides long-term regulated functional complementation of LDLR deficiency. Nucleic Acids Research 2007;35(15):e98; [CrossRef]
- Brantl, S. Plasmid Replication Control by Antisense RNAs. Microbiology Spectrum 2014;2(4):10.1128/microbiolspec.plas-0001–2013; [CrossRef]
- Smith GL, Moss B. Infectious poxvirus vectors have capacity for at least 25,000 base pairs of foreign DNA. Gene 1983;25(1):21–28; [CrossRef]
- Picco G, Petti C, Trusolino L, et al. A diphtheria toxin resistance marker for in vitro and in vivo selection of stably transduced human cells. Sci Rep 2015;5:14721; [CrossRef]
- Gill SK, Sugiman-Marangos SN, Beilhartz GL, et al. Enhanced Delivery of Protein Therapeutics with a Diphtheria Toxin-like Platform That Evades Pre-Existing Neutralizing Immunity. 2024;2024.04.02.587727; [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).