Submitted:
25 September 2024
Posted:
27 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pregnancy Toxemia and Lactational Ketosis
2.1. Epidemiology
2.2. Etiopathology
2.3. Diagnosis and Biomarkers
2.4. Treatment and Prevention
3. Hypocalcemia
3.1. Epidemiology
3.2. Etiopathology
3.3. Diagnosis and Biomarkers
3.4. Treatment and Prevention
4. Hypomagnesemia
4.1. Epidemiology
4.2. Etiopathology
4.3. Diagnosis and Biomarkers
4.4. Treatment and Prevention
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- G. Pulina, M. Avondo, G. Molle, A. H. D. Francesconi, A. S. Atzori, and A. Cannas, “Models for estimating feed intake in small ruminants,” R. Bras. Zootec., vol. 42, no. 9, pp. 675–690, Sep. 2013. [CrossRef]
- D. E. Bauman and W. Bruce Currie, “Partitioning of Nutrients During Pregnancy and Lactation: A Review of Mechanisms Involving Homeostasis and Homeorhesis,” Journal of Dairy Science, vol. 63, no. 9, pp. 1514–1529, Sep. 1980. [CrossRef]
- F. Zamuner, K. DiGiacomo, A. W. N. Cameron, and B. J. Leury, “Endocrine and metabolic status of commercial dairy goats during the transition period,” Journal of Dairy Science, vol. 103, no. 6, pp. 5616–5628, Jun. 2020. [CrossRef]
- J. Simões and C. Gutiérrez, “Nutritional and Metabolic Disorders in Dairy Goats,” in Sustainable Goat Production in Adverse Environments: Volume I, J. Simões and C. Gutiérrez, Eds., Cham: Springer International Publishing, 2017, pp. 177–194. [CrossRef]
- A. Cannas, L. O. Tedeschi, A. S. Atzori, and M. F. Lunesu, “How can nutrition models increase the production efficiency of sheep and goat operations?,” Animal Frontiers, vol. 9, no. 2, pp. 33–44, Apr. 2019. [CrossRef]
- J. Simões et al., “Review: Managing sheep and goats for sustainable high yield production,” Animal, vol. 15, p. 100293, Dec. 2021. [CrossRef]
- L. Dunière et al., “Changes in Digestive Microbiota, Rumen Fermentations and Oxidative Stress around Parturition Are Alleviated by Live Yeast Feed Supplementation to Gestating Ewes,” JoF, vol. 7, no. 6, p. 447, Jun. 2021. [CrossRef]
- Y. Huang et al., “Oxidative status in dairy goats: periparturient variation and changes in subclinical hyperketonemia and hypocalcemia,” BMC Vet Res, vol. 17, no. 1, p. 238, Jul. 2021. [CrossRef]
- A. Cabiddu et al., “The effect of parity number on the metabolism, inflammation, and oxidative status of dairy sheep during the transition period,” Journal of Dairy Science, vol. 103, no. 9, pp. 8564–8575, Sep. 2020. [CrossRef]
- M. A. Edmondson, J. F. Roberts, A. N. Baird, S. Bychawski, and D. G. Pugh, “Theriogenology of Sheep and Goats,” in Sheep and Goat Medicine, Elsevier, 2012, pp. 150–230. [CrossRef]
- M. S. Lima, “Clinical findings, blood chemistry values, and epidemiologic data from dairy goats with pregnancy toxemia,” Bov. pract., pp. 102–110, Jun. 2012. [CrossRef]
- A. Mongini and R. J. Van Saun, “Pregnancy Toxemia in Sheep and Goats,” Veterinary Clinics of North America: Food Animal Practice, vol. 39, no. 2, pp. 275–291, Jul. 2023. [CrossRef]
- A. Lisuzzo et al., “Evaluation of the metabolomic profile through 1H-NMR spectroscopy in ewes affected by postpartum hyperketonemia,” Sci Rep, vol. 12, no. 1, Oct. 2022. [CrossRef]
- A. Andrews, “Pregnancy toxaemia in the ewe,” In Practice, vol. 19, no. 6, pp. 306–314, Jun. 1997. [CrossRef]
- C. Bousquet, “Pathologies caprines en Deux-Sèvres : Etat des lieux et impact sur les niveaux de réforme et de mortalité,” Ecole Nationale Vétérinaire de Toulouse, France, 2005.
- Z. B. Ismail, “Dystocia in Sheep and Goats: Outcome and Fertility Following Surgical and Non-Surgical Management,” Macedonian Veterinary Review, vol. 40, no. 1, pp. 91–96, Mar. 2017. [CrossRef]
- M. S. Lima, “Glycaemia as a sign of the viability of the foetuses in the last days of gestation in dairy goats with pregnancy toxaemia,” Ir Vet J, vol. 65, no. 1, p. 1, Dec. 2012. [CrossRef]
- J. S. Rook, “Pregnancy Toxemia of Ewes, Does, and Beef Cows,” Veterinary Clinics of North America: Food Animal Practice, vol. 16, no. 2, pp. 293–317, Jul. 2000. [CrossRef]
- R. Binev, V. Marutsova, and V. Radev, “Clinical and haematological studies on subclinical lactational ketosis in dairy goats,” Agricultural Science and Technology, vol. 6, pp. 427–430, 2014.
- G. Zobel, K. Leslie, D. M. Weary, and M. A. G. Von Keyserlingk, “Ketonemia in dairy goats: Effect of dry period length and effect on lying behavior,” Journal of Dairy Science, vol. 98, no. 9, pp. 6128–6138, Sep. 2015. [CrossRef]
- C. Brozos, V. S. Mavrogianni, and G. C. Fthenakis, “Treatment and Control of Peri-Parturient Metabolic Diseases: Pregnancy Toxemia, Hypocalcemia, Hypomagnesemia,” Veterinary Clinics of North America: Food Animal Practice, vol. 27, no. 1, pp. 105–113, Mar. 2011. [CrossRef]
- C. Chartier, Pathologie caprine: du diagnostic à la prévention, 2e éd. in Manuel pratique. Puteaux: les Éditions du “Point vétérinaire,” 2018.
- A. Hefnawy, S. Shousha, and S. Youssef, “Hematobiochemical Profile of Pregnant and Experimentally Pregnancy toxemic goats,” Journal of Basic and Applied Chemistry, vol. 1, no. 8, pp. 65–69, 2011.
- C. Chartier, Pathologie caprine: du diagnostic à la prévention, 1 édition. Rueil-Malmaison: Les éditions du point vétérinaire, 2009.
- E. M. Ermilio and M. C. Smith, “Treatment of Emergency Conditions in Sheep and Goats,” Veterinary Clinics of North America: Food Animal Practice, vol. 27, no. 1, pp. 33–45, Mar. 2011. [CrossRef]
- X. Ji, N. Liu, Y. Wang, K. Ding, S. Huang, and C. Zhang, “Pregnancy Toxemia in Ewes: A Review of Molecular Metabolic Mechanisms and Management Strategies,” Metabolites, vol. 13, no. 2, p. 149, Jan. 2023. [CrossRef]
- O. M. Radostits, C. C. Gay, K. W. Hinchcliff, and P. D. Constable, “Pregnancy toxemia in sheep,” in Veterinary medicine: A textbook of the diseases of cattle, sheep, pigs, goats and horses, 10th ed., Philadelphia: Saunders Elsevier USA, 2007, pp. 1668–1671.
- M. Mellado, “Dietary selection by goats and the implications for range management in the Chihuahuan Desert: a review,” Rangel. J., vol. 38, no. 4, p. 331, 2016. [CrossRef]
- Y. Xue, C. Guo, F. Hu, W. Zhu, and S. Mao, “Maternal undernutrition induces fetal hepatic lipid metabolism disorder and affects the development of fetal liver in a sheep model,” FASEB j., vol. 33, no. 9, pp. 9990–10004, Sep. 2019. [CrossRef]
- R. N. Heitmann, D. J. Dawes, and S. C. Sensenig, “Hepatic Ketogenesis and Peripheral Ketone Body Utilization in the Ruminant,” The Journal of Nutrition, vol. 117, no. 6, pp. 1174–1180, Jun. 1987. [CrossRef]
- S. C. Sensenig, D. J. Dawes, and R. N. Heitmann, “Energy metabolite concentrations and net fluxes across splanchnic and peripheral tissues in pregnant ewes,” no. 61, p. 454, 1985.
- R. G. Vernon, R. A. Clegg, and D. J. Flint, “Metabolism of sheep adipose tissue during pregnancy and lactation. Adaptation and regulation,” Biochemical Journal, vol. 200, no. 2, pp. 307–314, Nov. 1981. [CrossRef]
- M. S. Allen, B. J. Bradford, and M. Oba, “BOARD-INVITED REVIEW: The hepatic oxidation theory of the control of feed intake and its application to ruminants,” Journal of Animal Science, vol. 87, no. 10, pp. 3317–3334, Oct. 2009. [CrossRef]
- B. B. Kleppe, R. J. Aiello, R. R. Grummer, and L. E. Armentano, “Triglyceride Accumulation and Very Low Density Lipoprotein Secretion by Rat and Goat Hepatocytes In Vitro,” Journal of Dairy Science, vol. 71, no. 7, pp. 1813–1822, Jul. 1988. [CrossRef]
- G. Bobe, J. W. Young, and D. C. Beitz, “Invited Review: Pathology, Etiology, Prevention, and Treatment of Fatty Liver in Dairy Cows,” Journal of Dairy Science, vol. 87, no. 10, pp. 3105–3124, Oct. 2004. [CrossRef]
- T. H. Herdt, “Fatty Liver in Dairy Cows,” Veterinary Clinics of North America: Food Animal Practice, vol. 4, no. 2, pp. 269–287, Jul. 1988. [CrossRef]
- V. Tufarelli, N. Puvača, D. Glamočić, G. Pugliese, and M. A. Colonna, “The Most Important Metabolic Diseases in Dairy Cattle during the Transition Period,” Animals, vol. 14, no. 5, p. 816, Mar. 2024. [CrossRef]
- R. Duehlmeier, I. Fluegge, B. Schwert, and M. Ganter, “Insulin Sensitivity during Late Gestation in Ewes Affected by Pregnancy Toxemia and in Ewes with High and Low Susceptibility to this Disorder,” Veterinary Internal Medicne, vol. 27, no. 2, pp. 359–366, Mar. 2013. [CrossRef]
- M. S. Lima, J. M. Silveira, N. Carolino, L. P. Lamas, R. A. Pascoal, and C. A. Hjerpe, “Usefulness of clinical observations and blood chemistry values for predicting clinical outcomes in dairy goats with pregnancy toxaemia,” Ir Vet J, vol. 69, no. 1, p. 16, Dec. 2016. [CrossRef]
- P. Menzies and D. Bailey, “Diseases of the periparturient ewe,” Current Therapy in Large Animal Theriogenology. 1st edn., WB Saunders Company, Philadelphia, Pennsylvania, pp. 639–643, 1997.
- M. K. Albay, M. C. Karakurum, S. Sahinduran, K. Sezer, R. Yildiz, and T. Buyukoglu, “Selected serum biochemical parameters and acute phase protein levels in a herd of Saanen goats showing signs of pregnancy toxaemia,” Vet. Med., vol. 59, no. 7, pp. 336–342, Jul. 2014. [CrossRef]
- V. Doré, J. Dubuc, A. M. Bélanger, and S. Buczinski, “Definition of prepartum hyperketonemia in dairy goats,” Journal of Dairy Science, vol. 98, no. 7, pp. 4535–4543, Jul. 2015. [CrossRef]
- R. Iqbal et al., “Evaluation of metabolic and oxidative profile in ovine pregnancy toxemia and to determine their association with diagnosis and prognosis of disease,” Trop Anim Health Prod, vol. 54, no. 6, p. 338, Dec. 2022. [CrossRef]
- R. Sadjadian, H. A. Seifi, M. Mohri, A. A. Naserian, and N. Farzaneh, “Variations of energy biochemical metabolites in periparturient dairy Saanen goats,” Comp Clin Pathol, vol. 22, no. 3, pp. 449–456, May 2013. [CrossRef]
- E. Trevisi, A. D’Angelo, A. Gaviraghi, L. Noé, and G. Bertoni, “Blood inflammatory indices in goats around kidding,” Italian Journal of Animal Science, vol. 4, no. sup2, pp. 404–405, Jan. 2005. [CrossRef]
- R. J. C. Souto et al., “Achados bioquímicos, eletrolíticos e hormonais de cabras acometidas com toxemia da prenhez,” Pesq. Vet. Bras., vol. 33, no. 10, pp. 1174–1182, Oct. 2013. [CrossRef]
- R. J. C. Souto et al., “Biochemical, endocrine, and histopathological profile of liver and kidneys of sheep with pregnancy toxemia,” Pesq. Vet. Bras., vol. 39, no. 10, pp. 780–788, Oct. 2019. [CrossRef]
- K. Qiao et al., “The Complex Interplay of Insulin Resistance and Metabolic Inflammation in Transition Dairy Cows,” Animals, vol. 14, no. 6, p. 832, Mar. 2024. [CrossRef]
- J. J. Kaneko, J. W. Harvey, and M. Bruss, Clinical biochemistry of domestic animals, 6th ed. Amsterdam Boston: Academic Press/Elsevier, 2008.
- P. R. Vasava, R. G. Jani, H. V. Goswami, S. D. Rathwa, and F. B. Tandel, “Studies on clinical signs and biochemical alteration in pregnancy toxemic goats,” Vet World, vol. 9, no. 8, pp. 869–874, Aug. 2016. [CrossRef]
- L. M. Souza et al., “Changes in cardiac biomarkers in goats naturally affected by pregnancy toxemia,” Research in Veterinary Science, vol. 130, pp. 73–78, Jun. 2020. [CrossRef]
- C. Schlumbohm and J. Harmeyer, “Hyperketonemia Impairs Glucose Metabolism in Pregnant and Nonpregnant Ewes,” Journal of Dairy Science, vol. 87, no. 2, pp. 350–358, Feb. 2004. [CrossRef]
- L. M. De Souza et al., “CARDIAC BIOMARKERS TROPONIN I AND CK-MB IN EWES AFFECTED BY PREGNANCY TOXEMIA,” Small Ruminant Research, vol. 177, pp. 97–102, Aug. 2019. [CrossRef]
- K. M. Al-Qudah, “Oxidant and antioxidant profile of hyperketonemic ewes affected by pregnancy toxemia,” Veterinary Clinical Pathol, vol. 40, no. 1, pp. 60–65, Mar. 2011. [CrossRef]
- P. Henze, K. Bickhardt, H. Fuhrmann, and H. P. Sallmann, “Spontaneous Pregnancy Toxaemia (Ketosis) in Sheep and the Role of Insulin,” Journal of Veterinary Medicine Series A, vol. 45, no. 1–10, pp. 255–266, Feb. 1998. [CrossRef]
- N. Sargison, “Recent advances in the diagnosis, prognosis and treatment of ovine pregnancy toxaemia,” presented at the PROCEEDINGS OF MEETINGS-SHEEP VETERINARY SOCIETY, THE SHEEP VETERINARY SOCIETY, 1995, pp. 27–32.
- J. E. Bayne, “Pregnancy Toxemia Therapeutic Options,” Veterinary Clinics of North America: Food Animal Practice, vol. 39, no. 2, pp. 293–305, Jul. 2023. [CrossRef]
- K. M. Simpson, J. D. Taylor, and R. N. Streeter, “Evaluation of prognostic indicators for goats with pregnancy toxemia,” javma, vol. 254, no. 7, pp. 859–867, Apr. 2019. [CrossRef]
- W. Huo, W. Zhu, and S. Mao, “Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats,” World J Microbiol Biotechnol, vol. 30, no. 2, pp. 669–680, Feb. 2014. [CrossRef]
- Y. Y. Jia, S. Q. Wang, Y. D. Ni, Y. S. Zhang, S. Zhuang, and X. Z. Shen, “High concentrate-induced subacute ruminal acidosis (SARA) increases plasma acute phase proteins (APPs) and cortisol in goats,” Animal, vol. 8, no. 9, pp. 1433–1438, 2014. [CrossRef]
- N. Ratanapob et al., “The association of serum β-hydroxybutyrate concentration with fetal number and health indicators in late-gestation ewes in commercial meat flocks in Prince Edward Island,” Preventive Veterinary Medicine, vol. 154, pp. 18–22, Jun. 2018. [CrossRef]
- C. A. S. C. Araújo et al., “Validation of a handheld β-hydroxybutyrate acid meter to identify hyperketonaemia in ewes,” PeerJ, vol. 8, p. e8933, Apr. 2020. [CrossRef]
- M. Pichler et al., “Evaluation of 2 electronic handheld devices for diagnosis of ketonemia and glycemia in dairy goats,” Journal of Dairy Science, vol. 97, no. 12, pp. 7538–7546, Dec. 2014. [CrossRef]
- M. N. Brobst, B. A. Abi-Nader, S. J. Blasczynski, and M. Chigerwe, “Evaluation of a continuous glucose monitoring system in healthy dairy calves and adult goats,” ajvr, vol. 85, no. 9, p. ajvr.24.03.0076, Sep. 2024. [CrossRef]
- V. Sturm, D. Efrosinin, M. Öhlschuster, E. Gusterer, M. Drillich, and M. Iwersen, “Combination of Sensor Data and Health Monitoring for Early Detection of Subclinical Ketosis in Dairy Cows,” Sensors, vol. 20, no. 5, p. 1484, Mar. 2020. [CrossRef]
- A. Munn, A. Swinbourne, B. Brougham, W. Van Wettere, and A. Weaver, “The effects of maternal calcium status during late gestation on lamb growth and survival in twin-bearing Merino ewes grazing pasture,” Aust Veterinary J, vol. 102, no. 5, pp. 249–255, May 2024. [CrossRef]
- J. P. Goff, A. Liesegang, and R. L. Horst, “Diet-induced pseudohypoparathyroidism: A hypocalcemia and milk fever risk factor,” Journal of Dairy Science, vol. 97, no. 3, pp. 1520–1528, Mar. 2014. [CrossRef]
- J. F. D. P. Cajueiro et al., “Influence of calcium concentrations on the metabolic profile of dairy goats during the transitional period,” RSD, vol. 10, no. 11, p. e308101119462, Sep. 2021. [CrossRef]
- G. K. Oetzel, “Parturient Paresis and Hypocalcemia in Ruminant Livestock,” Veterinary Clinics of North America: Food Animal Practice, vol. 4, no. 2, pp. 351–364, Jul. 1988. [CrossRef]
- J. Barłowska, M. Szwajkowska, Z. Litwińczuk, and J. Król, “Nutritional Value and Technological Suitability of Milk from Various Animal Species Used for Dairy Production,” Comprehensive Reviews in Food Science and Food Safety, vol. 10, no. 6, pp. 291–302, Nov. 2011. [CrossRef]
- C. J. Härter et al., “Mineral Metabolism in Singleton and Twin-pregnant Dairy Goats,” Asian Australas. J. Anim. Sci, vol. 28, no. 1, pp. 37–49, Dec. 2014. [CrossRef]
- W. J. Underwood, R. Blauwiekel, M. L. Delano, R. Gillesby, S. A. Mischler, and A. Schoell, “Biology and Diseases of Ruminants (Sheep, Goats, and Cattle),” in Laboratory Animal Medicine, Elsevier, 2015, pp. 623–694 . [CrossRef]
- Y. H. Bayoumi, A. Behairy, A. A. Abdallah, and N. E. Attia, “Peri-parturient hypocalcemia in goats: Clinical, hematobiochemical profiles and ultrasonographic measurements of postpartum uterine involution,” Vet World, vol. 14, no. 3, pp. 558–568, Mar. 2021. [CrossRef]
- J. P. Goff, “Pathophysiology of Calcium and Phosphorus Disorders,” Veterinary Clinics of North America: Food Animal Practice, vol. 16, no. 2, pp. 319–337, Jul. 2000. [CrossRef]
- G. Fthenakis, “Parturient Paresis in Sheep and Goats.,” MSD Veterinary Manual. 2022. Accessed: Sep. 01, 2024. [Online]. Available: https://www.msdvetmanual.com/metabolic-disorders/disorders-of-calcium-metabolism/parturient-paresis-in-sheep-and-goats.
- G. Herm, A. S. Muscher-Banse, G. Breves, B. Schröder, and M. R. Wilkens, “Renal mechanisms of calcium homeostasis in sheep and goats1,” Journal of Animal Science, vol. 93, no. 4, pp. 1608–1621, Apr. 2015. [CrossRef]
- M. R. Wilkens, J. Richter, D. R. Fraser, A. Liesegang, G. Breves, and B. Schröder, “In contrast to sheep, goats adapt to dietary calcium restriction by increasing intestinal absorption of calcium,” Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, vol. 163, no. 3–4, pp. 396–406, Nov. 2012. [CrossRef]
- M. E. Rodriguez-Ortiz et al., “Magnesium modulates parathyroid hormone secretion and upregulates parathyroid receptor expression at moderately low calcium concentration,” Nephrology Dialysis Transplantation, vol. 29, no. 2, pp. 282–289, Feb. 2014. [CrossRef]
- J. E. Long, K. P. Coffey, J. D. Caldwell, D. Philipp, R. T. Rhein, and A. N. Young, “Calcium and magnesium absorption and retention by growing goats offered diets with different calcium sources,” Journal of Animal Science, vol. 94, no. suppl_2, pp. 193–193, Apr. 2016. [CrossRef]
- A. Liesegang, “Influence of Anionic Salts on Bone Metabolism in Periparturient Dairy Goats and Sheep,” Journal of Dairy Science, vol. 91, no. 6, pp. 2449–2460, Jun. 2008. [CrossRef]
- A. Liesegang, J. Risteli, and M. Wanner, “The effects of first gestation and lactation on bone metabolism in dairy goats and milk sheep,” Bone, vol. 38, no. 6, pp. 794–802, Jun. 2006. [CrossRef]
- C. J. C. Phillips, M. O. Mohamed, and P. C. Chiy, “The critical dietary potassium concentration for induction of mineral disorders in non-lactating Welsh Mountain sheep,” Small Ruminant Research, vol. 63, no. 1–2, pp. 32–38, May 2006. [CrossRef]
- H. Martens and M. Schweigel, “Pathophysiology of Grass Tetany and other Hypomagnesemias: Implications for Clinical Management,” Veterinary Clinics of North America: Food Animal Practice, vol. 16, no. 2, pp. 339–368, Jul. 2000. [CrossRef]
- H. Martens, S. Leonhard-Marek, M. Röntgen, and F. Stumpff, “Magnesium homeostasis in cattle: absorption and excretion,” Nutr. Res. Rev., vol. 31, no. 1, pp. 114–130, Jun. 2018. [CrossRef]
- R. D. Horrocks and J. F. Vallentine, “ANTI-HEALTH FACTORS IN HARVESTED FORAGES,” in Harvested Forages, Elsevier, 1999, pp. 87–99. [CrossRef]
- D. E. Dalley, “DISEASES OF DAIRY ANIMALS, NONINFECTIOUS | Grass Tetany,” in Encyclopedia of Dairy Sciences, Elsevier, 2002, pp. 833–838. [CrossRef]
- C. Stelletta, M. Gianesella, and M. Morgante, “Metabolic and nutritional diseases.,” in Dairy goats feeding and nutrition, 1st ed., A. Cannas and G. Pulina, Eds., UK: CAB International, 2008, pp. 263–288. [CrossRef]
| Biomarker | Cutoff | Se (%) | Sp (%) |
|---|---|---|---|
|
Glucose (mg/dL) (subclinical) |
- ˂ 40.3 |
- 63.6 |
- 83.3 |
|
Fructosamine (mmol/L) (subclinical) |
˂ 0.6 ˂ 1.0 |
89.3 90.0 |
72.2 75.3 |
|
NEFA (mmol/L) (subclinical) |
> 0.7 > 0.4 |
86.4 70.0 |
70.6 90.0 |
|
Triglycerides (mg/dL) (subclinical) |
> 29.9 ˃ 20.5 |
73.9 72.7 |
64.7 83.3 |
| Cholesterol (mg/dL) | ˃ 71.0 | 73.9 | 70.6 |
| Albumin (g/dL) | < 2.7 | 73.9 | 64.7 |
| AST (U/L) | ˃ 123.8 | 82.6 | 62.5 |
|
GGT (U/L) (subclinical) |
> 76.3 ˃ 47.7 |
81.0 66.7 |
66.7 75.0 |
|
LDH (U/L) (subclinical) |
˃ 760.3 ˃ 645.4 |
81.0 60.0 |
66.7 64.6 |
| CK (U/L) | > 222.2 | 76.2 | 64.7 |
| Calcium (mg/dL) | ˂ 7.1 | 68.2 | 64.7 |
| Potassium (mEq/L) | ˂ 3.6 | 66.6 | 58.8 |
|
MDA (nmol MDA/mL) (subclinical) |
> 29.3 > 21.9 |
78.2 77.8 |
64.7 61.2 |
| SOD (U/g Hb) | < 287.3 | 78.3 | 64.7 |
| CAT (U/g Hb) | < 97.9 | 65.2 | 64.7 |
| Biomarker | Survivors | Non-survivors |
|---|---|---|
| 3-hydroxy-butyrate(mmol/L) | 3.5 ± 2.6 | 4.3 ± 3.6 |
| Fructosamine (mmol/L) | 0.69 ± 0.09 | 0.32 ± 0.71 |
| Creatinine (mg/dL) | 1.46 ± 0.23 | 3.13 ± 0.31 |
| LDH (U/L) | 678.4 ± 56.7 | 988.5 ± 66.9 |
| Cortisol(mmol/L) | 52 ± 80 | 72 ± 98 |
| Insulin (pmol/L) | 66 ± 42 | 37 ± 12 |
| Potassium (mEq/L) | 4.4 ± 1.0 | 4.1 ± 1.0 |
| MDA (nmol MDA/mL) | 25.5 ± 4.0 | 41.0 ± 3.2 |
| Troponin I (ng/mL) | 0.7 ± 0.4 | 1.0 ± 0.5 |
| Age |
| Females with multiple fetuses |
| Heavy lactation |
| Animal transportation |
| Poor-quality grassy or cereal hays and pastures (low levels of calcium) |
| Forages with high levels of potassium and/or low levels of sodium and magnesium |
| Corn silage (low levels of calcium) |
| Grain cereals (low levels of calcium and sodium) |
| Feed containing chelators, such as oxaloacetate from beet pulp and leaves (Beta vulgaris), and alfalfa leaves (Medicago sativa) |
| Vitamin D deficiency which depresses gastrointestinal calcium absorption (housed animals during winter) |
| Improper Ca and P ratio (2:1), e.g., from cereal grains |
| Stress (e.g., intense handing, weather changes) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
