Submitted:
26 September 2024
Posted:
26 September 2024
You are already at the latest version
Abstract
Keywords:
1. Instruction
2. Progress of IL-12 in Cancer Therapy based on Different Delivery Strategies
2.1. Modified IL-12 for Cancer Therapy
2.2. Virus-Based Delivery of IL-12 for cancer therapy
Herpes Simplex Virus (HSV)
Adenovirus or Adeno-associated virus (AV or AAV)
Vaccinia virus or modified vaccinia virus (VV or MVA)
Other viruses
2.3. Non-Viral Delivery of IL-12 for Cancer Therapy
2.3.1. Chemical-Based Delivery Systems
Polymer-based nanoparticles
Lipid nanoparticles (LNPs)
2.3.2. Bio-Derived Delivery Vector
2.4. Cells-Based Delivers IL-12 for Cancer Therapy
Dendritic Cells (DCs)
T Cells
Mesenchymal stromal cells (MSCs)
Other cells
3. Clinical Perspectives
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of interest
References
- Flanigan, R.C. , Salmon, S.E., Blumenstein, B.A., Bearman, S.I., Roy, V., McGrath, P.C., Caton, J.R., Jr., Munshi, N., and Crawford, E.D. (2001). Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N Engl J Med 345, 1655-1659. 10.1056/NEJMoa003013.
- Atkins, M.B. , Lotze, M.T., Dutcher, J.P., Fisher, R.I., Weiss, G., Margolin, K., Abrams, J., Sznol, M., Parkinson, D., Hawkins, M., et al. (1999). High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17, 2105-2116. 10.1200/jco.1999.17.7.2105.
- Del Vecchio, M. , Bajetta, E., Canova, S., Lotze, M.T., Wesa, A., Parmiani, G., and Anichini, A. (2007). Interleukin-12: biological properties and clinical application. Clin Cancer Res 13, 4677-4685. 10.1158/1078-0432.Ccr-07-0776.
- Weiss, J.M. , Subleski, J.J., Wigginton, J.M., and Wiltrout, R.H. (2007). Immunotherapy of cancer by IL-12-based cytokine combinations. Expert Opin Biol Ther 7, 1705-1721. 10.1517/14712598.7.11.1705.
- Smyth, M.J. , Taniguchi, M., and Street, S.E. (2000). The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J Immunol 165, 2665-2670. 10.4049/jimmunol.165.5.2665.
- Colombo, M.P. , and Trinchieri, G. (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev 13, 155-168. 10.1016/s1359-6101(01)00032-6.
- Boggio, K. , Di Carlo, E., Rovero, S., Cavallo, F., Quaglino, E., Lollini, P.L., Nanni, P., Nicoletti, G., Wolf, S., Musiani, P., and Forni, G. (2000). Ability of systemic interleukin-12 to hamper progressive stages of mammary carcinogenesis in HER2/neu transgenic mice. Cancer Res 60, 359-364.
- Nguyen, K.G. , Vrabel, M.R., Mantooth, S.M., Hopkins, J.J., Wagner, E.S., Gabaldon, T.A., and Zaharoff, D.A. (2020). Localized Interleukin-12 for Cancer Immunotherapy. Front Immunol 11, 575597. 10.3389/fimmu.2020.575597.
- Chiocca, E.A. , Gelb, A.B., Chen, C.C., Rao, G., Reardon, D.A., Wen, P.Y., Bi, W.L., Peruzzi, P., Amidei, C., Triggs, D., et al. (2022). Combined immunotherapy with controlled interleukin-12 gene therapy and immune checkpoint blockade in recurrent glioblastoma: An open-label, multi-institutional phase I trial. Neuro Oncol 24, 951-963. 10.1093/neuonc/noab271.
- Mirlekar, B. , and Pylayeva-Gupta, Y. (2021). IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers (Basel) 13. 10.3390/cancers13020167.
- Cohen, J. (1995). IL-12 deaths: explanation and a puzzle. Science 270, 908. 10.1126/science.270.5238.908a.
- Leonard, J.P. , Sherman, M.L., Fisher, G.L., Buchanan, L.J., Larsen, G., Atkins, M.B., Sosman, J.A., Dutcher, J.P., Vogelzang, N.J., and Ryan, J.L. (1997). Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90, 2541-2548.
- Gollob, J.A. , Mier, J.W., Veenstra, K., McDermott, D.F., Clancy, D., Clancy, M., and Atkins, M.B. (2000). Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin Cancer Res 6, 1678-1692.
- Schilbach, K. , Alkhaled, M., Welker, C., Eckert, F., Blank, G., Ziegler, H., Sterk, M., Müller, F., Sonntag, K., Wieder, T., et al. (2015). Cancer-targeted IL-12 controls human rhabdomyosarcoma by senescence induction and myogenic differentiation. Oncoimmunology 4, e1014760. 10.1080/2162402x.2015.1014760.
- Salem, M.L. , Gillanders, W.E., Kadima, A.N., El-Naggar, S., Rubinstein, M.P., Demcheva, M., Vournakis, J.N., and Cole, D.J. (2006). Review: novel nonviral delivery approaches for interleukin-12 protein and gene systems: curbing toxicity and enhancing adjuvant activity. J Interferon Cytokine Res 26, 593-608. 10.1089/jir.2006.26.593.
- Sangro, B. , Melero, I., Qian, C., and Prieto, J. (2005). Gene therapy of cancer based on interleukin 12. Curr Gene Ther 5, 573-581. 10.2174/156652305774964712.
- Xue, D. , Moon, B., Liao, J., Guo, J., Zou, Z., Han, Y., Cao, S., Wang, Y., Fu, Y.X., and Peng, H. (2022). A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors. Sci Immunol 7, eabi6899. 10.1126/sciimmunol.abi6899.
- Mansurov, A. , Hosseinchi, P., Chang, K., Lauterbach, A.L., Gray, L.T., Alpar, A.T., Budina, E., Slezak, A.J., Kang, S., Cao, S., et al. (2022). Masking the immunotoxicity of interleukin-12 by fusing it with a domain of its receptor via a tumour-protease-cleavable linker. Nat Biomed Eng 6, 819-829. 10.1038/s41551-022-00888-0.
- Momin, N. , Mehta, N.K., Bennett, N.R., Ma, L., Palmeri, J.R., Chinn, M.M., Lutz, E.A., Kang, B., Irvine, D.J., Spranger, S., and Wittrup, K.D. (2019). Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci Transl Med 11. 10.1126/scitranslmed.aaw2614.
- Mansurov, A. , Ishihara, J., Hosseinchi, P., Potin, L., Marchell, T.M., Ishihara, A., Williford, J.M., Alpar, A.T., Raczy, M.M., Gray, L.T., et al. (2020). Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat Biomed Eng 4, 531-543. 10.1038/s41551-020-0549-2.
- Ongaro, T. , Matasci, M., Cazzamalli, S., Gouyou, B., De Luca, R., Neri, D., and Villa, A. (2019). A novel anti-cancer L19-interleukin-12 fusion protein with an optimized peptide linker efficiently localizes in vivo at the site of tumors. J Biotechnol 291, 17-25. 10.1016/j.jbiotec.2018.12.004.
- Gafner, V. , Trachsel, E., and Neri, D. (2006). An engineered antibody-interleukin-12 fusion protein with enhanced tumor vascular targeting properties. Int J Cancer 119, 2205-2212. 10.1002/ijc.22101.
- Fallon, J.K. , Vandeveer, A.J., Schlom, J., and Greiner, J.W. (2017). Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget 8, 20558-20571. 10.18632/oncotarget.16137.
- Xu, C. , Marelli, B., Qi, J., Qin, G., Yu, H., Wang, H., Jenkins, M.H., Lo, K.-M., and Lan, Y. (2022). NHS-IL12 and bintrafusp alfa combination therapy enhances antitumor activity in preclinical cancer models. Translational Oncology 16, 101322. [CrossRef]
- Xu, C. , Zhang, Y., Rolfe, P.A., Hernández, V.M., Guzman, W., Kradjian, G., Marelli, B., Qin, G., Qi, J., Wang, H., et al. (2017). Combination Therapy with NHS-muIL12 and Avelumab (anti-PD-L1) Enhances Antitumor Efficacy in Preclinical Cancer Models. Clin Cancer Res 23, 5869-5880. 10.1158/1078-0432.Ccr-17-0483.
- Cini, J.K. , Dexter, S., Rezac, D.J., McAndrew, S.J., Hedou, G., Brody, R., Eraslan, R.N., Kenney, R.T., and Mohan, P. (2023). SON-1210 - a novel bifunctional IL-12 / IL-15 fusion protein that improves cytokine half-life, targets tumors, and enhances therapeutic efficacy. Front Immunol 14, 1326927. 10.3389/fimmu.2023.1326927.
- Pan, W.Y. , Lo, C.H., Chen, C.C., Wu, P.Y., Roffler, S.R., Shyue, S.K., and Tao, M.H. (2012). Cancer immunotherapy using a membrane-bound interleukin-12 with B7-1 transmembrane and cytoplasmic domains. Mol Ther 20, 927-937. 10.1038/mt.2012.10.
- Nasu, Y. , Bangma, C.H., Hull, G.W., Lee, H.M., Hu, J., Wang, J., McCurdy, M.A., Shimura, S., Yang, G., Timme, T.L., and Thompson, T.C. (1999). Adenovirus-mediated interleukin-12 gene therapy for prostate cancer: suppression of orthotopic tumor growth and pre-established lung metastases in an orthotopic model. Gene Ther 6, 338-349. 10.1038/sj.gt.3300834.
- Martuza, R.L. , Malick, A., Markert, J.M., Ruffner, K.L., and Coen, D.M. (1991). Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252, 854-856. 10.1126/science.1851332.
- Macedo, N. , Miller, D.M., Haq, R., and Kaufman, H.L. (2020). Clinical landscape of oncolytic virus research in 2020. J Immunother Cancer 8. 10.1136/jitc-2020-001486.
- Sheridan, C. (2015). First oncolytic virus edges towards approval in surprise vote. Nat Biotechnol 33, 569-570. 10.1038/nbt0615-569.
- Toda, M. , Martuza, R.L., and Rabkin, S.D. (2001). Combination suicide/cytokine gene therapy as adjuvants to a defective herpes simplex virus-based cancer vaccine. Gene Ther 8, 332-339. 10.1038/sj.gt.3301392.
- Chouljenko, D.V. , Ding, J., Lee, I.F., Murad, Y.M., Bu, X., Liu, G., Delwar, Z., Sun, Y., Yu, S., Samudio, I., et al. (2020). Induction of Durable Antitumor Response by a Novel Oncolytic Herpesvirus Expressing Multiple Immunomodulatory Transgenes. Biomedicines 8. 10.3390/biomedicines8110484.
- Hu, H. , Zhang, S., Cai, L., Duan, H., Li, Y., Yang, J., Wang, Y., Liu, B., Dong, S., Fang, Z., and Liu, B. (2022). A novel cocktail therapy based on quintuplet combination of oncolytic herpes simplex virus-2 vectors armed with interleukin-12, interleukin-15, GM-CSF, PD1v, and IL-7 × CCL19 results in enhanced antitumor efficacy. Virol J 19, 74. 10.1186/s12985-022-01795-1.
- Bennett, J.J. , Malhotra, S., Wong, R.J., Delman, K., Zager, J., St-Louis, M., Johnson, P., and Fong, Y. (2001). Interleukin 12 secretion enhances antitumor efficacy of oncolytic herpes simplex viral therapy for colorectal cancer. Ann Surg 233, 819-826. 10.1097/00000658-200106000-00012.
- Zhang, N. , Li, J., Yu, J., Wan, Y., Zhang, C., Zhang, H., and Cao, Y. (2023). Construction of an IL12 and CXCL11 armed oncolytic herpes simplex virus using the CRISPR/Cas9 system for colon cancer treatment. Virus Res 323, 198979. 10.1016/j.virusres.2022.198979.
- Ghouse, S.M. , Nguyen, H.M., Bommareddy, P.K., Guz-Montgomery, K., and Saha, D. (2020). Oncolytic Herpes Simplex Virus Encoding IL12 Controls Triple-Negative Breast Cancer Growth and Metastasis. Front Oncol 10, 384. 10.3389/fonc.2020.00384.
- Saha, D. , Wakimoto, H., Peters, C.W., Antoszczyk, S.J., Rabkin, S.D., and Martuza, R.L. (2018). Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models. Clin Cancer Res 24, 3409-3422. 10.1158/1078-0432.Ccr-17-1717.
- Saha, D. , Rabkin, S.D., and Martuza, R.L. (2020). Temozolomide antagonizes oncolytic immunovirotherapy in glioblastoma. J Immunother Cancer 8. 10.1136/jitc-2019-000345.
- Saha, D. , Martuza, R.L., and Rabkin, S.D. (2018). Oncolytic herpes simplex virus immunovirotherapy in combination with immune checkpoint blockade to treat glioblastoma. Immunotherapy 10, 779-786. 10.2217/imt-2018-0009.
- Saha, D. , Martuza, R.L., and Rabkin, S.D. (2017). Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. Cancer Cell 32, 253-267.e255. 10.1016/j.ccell.2017.07.006.
- Ino, Y. , Saeki, Y., Fukuhara, H., and Todo, T. (2006). Triple combination of oncolytic herpes simplex virus-1 vectors armed with interleukin-12, interleukin-18, or soluble B7-1 results in enhanced antitumor efficacy. Clin Cancer Res 12, 643-652. 10.1158/1078-0432.Ccr-05-1494.
- Zhang, W. , Fulci, G., Wakimoto, H., Cheema, T.A., Buhrman, J.S., Jeyaretna, D.S., Stemmer Rachamimov, A.O., Rabkin, S.D., and Martuza, R.L. (2013). Combination of oncolytic herpes simplex viruses armed with angiostatin and IL-12 enhances antitumor efficacy in human glioblastoma models. Neoplasia 15, 591-599. 10.1593/neo.13158.
- Wang, L. , Zhou, X., Chen, X., Liu, Y., Huang, Y., Cheng, Y., Ren, P., Zhao, J., and Zhou, G.G. (2024). Enhanced therapeutic efficacy for glioblastoma immunotherapy with an oncolytic herpes simplex virus armed with anti-PD-1 antibody and IL-12. Mol Ther Oncol 32, 200799. 10.1016/j.omton.2024.200799.
- Bommareddy, P.K. , Wakimoto, H., Martuza, R.L., Kaufman, H.L., Rabkin, S.D., and Saha, D. (2024). Oncolytic herpes simplex virus expressing IL-2 controls glioblastoma growth and improves survival. J Immunother Cancer 12. 10.1136/jitc-2024-008880.
- De Lucia, M. , Cotugno, G., Bignone, V., Garzia, I., Nocchi, L., Langone, F., Petrovic, B., Sasso, E., Pepe, S., Froechlich, G., et al. (2020). Retargeted and Multi-cytokine-Armed Herpes Virus Is a Potent Cancer Endovaccine for Local and Systemic Anti-tumor Treatment. Mol Ther Oncolytics 19, 253-264. 10.1016/j.omto.2020.10.006.
- Chouljenko, D.V. , Murad, Y.M., Lee, I.F., Delwar, Z., Ding, J., Liu, G., Liu, X., Bu, X., Sun, Y., Samudio, I., and Jia, W.W. (2023). Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1. Mol Ther Oncolytics 28, 334-348. 10.1016/j.omto.2023.02.003.
- Kim, K.J. , Moon, D., Kong, S.J., Lee, Y.S., Yoo, Y., Kim, S., Kim, C., Chon, H.J., Kim, J.H., and Choi, K.J. (2021). Antitumor effects of IL-12 and GM-CSF co-expressed in an engineered oncolytic HSV-1. Gene Ther 28, 186-198. 10.1038/s41434-020-00205-x.
- Antoszczyk, S. , Spyra, M., Mautner, V.F., Kurtz, A., Stemmer-Rachamimov, A.O., Martuza, R.L., and Rabkin, S.D. (2014). Treatment of orthotopic malignant peripheral nerve sheath tumors with oncolytic herpes simplex virus. Neuro Oncol 16, 1057-1066. 10.1093/neuonc/not317.
- Cheema, T.A. , Wakimoto, H., Fecci, P.E., Ning, J., Kuroda, T., Jeyaretna, D.S., Martuza, R.L., and Rabkin, S.D. (2013). Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci U S A 110, 12006-12011. 10.1073/pnas.1307935110.
- Wong, R.J. , Chan, M.K., Yu, Z., Kim, T.H., Bhargava, A., Stiles, B.M., Horsburgh, B.C., Shah, J.P., Ghossein, R.A., Singh, B., and Fong, Y. (2004). Effective intravenous therapy of murine pulmonary metastases with an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res 10, 251-259. 10.1158/1078-0432.Ccr-0197-3.
- Passer, B.J. , Cheema, T., Wu, S., Wu, C.L., Rabkin, S.D., and Martuza, R.L. (2013). Combination of vinblastine and oncolytic herpes simplex virus vector expressing IL-12 therapy increases antitumor and antiangiogenic effects in prostate cancer models. Cancer Gene Ther 20, 17-24. 10.1038/cgt.2012.75.
- Wong, R.J. , Chan, M.K., Yu, Z., Ghossein, R.A., Ngai, I., Adusumilli, P.S., Stiles, B.M., Shah, J.P., Singh, B., and Fong, Y. (2004). Angiogenesis inhibition by an oncolytic herpes virus expressing interleukin 12. Clin Cancer Res 10, 4509-4516. 10.1158/1078-0432.Ccr-04-0081.
- Wong, R.J. , Patel, S.G., Kim, S., DeMatteo, R.P., Malhotra, S., Bennett, J.J., St-Louis, M., Shah, J.P., Johnson, P.A., and Fong, Y. (2001). Cytokine gene transfer enhances herpes oncolytic therapy in murine squamous cell carcinoma. Hum Gene Ther 12, 253-265. 10.1089/10430340150218396.
- Varghese, S. , Rabkin, S.D., Liu, R., Nielsen, P.G., Ipe, T., and Martuza, R.L. (2006). Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. Cancer Gene Ther 13, 253-265. 10.1038/sj.cgt.7700900.
- Jarnagin, W.R. , Zager, J.S., Klimstra, D., Delman, K.A., Malhotra, S., Ebright, M., Little, S., DeRubertis, B., Stanziale, S.F., Hezel, M., et al. (2003). Neoadjuvant treatment of hepatic malignancy: an oncolytic herpes simplex virus expressing IL-12 effectively treats the parent tumor and protects against recurrence-after resection. Cancer Gene Ther 10, 215-223. 10.1038/sj.cgt.7700558.
- Parker, J.N. , Meleth, S., Hughes, K.B., Gillespie, G.Y., Whitley, R.J., and Markert, J.M. (2005). Enhanced inhibition of syngeneic murine tumors by combinatorial therapy with genetically engineered HSV-1 expressing CCL2 and IL-12. Cancer Gene Ther 12, 359-368. 10.1038/sj.cgt.7700784.
- Ring, E.K. , Li, R., Moore, B.P., Nan, L., Kelly, V.M., Han, X., Beierle, E.A., Markert, J.M., Leavenworth, J.W., Gillespie, G.Y., and Friedman, G.K. (2017). Newly Characterized Murine Undifferentiated Sarcoma Models Sensitive to Virotherapy with Oncolytic HSV-1 M002. Mol Ther Oncolytics 7, 27-36. 10.1016/j.omto.2017.09.003.
- Friedman, G.K. , Bernstock, J.D., Chen, D., Nan, L., Moore, B.P., Kelly, V.M., Youngblood, S.L., Langford, C.P., Han, X., Ring, E.K., et al. (2018). Enhanced Sensitivity of Patient-Derived Pediatric High-Grade Brain Tumor Xenografts to Oncolytic HSV-1 Virotherapy Correlates with Nectin-1 Expression. Sci Rep 8, 13930. 10.1038/s41598-018-32353-x.
- Cody, J.J. , Scaturro, P., Cantor, A.B., Yancey Gillespie, G., Parker, J.N., and Markert, J.M. (2012). Preclinical evaluation of oncolytic δγ(1)34.5 herpes simplex virus expressing interleukin-12 for therapy of breast cancer brain metastases Int J Breast Cancer 2012, 628697. 10.1155/2012/628697.
- Gillory, L.A. , Megison, M.L., Stewart, J.E., Mroczek-Musulman, E., Nabers, H.C., Waters, A.M., Kelly, V., Coleman, J.M., Markert, J.M., Gillespie, G.Y., et al. (2013). Preclinical evaluation of engineered oncolytic herpes simplex virus for the treatment of neuroblastoma. PLoS One 8, e77753. 10.1371/journal.pone.0077753.
- Megison, M.L. , Gillory, L.A., Stewart, J.E., Nabers, H.C., Mroczek-Musulman, E., Waters, A.M., Coleman, J.M., Kelly, V., Markert, J.M., Gillespie, G.Y., et al. (2014). Preclinical evaluation of engineered oncolytic herpes simplex virus for the treatment of pediatric solid tumors. PLoS One 9, e86843. 10.1371/journal.pone.0086843.
- Leoni, V. , Vannini, A., Gatta, V., Rambaldi, J., Sanapo, M., Barboni, C., Zaghini, A., Nanni, P., Lollini, P.L., Casiraghi, C., and Campadelli-Fiume, G. (2018). A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog 14, e1007209. 10.1371/journal.ppat.1007209.
- Alessandrini, F. , Menotti, L., Avitabile, E., Appolloni, I., Ceresa, D., Marubbi, D., Campadelli-Fiume, G., and Malatesta, P. (2019). Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene 38, 4467-4479. 10.1038/s41388-019-0737-2.
- Enhancement of Oncolytic Activity of oHSV Expressing IL-12 and Anti PD-1__Antibody by Concurrent Administration of Exosomes Carrying CTLA-4 Mirn.pdf.
- Xiao, X. , Li, J., McCown, T.J., and Samulski, R.J. (1997). Gene transfer by adeno-associated virus vectors into the central nervous system. Exp Neurol 144, 113-124. 10.1006/exnr.1996.6396.
- Xiao, X. , Li, J., and Samulski, R.J. (1998). Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72, 2224-2232. 10.1128/jvi.72.3.2224-2232.1998.
- Xiao, X. , Li, J., and Samulski, R.J. (1996). Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70, 8098-8108. 10.1128/jvi.70.11.8098-8108.1996.
- Vanrell, L. , Di Scala, M., Blanco, L., Otano, I., Gil-Farina, I., Baldim, V., Paneda, A., Berraondo, P., Beattie, S.G., Chtarto, A., et al. (2011). Development of a liver-specific Tet-on inducible system for AAV vectors and its application in the treatment of liver cancer. Mol Ther 19, 1245-1253. 10.1038/mt.2011.37.
- Daya, S. , and Berns, K.I. (2008). Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21, 583-593. 10.1128/cmr.00008-08.
- Kanagawa, N. , Gao, J.Q., Motomura, Y., Yanagawa, T., Mukai, Y., Yoshioka, Y., Okada, N., and Nakagawa, S. (2008). Antitumor mechanism of intratumoral injection with IL-12-expressing adenoviral vector against IL-12-unresponsive tumor. Biochem Biophys Res Commun 372, 821-825. 10.1016/j.bbrc.2008.05.129.
- Thaci, B. , Ahmed, A.U., Ulasov, I.V., Wainwright, D.A., Nigam, P., Auffinger, B., Tobias, A.L., Han, Y., Zhang, L., Moon, K.S., and Lesniak, M.S. (2014). Depletion of myeloid-derived suppressor cells during interleukin-12 immunogene therapy does not confer a survival advantage in experimental malignant glioma. Cancer Gene Ther 21, 38-44. 10.1038/cgt.2013.81.
- Chiu, T.L. , Lin, S.Z., Hsieh, W.H., and Peng, C.W. (2009). AAV2-mediated interleukin-12 in the treatment of malignant brain tumors through activation of NK cells. Int J Oncol 35, 1361-1367. 10.3892/ijo_00000454.
- Chiu, T.L. , Wang, M.J., and Su, C.C. (2012). The treatment of glioblastoma multiforme through activation of microglia and TRAIL induced by rAAV2-mediated IL-12 in a syngeneic rat model. J Biomed Sci 19, 45. 10.1186/1423-0127-19-45.
- Mazzolini, G. , Qian, C., Xie, X., Sun, Y., Lasarte, J.J., Drozdzik, M., and Prieto, J. (1999). Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12. Cancer Gene Ther 6, 514-522. 10.1038/sj.cgt.7700072.
- Caruso, M. , Pham-Nguyen, K., Kwong, Y.L., Xu, B., Kosai, K.I., Finegold, M., Woo, S.L., and Chen, S.H. (1996). Adenovirus-mediated interleukin-12 gene therapy for metastatic colon carcinoma. Proc Natl Acad Sci U S A 93, 11302-11306. 10.1073/pnas.93.21.11302.
- Huang, J.H. , Zhang, S.N., Choi, K.J., Choi, I.K., Kim, J.H., Lee, M.G., Lee, M., Kim, H., and Yun, C.O. (2010). Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL. Mol Ther 18, 264-274. 10.1038/mt.2009.205.
- Zhang, S.N. , Choi, I.K., Huang, J.H., Yoo, J.Y., Choi, K.J., and Yun, C.O. (2011). Optimizing DC vaccination by combination with oncolytic adenovirus coexpressing IL-12 and GM-CSF. Mol Ther 19, 1558-1568. 10.1038/mt.2011.29.
- Lo, C.H. , Chang, C.M., Tang, S.W., Pan, W.Y., Fang, C.C., Chen, Y., Wu, P.Y., Chen, K.Y., Ma, H.I., Xiao, X., and Tao, M.H. (2010). Differential antitumor effect of interleukin-12 family cytokines on orthotopic hepatocellular carcinoma. J Gene Med 12, 423-434. 10.1002/jgm.1452.
- Schmitz, V. , Tirado-Ledo, L., Raskopf, E., Rabe, C., Wernert, N., Wang, L., Prieto, J., Qian, C., Sauerbruch, T., and Caselmann, W.H. (2005). Effective antitumour mono- and combination therapy by gene delivery of angiostatin-like molecule and interleukin-12 in a murine hepatoma model. Int J Colorectal Dis 20, 494-501. 10.1007/s00384-004-0727-9.
- Fujita, T. , Timme, T.L., Tabata, K., Naruishi, K., Kusaka, N., Watanabe, M., Abdelfattah, E., Zhu, J.X., Ren, C., Ren, C., et al. (2007). Cooperative effects of adenoviral vector-mediated interleukin 12 gene therapy with radiotherapy in a preclinical model of metastatic prostate cancer. Gene Ther 14, 227-236. 10.1038/sj.gt.3302788.
- Gonzalez-Aparicio, M. , Alzuguren, P., Mauleon, I., Medina-Echeverz, J., Hervas-Stubbs, S., Mancheno, U., Berraondo, P., Crettaz, J., Gonzalez-Aseguinolaza, G., Prieto, J., and Hernandez-Alcoceba, R. (2011). Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice. Gut 60, 341-349. 10.1136/gut.2010.211722.
- Oh, E. , Oh, J.E., Hong, J., Chung, Y., Lee, Y., Park, K.D., Kim, S., and Yun, C.O. (2017). Optimized biodegradable polymeric reservoir-mediated local and sustained co-delivery of dendritic cells and oncolytic adenovirus co-expressing IL-12 and GM-CSF for cancer immunotherapy. J Control Release 259, 115-127. 10.1016/j.jconrel.2017.03.028.
- Hwang, K.S. , Cho, W.K., Yoo, J., Yun, H.J., Kim, S., and Im, D.S. (2005). Adenovirus-mediated interleukin-12 gene transfer combined with cytosine deaminase followed by 5-fluorocytosine treatment exerts potent antitumor activity in Renca tumor-bearing mice. BMC Cancer 5, 51. 10.1186/1471-2407-5-51.
- Düchs, M.J. , Kratzer, R.F., Vieyra-Garcia, P., Strobel, B., Schönberger, T., Groß, P., Aljayyoussi, G., Gupta, A., Lang, I., Klein, H., et al. (2024). Riboswitch-controlled IL-12 gene therapy reduces hepatocellular cancer in mice. Front Immunol 15, 1360063. 10.3389/fimmu.2024.1360063.
- Barrett, J.A. , Cai, H., Miao, J., Khare, P.D., Gonzalez, P., Dalsing-Hernandez, J., Sharma, G., Chan, T., Cooper, L.J.N., and Lebel, F. (2018). Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System(®) (RTS(®)) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther 25, 106-116. 10.1038/s41417-018-0019-0.
- Choi, K.J. , Zhang, S.N., Choi, I.K., Kim, J.S., and Yun, C.O. (2012). Strengthening of antitumor immune memory and prevention of thymic atrophy mediated by adenovirus expressing IL-12 and GM-CSF. Gene Ther 19, 711-723. 10.1038/gt.2011.125.
- Kirchhammer, N. , Trefny, M.P., Natoli, M., Brücher, D., Smith, S.N., Werner, F., Koch, V., Schreiner, D., Bartoszek, E., Buchi, M., et al. (2022). NK cells with tissue-resident traits shape response to immunotherapy by inducing adaptive antitumor immunity. Sci Transl Med 14, eabm9043. 10.1126/scitranslmed.abm9043.
- Poutou, J. , Bunuales, M., Gonzalez-Aparicio, M., Garcia-Aragoncillo, E., Quetglas, J.I., Casado, R., Bravo-Perez, C., Alzuguren, P., and Hernandez-Alcoceba, R. (2015). Safety and antitumor effect of oncolytic and helper-dependent adenoviruses expressing interleukin-12 variants in a hamster pancreatic cancer model. Gene Ther 22, 696-706. 10.1038/gt.2015.45.
- Bortolanza, S. , Bunuales, M., Otano, I., Gonzalez-Aseguinolaza, G., Ortiz-de-Solorzano, C., Perez, D., Prieto, J., and Hernandez-Alcoceba, R. (2009). Treatment of pancreatic cancer with an oncolytic adenovirus expressing interleukin-12 in Syrian hamsters. Mol Ther 17, 614-622. 10.1038/mt.2009.9.
- Sangro, B. , Mazzolini, G., Ruiz, J., Herraiz, M., Quiroga, J., Herrero, I., Benito, A., Larrache, J., Pueyo, J., Subtil, J.C., et al. (2004). Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J Clin Oncol 22, 1389-1397. 10.1200/jco.2004.04.059.
- Choi, I.K. , Lee, J.S., Zhang, S.N., Park, J., Sonn, C.H., Lee, K.M., and Yun, C.O. (2011). Oncolytic adenovirus co-expressing IL-12 and IL-18 improves tumor-specific immunity via differentiation of T cells expressing IL-12Rβ2 or IL-18Rα. Gene Ther 18, 898-909. 10.1038/gt.2011.37.
- Lee, Y.S. , Kim, J.H., Choi, K.J., Choi, I.K., Kim, H., Cho, S., Cho, B.C., and Yun, C.O. (2006). Enhanced antitumor effect of oncolytic adenovirus expressing interleukin-12 and B7-1 in an immunocompetent murine model. Clin Cancer Res 12, 5859-5868. 10.1158/1078-0432.Ccr-06-0935.
- Narvaiza, I. , Mazzolini, G., Barajas, M., Duarte, M., Zaratiegui, M., Qian, C., Melero, I., and Prieto, J. (2000). Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy. J Immunol 164, 3112-3122. 10.4049/jimmunol.164.6.3112.
- Gyorffy, S. , Palmer, K., Podor, T.J., Hitt, M., and Gauldie, J. (2001). Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and IL-12: a role for combined anti-angiogenesis and immunotherapy. J Immunol 166, 6212-6217. 10.4049/jimmunol.166.10.6212.
- Hall, S.J. , Canfield, S.E., Yan, Y., Hassen, W., Selleck, W.A., and Chen, S.H. (2002). A novel bystander effect involving tumor cell-derived Fas and FasL interactions following Ad.HSV-tk and Ad.mIL-12 gene therapies in experimental prostate cancer. Gene Ther 9, 511-517. 10.1038/sj.gt.3301669.
- Wang, L. , Hernández-Alcoceba, R., Shankar, V., Zabala, M., Kochanek, S., Sangro, B., Kramer, M.G., Prieto, J., and Qian, C. (2004). Prolonged and inducible transgene expression in the liver using gutless adenovirus: a potential therapy for liver cancer. Gastroenterology 126, 278-289. 10.1053/j.gastro.2003.10.075.
- Chang, C.J. , Chen, Y.H., Huang, K.W., Cheng, H.W., Chan, S.F., Tai, K.F., and Hwang, L.H. (2007). Combined GM-CSF and IL-12 gene therapy synergistically suppresses the growth of orthotopic liver tumors. Hepatology 45, 746-754. 10.1002/hep.21560.
- Chen, S.H. , Pham-Nguyen, K.B., Martinet, O., Huang, Y., Yang, W., Thung, S.N., Chen, L., Mittler, R., and Woo, S.L. (2000). Rejection of disseminated metastases of colon carcinoma by synergism of IL-12 gene therapy and 4-1BB costimulation. Mol Ther 2, 39-46. 10.1006/mthe.2000.0086.
- Fang, L. , Tian, W., Zhang, C., Wang, X., Li, W., Zhang, Q., Zhang, Y., and Zheng, J. (2023). Oncolytic adenovirus-mediated expression of CCL5 and IL12 facilitates CA9-targeting CAR-T therapy against renal cell carcinoma. Pharmacol Res 189, 106701. 10.1016/j.phrs.2023.106701.
- Mercer, J. , and Helenius, A. (2008). Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science 320, 531-535. 10.1126/science.1155164.
- Hiley, C.T. , Yuan, M., Lemoine, N.R., and Wang, Y. (2010). Lister strain vaccinia virus, a potential therapeutic vector targeting hypoxic tumours. Gene Ther 17, 281-287. 10.1038/gt.2009.132.
- Lu, S. , Zhang, Z., Du, P., Chard, L.S., Yan, W., El Khouri, M., Wang, Z., Zhang, Z., Chu, Y., Gao, D., et al. (2020). A Virus-Infected, Reprogrammed Somatic Cell-Derived Tumor Cell (VIReST) Vaccination Regime Can Prevent Initiation and Progression of Pancreatic Cancer. Clin Cancer Res 26, 465-476. 10.1158/1078-0432.Ccr-19-1395.
- Hou, W. , Chen, H., Rojas, J., Sampath, P., and Thorne, S.H. (2014). Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int J Cancer 135, 1238-1246. 10.1002/ijc.28747.
- Breitbach, C.J. , Burke, J., Jonker, D., Stephenson, J., Haas, A.R., Chow, L.Q., Nieva, J., Hwang, T.H., Moon, A., Patt, R., et al. (2011). Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477, 99-102. 10.1038/nature10358.
- Nakao, S. , Arai, Y., Tasaki, M., Yamashita, M., Murakami, R., Kawase, T., Amino, N., Nakatake, M., Kurosaki, H., Mori, M., et al. (2020). Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci Transl Med 12. 10.1126/scitranslmed.aax7992.
- Chen, B. , Timiryasova, T.M., Haghighat, P., Andres, M.L., Kajioka, E.H., Dutta-Roy, R., Gridley, D.S., and Fodor, I. (2001). Low-dose vaccinia virus-mediated cytokine gene therapy of glioma. J Immunother 24, 46-57. 10.1097/00002371-200101000-00006.
- Chen, B. , Timiryasova, T.M., Andres, M.L., Kajioka, E.H., Dutta-Roy, R., Gridley, D.S., and Fodor, I. (2000). Evaluation of combined vaccinia virus-mediated antitumor gene therapy with p53, IL-2, and IL-12 in a glioma model. Cancer Gene Ther 7, 1437-1447. 10.1038/sj.cgt.7700252.
- Ahmed, J. , Chard, L.S., Yuan, M., Wang, J., Howells, A., Li, Y., Li, H., Zhang, Z., Lu, S., Gao, D., et al. (2020). A new oncolytic Vacciniavirus augments antitumor immune responses to prevent tumor recurrence and metastasis after surgery. J Immunother Cancer 8. 10.1136/jitc-2019-000415.
- Kaufman, H.L. , Flanagan, K., Lee, C.S., Perretta, D.J., and Horig, H. (2002). Insertion of interleukin-2 (IL-2) and interleukin-12 (IL-12) genes into vaccinia virus results in effective anti-tumor responses without toxicity. Vaccine 20, 1862-1869. 10.1016/s0264-410x(02)00032-4.
- Jackaman, C. , and Nelson, D.J. (2010). Cytokine-armed vaccinia virus infects the mesothelioma tumor microenvironment to overcome immune tolerance and mediate tumor resolution. Cancer Gene Ther 17, 429-440. 10.1038/cgt.2009.85.
- Martin, N.T. , Crupi, M.J.F., Taha, Z., Poutou, J., Whelan, J.T., Vallati, S., Petryk, J., Marius, R., Austin, B., Azad, T., et al. (2023). Engineering Rapalog-Inducible Genetic Switches Based on Split-T7 Polymerase to Regulate Oncolytic Virus-Driven Production of Tumour-Localized IL-12 for Anti-Cancer Immunotherapy. Pharmaceuticals (Basel) 16. 10.3390/ph16050709.
- Ge, Y. , Wang, H., Ren, J., Liu, W., Chen, L., Chen, H., Ye, J., Dai, E., Ma, C., Ju, S., et al. (2020). Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J Immunother Cancer 8. 10.1136/jitc-2020-000710.
- Kurokawa, C. , Agrawal, S., Mitra, A., Galvani, E., Burke, S., Varshine, A., Rothstein, R., Schifferli, K., Monks, N.R., Foloppe, J., et al. (2024). Mediation of antitumor activity by AZD4820 oncolytic vaccinia virus encoding IL-12. Mol Ther Oncol 32, 200758. 10.1016/j.omton.2023.200758.
- Seclì, L. , Infante, L., Nocchi, L., De Lucia, M., Cotugno, G., Leoni, G., Micarelli, E., Garzia, I., Avalle, L., Sdruscia, G., et al. (2023). Vector Aided Microenvironment programming (VAMP): reprogramming the TME with MVA virus expressing IL-12 for effective antitumor activity. J Immunother Cancer 11. 10.1136/jitc-2023-006718.
- Bella, Á. , Arrizabalaga, L., Di Trani, C.A., Gonzalez-Gomariz, J., Gomar, C., Russo-Cabrera, J.S., Olivera, I., Cirella, A., Fernandez-Sendin, M., Alvarez, M., et al. (2023). Intraperitoneal administration of a modified vaccinia virus Ankara confers single-chain interleukin-12 expression to the omentum and achieves immune-mediated efficacy against peritoneal carcinomatosis. J Immunother Cancer 11. 10.1136/jitc-2023-006702.
- Backhaus, P.S. , Veinalde, R., Hartmann, L., Dunder, J.E., Jeworowski, L.M., Albert, J., Hoyler, B., Poth, T., Jäger, D., Ungerechts, G., and Engeland, C.E. (2019). Immunological Effects and Viral Gene Expression Determine the Efficacy of Oncolytic Measles Vaccines Encoding IL-12 or IL-15 Agonists. Viruses 11. 10.3390/v11100914.
- Veinalde, R. , Grossardt, C., Hartmann, L., Bourgeois-Daigneault, M.C., Bell, J.C., Jäger, D., von Kalle, C., Ungerechts, G., and Engeland, C.E. (2017). Oncolytic measles virus encoding interleukin-12 mediates potent antitumor effects through T cell activation. Oncoimmunology 6, e1285992. 10.1080/2162402x.2017.1285992.
- Najmuddin, S. , Amin, Z.M., Tan, S.W., Yeap, S.K., Kalyanasundram, J., Ani, M.A.C., Veerakumarasivam, A., Chan, S.C., Chia, S.L., Yusoff, K., and Alitheen, N.B. (2020). Cytotoxicity study of the interleukin-12-expressing recombinant Newcastle disease virus strain, rAF-IL12, towards CT26 colon cancer cells in vitro and in vivo. Cancer Cell Int 20, 278. 10.1186/s12935-020-01372-y.
- Ren, G. , Tian, G., Liu, Y., He, J., Gao, X., Yu, Y., Liu, X., Zhang, X., Sun, T., Liu, S., et al. (2016). Recombinant Newcastle Disease Virus Encoding IL-12 and/or IL-2 as Potential Candidate for Hepatoma Carcinoma Therapy. Technol Cancer Res Treat 15, Np83-94. 10.1177/1533034615601521.
- Syed Najmuddin, S.U.F. , Amin, Z.M., Tan, S.W., Yeap, S.K., Kalyanasundram, J., Veerakumarasivam, A., Chan, S.C., Chia, S.L., Yusoff, K., and Alitheen, N.B. (2020). Oncolytic effects of the recombinant Newcastle disease virus, rAF-IL12, against colon cancer cells in vitro and in tumor-challenged NCr-Foxn1nu nude mice. PeerJ 8, e9761. 10.7717/peerj.9761.
- Asselin-Paturel, C. , Lassau, N., Guinebretière, J.M., Zhang, J., Gay, F., Bex, F., Hallez, S., Leclere, J., Peronneau, P., Mami-Chouaib, F., and Chouaib, S. (1999). Transfer of the murine interleukin-12 gene in vivo by a Semliki Forest virus vector induces B16 tumor regression through inhibition of tumor blood vessel formation monitored by Doppler ultrasonography. Gene Ther 6, 606-615. 10.1038/sj.gt.3300841.
- Colmenero, P. , Chen, M., Castaños-Velez, E., Liljeström, P., and Jondal, M. (2002). Immunotherapy with recombinant SFV-replicons expressing the P815A tumor antigen or IL-12 induces tumor regression. Int J Cancer 98, 554-560. 10.1002/ijc.10184.
- Melero, I. , Quetglas, J.I., Reboredo, M., Dubrot, J., Rodriguez-Madoz, J.R., Mancheño, U., Casales, E., Riezu-Boj, J.I., Ruiz-Guillen, M., Ochoa, M.C., et al. (2015). Strict requirement for vector-induced type I interferon in efficacious antitumor responses to virally encoded IL12. Cancer Res 75, 497-507. 10.1158/0008-5472.Can-13-3356.
- Roche, F.P. , Sheahan, B.J., O'Mara, S.M., and Atkins, G.J. (2010). Semliki Forest virus-mediated gene therapy of the RG2 rat glioma. Neuropathol Appl Neurobiol 36, 648-660. 10.1111/j.1365-2990.2010.01110.x.
- Quetglas, J.I. , Labiano, S., Aznar, M., Bolaños, E., Azpilikueta, A., Rodriguez, I., Casales, E., Sánchez-Paulete, A.R., Segura, V., Smerdou, C., and Melero, I. (2015). Virotherapy with a Semliki Forest Virus-Based Vector Encoding IL12 Synergizes with PD-1/PD-L1 Blockade. Cancer Immunol Res 3, 449-454. 10.1158/2326-6066.Cir-14-0216.
- Quetglas, J.I. , Dubrot, J., Bezunartea, J., Sanmamed, M.F., Hervas-Stubbs, S., Smerdou, C., and Melero, I. (2012). Immunotherapeutic synergy between anti-CD137 mAb and intratumoral administration of a cytopathic Semliki Forest virus encoding IL-12. Mol Ther 20, 1664-1675. 10.1038/mt.2012.56.
- Yamanaka, R. , Zullo, S.A., Tanaka, R., Ramsey, J., Blaese, M., and Xanthopoulos, K.G. (2000). Induction of a therapeutic antitumor immunological response by intratumoral injection of genetically engineered Semliki Forest virus to produce interleukin-12. Neurosurg Focus 9, e7. 10.3171/foc.2000.9.6.8.
- Chikkanna-Gowda, C.P. , Sheahan, B.J., Fleeton, M.N., and Atkins, G.J. (2005). Regression of mouse tumours and inhibition of metastases following administration of a Semliki Forest virus vector with enhanced expression of IL-12. Gene Ther 12, 1253-1263. 10.1038/sj.gt.3302561.
- Rodriguez-Madoz, J.R. , Prieto, J., and Smerdou, C. (2005). Semliki forest virus vectors engineered to express higher IL-12 levels induce efficient elimination of murine colon adenocarcinomas. Mol Ther 12, 153-163. 10.1016/j.ymthe.2005.02.011.
- Quetglas, J.I. , Rodriguez-Madoz, J.R., Bezunartea, J., Ruiz-Guillen, M., Casales, E., Medina-Echeverz, J., Prieto, J., Berraondo, P., Hervas-Stubbs, S., and Smerdou, C. (2013). Eradication of liver-implanted tumors by Semliki Forest virus expressing IL-12 requires efficient long-term immune responses. J Immunol 190, 2994-3004. 10.4049/jimmunol.1201791.
- Rodriguez-Madoz, J.R. , Zabala, M., Alfaro, M., Prieto, J., Kramer, M.G., and Smerdou, C. (2014). Short-term intratumoral interleukin-12 expressed from an alphaviral vector is sufficient to induce an efficient antitumoral response against spontaneous hepatocellular carcinomas. Hum Gene Ther 25, 132-143. 10.1089/hum.2013.080.
- Rodriguez-Madoz, J.R. , Liu, K.H., Quetglas, J.I., Ruiz-Guillen, M., Otano, I., Crettaz, J., Butler, S.D., Bellezza, C.A., Dykes, N.L., Tennant, B.C., et al. (2009). Semliki forest virus expressing interleukin-12 induces antiviral and antitumoral responses in woodchucks with chronic viral hepatitis and hepatocellular carcinoma. J Virol 83, 12266-12278. 10.1128/jvi.01597-09.
- Ren, H. , Boulikas, T., Lundstrom, K., Söling, A., Warnke, P.C., and Rainov, N.G. (2003). Immunogene therapy of recurrent glioblastoma multiforme with a liposomally encapsulated replication-incompetent Semliki forest virus vector carrying the human interleukin-12 gene--a phase I/II clinical protocol. J Neurooncol 64, 147-154. 10.1007/bf02700029.
- Kramer, M.G. , Masner, M., Casales, E., Moreno, M., Smerdou, C., and Chabalgoity, J.A. (2015). Neoadjuvant administration of Semliki Forest virus expressing interleukin-12 combined with attenuated Salmonella eradicates breast cancer metastasis and achieves long-term survival in immunocompetent mice. BMC Cancer 15, 620. 10.1186/s12885-015-1618-x.
- Alkayyal, A.A. , Tai, L.H., Kennedy, M.A., de Souza, C.T., Zhang, J., Lefebvre, C., Sahi, S., Ananth, A.A., Mahmoud, A.B., Makrigiannis, A.P., et al. (2017). NK-Cell Recruitment Is Necessary for Eradication of Peritoneal Carcinomatosis with an IL12-Expressing Maraba Virus Cellular Vaccine. Cancer Immunol Res 5, 211-221. 10.1158/2326-6066.Cir-16-0162.
- Shin, E.J. , Wanna, G.B., Choi, B., Aguila, D., 3rd, Ebert, O., Genden, E.M., and Woo, S.L. (2007). Interleukin-12 expression enhances vesicular stomatitis virus oncolytic therapy in murine squamous cell carcinoma. Laryngoscope 117, 210-214. 10.1097/01.mlg.0000246194.66295.d8.
- Ryapolova, A. , Minskaia, E., Gasanov, N., Moroz, V., Krapivin, B., Egorov, A.D., Laktyushkin, V., Zhuravleva, S., Nagornych, M., Subcheva, E., et al. (2023). Development of Recombinant Oncolytic rVSV-mIL12-mGMCSF for Cancer Immunotherapy. Int J Mol Sci 25. 10.3390/ijms25010211.
- Granot, T. , Venticinque, L., Tseng, J.C., and Meruelo, D. (2011). Activation of cytotoxic and regulatory functions of NK cells by Sindbis viral vectors. PLoS One 6, e20598. 10.1371/journal.pone.0020598.
- Tseng, J.C. , Hurtado, A., Yee, H., Levin, B., Boivin, C., Benet, M., Blank, S.V., Pellicer, A., and Meruelo, D. (2004). Using sindbis viral vectors for specific detection and suppression of advanced ovarian cancer in animal models. Cancer Res 64, 6684-6692. 10.1158/0008-5472.Can-04-1924.
- Opp, S. , Hurtado, A., Pampeno, C., Lin, Z., and Meruelo, D. (2022). Potent and Targeted Sindbis Virus Platform for Immunotherapy of Ovarian Cancer. Cells 12. 10.3390/cells12010077.
- Scherwitzl, I. , Opp, S., Hurtado, A.M., Pampeno, C., Loomis, C., Kannan, K., Yu, M., and Meruelo, D. (2020). Sindbis Virus with Anti-OX40 Overcomes the Immunosuppressive Tumor Microenvironment of Low-Immunogenic Tumors. Mol Ther Oncolytics 17, 431-447. 10.1016/j.omto.2020.04.012.
- Triozzi, P.L. , Strong, T.V., Bucy, R.P., Allen, K.O., Carlisle, R.R., Moore, S.E., Lobuglio, A.F., and Conry, R.M. (2005). Intratumoral administration of a recombinant canarypox virus expressing interleukin 12 in patients with metastatic melanoma. Hum Gene Ther 16, 91-100. 10.1089/hum.2005.16.91.
- Triozzi, P.L. , Allen, K.O., Carlisle, R.R., Craig, M., LoBuglio, A.F., and Conry, R.M. (2005). Phase I study of the intratumoral administration of recombinant canarypox viruses expressing B7.1 and interleukin 12 in patients with metastatic melanoma. Clin Cancer Res 11, 4168-4175. 10.1158/1078-0432.Ccr-04-2283.
- Puisieux, I. , Odin, L., Poujol, D., Moingeon, P., Tartaglia, J., Cox, W., and Favrot, M. (1998). Canarypox virus-mediated interleukin 12 gene transfer into murine mammary adenocarcinoma induces tumor suppression and long-term antitumoral immunity. Hum Gene Ther 9, 2481-2492. 10.1089/hum.1998.9.17-2481.
- Jiang, H. , Nace, R., Carrasco, T.F., Zhang, L., Whye Peng, K., and Russell, S.J. (2024). Oncolytic varicella-zoster virus engineered with ORF8 deletion and armed with drug-controllable interleukin-12. J Immunother Cancer 12. 10.1136/jitc-2023-008307.
- Paunovska, K. , Loughrey, D., and Dahlman, J.E. (2022). Drug delivery systems for RNA therapeutics. Nat Rev Genet 23, 265-280. 10.1038/s41576-021-00439-4.
- Aslan, C. , Kiaie, S.H., Zolbanin, N.M., Lotfinejad, P., Ramezani, R., Kashanchi, F., and Jafari, R. (2021). Exosomes for mRNA delivery: a novel biotherapeutic strategy with hurdles and hope. BMC Biotechnol 21, 20. 10.1186/s12896-021-00683-w.
- Yang, Z. , Shi, J., Xie, J., Wang, Y., Sun, J., Liu, T., Zhao, Y., Zhao, X., Wang, X., Ma, Y., et al. (2020). Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation. Nat Biomed Eng 4, 69-83. 10.1038/s41551-019-0485-1.
- You, Y. , Tian, Y., Yang, Z., Shi, J., Kwak, K.J., Tong, Y., Estania, A.P., Cao, J., Hsu, W.H., Liu, Y., et al. (2023). Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat Biomed Eng 7, 887-900. 10.1038/s41551-022-00989-w.
- Li, Y. , Ma, X., Yue, Y., Zhang, K., Cheng, K., Feng, Q., Ma, N., Liang, J., Zhang, T., Zhang, L., et al. (2022). Rapid Surface Display of mRNA Antigens by Bacteria-Derived Outer Membrane Vesicles for a Personalized Tumor Vaccine. Adv Mater 34, e2109984. 10.1002/adma.202109984.
- Gao, X. , Li, Y., Nie, G., and Zhao, X. (2023). mRNA Delivery Platform Based on Bacterial Outer Membrane Vesicles for Tumor Vaccine. Bio Protoc 13, e4774. 10.21769/BioProtoc.4774.
- Segel, M. , Lash, B., Song, J., Ladha, A., Liu, C.C., Jin, X., Mekhedov, S.L., Macrae, R.K., Koonin, E.V., and Zhang, F. (2021). Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 373, 882-889. 10.1126/science.abg6155.
- Zochowska, M. , Piguet, A.C., Jemielity, J., Kowalska, J., Szolajska, E., Dufour, J.F., and Chroboczek, J. (2015). Virus-like particle-mediated intracellular delivery of mRNA cap analog with in vivo activity against hepatocellular carcinoma. Nanomedicine 11, 67-76. 10.1016/j.nano.2014.07.009.
- Zhou, J. , Liu, J., Cheng, C.J., Patel, T.R., Weller, C.E., Piepmeier, J.M., Jiang, Z., and Saltzman, W.M. (2011). Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat Mater 11, 82-90. 10.1038/nmat3187.
- Kauffman, A.C. , Piotrowski-Daspit, A.S., Nakazawa, K.H., Jiang, Y., Datye, A., and Saltzman, W.M. (2018). Tunability of Biodegradable Poly(amine- co-ester) Polymers for Customized Nucleic Acid Delivery and Other Biomedical Applications. Biomacromolecules 19, 3861-3873. 10.1021/acs.biomac.8b00997.
- Jiang, Y. , Gaudin, A., Zhang, J., Agarwal, T., Song, E., Kauffman, A.C., Tietjen, G.T., Wang, Y., Jiang, Z., Cheng, C.J., and Saltzman, W.M. (2018). A "top-down" approach to actuate poly(amine-co-ester) terpolymers for potent and safe mRNA delivery. Biomaterials 176, 122-130. 10.1016/j.biomaterials.2018.05.043.
- Patel, A.K. , Kaczmarek, J.C., Bose, S., Kauffman, K.J., Mir, F., Heartlein, M.W., DeRosa, F., Langer, R., and Anderson, D.G. (2019). Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. Adv Mater 31, e1805116. 10.1002/adma.201805116.
- Yang, W. , Mixich, L., Boonstra, E., and Cabral, H. (2023). Polymer-Based mRNA Delivery Strategies for Advanced Therapies. Adv Healthc Mater 12, e2202688. 10.1002/adhm.202202688.
- Neshat, S.Y. , Chan, C.H.R., Harris, J., Zmily, O.M., Est-Witte, S., Karlsson, J., Shannon, S.R., Jain, M., Doloff, J.C., Green, J.J., and Tzeng, S.Y. (2023). Polymeric nanoparticle gel for intracellular mRNA delivery and immunological reprogramming of tumors. Biomaterials 300, 122185. 10.1016/j.biomaterials.2023.122185.
- Sun, Y. , Yang, J., Yang, T., Li, Y., Zhu, R., Hou, Y., and Liu, Y. (2021). Co-delivery of IL-12 cytokine gene and cisplatin prodrug by a polymetformin-conjugated nanosystem for lung cancer chemo-gene treatment through chemotherapy sensitization and tumor microenvironment modulation. Acta Biomater 128, 447-461. 10.1016/j.actbio.2021.04.034.
- Sun, Y. , Liu, L., Zhou, L., Yu, S., Lan, Y., Liang, Q., Liu, J., Cao, A., and Liu, Y. (2020). Tumor Microenvironment-Triggered Charge Reversal Polymetformin-Based Nanosystem Co-Delivered Doxorubicin and IL-12 Cytokine Gene for Chemo-Gene Combination Therapy on Metastatic Breast Cancer. ACS Appl Mater Interfaces 12, 45873-45890. 10.1021/acsami.0c14405.
- Estapé Senti, M. , García Del Valle, L., and Schiffelers, R.M. (2024). mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond. Adv Drug Deliv Rev 206, 115190. 10.1016/j.addr.2024.115190.
- Kon, E. , Ad-El, N., Hazan-Halevy, I., Stotsky-Oterin, L., and Peer, D. (2023). Targeting cancer with mRNA-lipid nanoparticles: key considerations and future prospects. Nat Rev Clin Oncol 20, 739-754. 10.1038/s41571-023-00811-9.
- Zong, Y. , Lin, Y., Wei, T., and Cheng, Q. (2023). Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. Adv Mater 35, e2303261. 10.1002/adma.202303261.
- Cheng, Q. , Wei, T., Farbiak, L., Johnson, L.T., Dilliard, S.A., and Siegwart, D.J. (2020). Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol 15, 313-320. 10.1038/s41565-020-0669-6.
- Dilliard, S.A. , Cheng, Q., and Siegwart, D.J. (2021). On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci U S A 118, 10.1073/pnas.2109256118.
- Lai, I. , Swaminathan, S., Baylot, V., Mosley, A., Dhanasekaran, R., Gabay, M., and Felsher, D.W. (2018). Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J Immunother Cancer 6, 125. 10.1186/s40425-018-0431-x.
- Hewitt, S.L. , Bailey, D., Zielinski, J., Apte, A., Musenge, F., Karp, R., Burke, S., Garcon, F., Mishra, A., Gurumurthy, S., et al. (2020). Intratumoral IL12 mRNA Therapy Promotes TH1 Transformation of the Tumor Microenvironment. Clin Cancer Res 26, 6284-6298. 10.1158/1078-0432.Ccr-20-0472.
- Luo, M. , Liang, X., Luo, S.T., Wei, X.W., Liu, T., Ren, J., Ma, C.C., Yang, Y.H., Wang, B.L., Liu, L., et al. (2015). Folate-Modified Lipoplexes Delivering the Interleukin-12 Gene for Targeting Colon Cancer Immunogene Therapy. J Biomed Nanotechnol 11, 2011-2023. 10.1166/jbn.2015.2136.
- Jia, S.F. , Worth, L.L., Densmore, C.L., Xu, B., Duan, X., and Kleinerman, E.S. (2003). Aerosol gene therapy with PEI: IL-12 eradicates osteosarcoma lung metastases. Clin Cancer Res 9, 3462-3468.
- Rodrigo-Garzón, M. , Berraondo, P., Ochoa, L., Zulueta, J.J., and González-Aseguinolaza, G. (2010). Antitumoral efficacy of DNA nanoparticles in murine models of lung cancer and pulmonary metastasis. Cancer Gene Ther 17, 20-27. 10.1038/cgt.2009.45.
- Jia, S.F. , Worth, L.L., Densmore, C.L., Xu, B., Zhou, Z., and Kleinerman, E.S. (2002). Eradication of osteosarcoma lung metastases following intranasal interleukin-12 gene therapy using a nonviral polyethylenimine vector. Cancer Gene Ther 9, 260-266. 10.1038/sj.cgt.7700432.
- Duan, X. , Jia, S.F., Koshkina, N., and Kleinerman, E.S. (2006). Intranasal interleukin-12 gene therapy enhanced the activity of ifosfamide against osteosarcoma lung metastases. Cancer 106, 1382-1388. 10.1002/cncr.21744.
- Maheshwari, A. , Mahato, R.I., McGregor, J., Han, S., Samlowski, W.E., Park, J.S., and Kim, S.W. (2000). Soluble biodegradable polymer-based cytokine gene delivery for cancer treatment. Mol Ther 2, 121-130. 10.1006/mthe.2000.0105.
- Son, H.J. , and Kim, J.S. (2007). Therapeutic efficacy of DNA-loaded PLGA microspheres in tumor-bearing mice. Arch Pharm Res 30, 1047-1050. 10.1007/bf02993975.
- Maheshwari, A. , Han, S., Mahato, R.I., and Kim, S.W. (2002). Biodegradable polymer-based interleukin-12 gene delivery: role of induced cytokines, tumor infiltrating cells and nitric oxide in anti-tumor activity. Gene Ther 9, 1075-1084. 10.1038/sj.gt.3301766.
- Mahato, R.I. , Lee, M., Han, S., Maheshwari, A., and Kim, S.W. (2001). Intratumoral delivery of p2CMVmIL-12 using water-soluble lipopolymers. Mol Ther 4, 130-138. 10.1006/mthe.2001.0425.
- Janát-Amsbury, M.M. , Yockman, J.W., Lee, M., Kern, S., Furgeson, D.Y., Bikram, M., and Kim, S.W. (2005). Local, non-viral IL-12 gene therapy using a water soluble lipopolymer as carrier system combined with systemic paclitaxel for cancer treatment. J Control Release 101, 273-285. 10.1016/j.jconrel.2004.08.015.
- Janát-Amsbury, M.M. , Yockman, J.W., Lee, M., Kern, S., Furgeson, D.Y., Bikram, M., and Kim, S.W. (2004). Combination of local, nonviral IL12 gene therapy and systemic paclitaxel treatment in a metastatic breast cancer model. Mol Ther 9, 829-836. 10.1016/j.ymthe.2004.03.015.
- Yockman, J.W. , Maheshwari, A., Han, S.O., and Kim, S.W. (2003). Tumor regression by repeated intratumoral delivery of water soluble lipopolymers/p2CMVmIL-12 complexes. J Control Release 87, 177-186. 10.1016/s0168-3659(02)00362-0.
- Wang, Y. , Gao, S., Ye, W.H., Yoon, H.S., and Yang, Y.Y. (2006). Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5, 791-796. 10.1038/nmat1737.
- Kim, T.H. , Jin, H., Kim, H.W., Cho, M.H., and Cho, C.S. (2006). Mannosylated chitosan nanoparticle-based cytokine gene therapy suppressed cancer growth in BALB/c mice bearing CT-26 carcinoma cells. Mol Cancer Ther 5, 1723-1732. 10.1158/1535-7163.Mct-05-0540.
- Sonabend, A.M. , Velicu, S., Ulasov, I.V., Han, Y., Tyler, B., Brem, H., Matar, M.M., Fewell, J.G., Anwer, K., and Lesniak, M.S. (2008). A safety and efficacy study of local delivery of interleukin-12 transgene by PPC polymer in a model of experimental glioma. Anticancer Drugs 19, 133-142. 10.1097/CAD.0b013e3282f24017.
- Díez, S. , Navarro, G., and de, I.C.T. (2009). In vivo targeted gene delivery by cationic nanoparticles for treatment of hepatocellular carcinoma. J Gene Med 11, 38-45. 10.1002/jgm.1273.
- Shen, H.H. , Peng, J.F., Wang, R.R., Wang, P.Y., Zhang, J.X., Sun, H.F., Liang, Y., Li, Y.M., Xue, J.N., Li, Y.J., et al. (2024). IL-12-Overexpressed Nanoparticles Suppress the Proliferation of Melanoma Through Inducing ICD and Activating DC, CD8(+) T, and CD4(+) T Cells. Int J Nanomedicine 19, 2755-2772. 10.2147/ijn.S442446.
- Chen, P. , Yang, W., Nagaoka, K., Huang, G.L., Miyazaki, T., Hong, T., Li, S., Igarashi, K., Takeda, K., Kakimi, K., et al. (2023). An IL-12-Based Nanocytokine Safely Potentiates Anticancer Immunity through Spatiotemporal Control of Inflammation to Eradicate Advanced Cold Tumors. Adv Sci (Weinh) 10, e2205139. 10.1002/advs.202205139.
- Li, J. , Lin, W., Chen, H., Xu, Z., Ye, Y., and Chen, M. (2020). Dual-target IL-12-containing nanoparticles enhance T cell functions for cancer immunotherapy. Cell Immunol 349, 104042. 10.1016/j.cellimm.2020.104042.
- Liu, J.Q. , Zhang, C., Zhang, X., Yan, J., Zeng, C., Talebian, F., Lynch, K., Zhao, W., Hou, X., Du, S., et al. (2022). Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J Control Release 345, 306-313. 10.1016/j.jconrel.2022.03.021.
- Wang, Z. , Chen, Y., Wu, H., Wang, M., Mao, L., Guo, X., Zhu, J., Ye, Z., Luo, X., Yang, X., et al. (2024). Intravenous administration of IL-12 encoding self-replicating RNA-lipid nanoparticle complex leads to safe and effective antitumor responses. Sci Rep 14, 7366. 10.1038/s41598-024-57997-w.
- Li, Y. , Su, Z., Zhao, W., Zhang, X., Momin, N., Zhang, C., Wittrup, K.D., Dong, Y., Irvine, D.J., and Weiss, R. (2020). Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat Cancer 1, 882-893. 10.1038/s43018-020-0095-6.
- Zhao, P. , Tian, Y., Lu, Y., Zhang, J., Tao, A., Xiang, G., and Liu, Y. (2022). Biomimetic calcium carbonate nanoparticles delivered IL-12 mRNA for targeted glioblastoma sono-immunotherapy by ultrasound-induced necroptosis. J Nanobiotechnology 20, 525. 10.1186/s12951-022-01731-z.
- Liu, H. , Du, Y., Zhan, D., Yu, W., Li, Y., Wang, A., Yin, J., Cao, H., and Fu, Y. (2024). Oxaliplatin lipidated prodrug synergistically enhances the anti-colorectal cancer effect of IL12 mRNA. Drug Delivery and Translational Research. 10.1007/s13346-024-01540-x.
- Xu, S. , Xu, Y., Solek, N.C., Chen, J., Gong, F., Varley, A.J., Golubovic, A., Pan, A., Dong, S., Zheng, G., and Li, B. (2024). Tumor-Tailored Ionizable Lipid Nanoparticles Facilitate IL-12 Circular RNA Delivery for Enhanced Lung Cancer Immunotherapy. Adv Mater 36, e2400307. 10.1002/adma.202400307.
- Tros De Ilarduya, C. , Buñuales, M., Qian, C., and Düzgüneş, N. (2006). Antitumoral activity of transferrin-lipoplexes carrying the IL-12 gene in the treatment of colon cancer. J Drug Target 14, 527-535. 10.1080/10611860600825282.
- Men, K. , Huang, R., Zhang, X., Zhang, R., Zhang, Y., He, M., Tong, R., Yang, L., Wei, Y., and Duan, X. (2018). Local and Systemic Delivery of Interleukin-12 Gene by Cationic Micelles for Cancer Immunogene Therapy. J Biomed Nanotechnol 14, 1719-1730. 10.1166/jbn.2018.2593.
- Charoensit, P. , Kawakami, S., Higuchi, Y., Yamashita, F., and Hashida, M. (2010). Enhanced growth inhibition of metastatic lung tumors by intravenous injection of ATRA-cationic liposome/IL-12 pDNA complexes in mice. Cancer Gene Ther 17, 512-522. 10.1038/cgt.2010.12.
- Liu, M. , Hu, S., Yan, N., Popowski, K.D., and Cheng, K. (2024). Inhalable extracellular vesicle delivery of IL-12 mRNA to treat lung cancer and promote systemic immunity. Nat Nanotechnol. 10.1038/s41565-023-01580-3.
- Zhang, J. , Song, H., Dong, Y., Li, G., Li, J., Cai, Q., Yuan, S., Wang, Y., and Song, H. (2023). Surface Engineering of HEK293 Cell-Derived Extracellular Vesicles for Improved Pharmacokinetic Profile and Targeted Delivery of IL-12 for the Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 18, 209-223. 10.2147/ijn.S388916.
- Rossowska, J. , Anger, N., Wegierek, K., Szczygieł, A., Mierzejewska, J., Milczarek, M., Szermer-Olearnik, B., and Pajtasz-Piasecka, E. (2019). Antitumor Potential of Extracellular Vesicles Released by Genetically Modified Murine Colon Carcinoma Cells With Overexpression of Interleukin-12 and shRNA for TGF-β1. Front Immunol 10, 211. 10.3389/fimmu.2019.00211.
- Lewis, N.D. , Sia, C.L., Kirwin, K., Haupt, S., Mahimkar, G., Zi, T., Xu, K., Dooley, K., Jang, S.C., Choi, B., et al. (2021). Exosome Surface Display of IL12 Results in Tumor-Retained Pharmacology with Superior Potency and Limited Systemic Exposure Compared with Recombinant IL12. Mol Cancer Ther 20, 523-534. 10.1158/1535-7163.Mct-20-0484.
- Barnwal, A. , Ganguly, S., and Bhattacharyya, J. (2023). Multifaceted Nano-DEV-IL for Sustained Release of IL-12 to Avert the Immunosuppressive Tumor Microenvironment and IL-12-Associated Toxicities. ACS Appl Mater Interfaces 15, 20012-20026. 10.1021/acsami.3c02934.
- Stephan, M.T. , Moon Jj Fau - Um, S.H., Um Sh Fau - Bershteyn, A., Bershteyn A Fau - Irvine, D.J., and Irvine, D.J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles.
- Huang, B. , Abraham, W.D., Zheng, Y., Bustamante López, S.C., Luo, S.S., and Irvine, D.J. (2015). Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci Transl Med 7, 291ra294. 10.1126/scitranslmed.aaa5447.
- Zhang, W. , Wang, M., Tang, W., Wen, R., Zhou, S., Lee, C., Wang, H., Jiang, W., Delahunty, I.M., Zhen, Z., et al. (2022). Nanoparticle-Laden Macrophages for Tumor-Tropic Drug Delivery. Adv Mater 34, e2109925. 10.1002/adma.202109925.
- Siriwon, N. , Kim, Y.J., Siegler, E., Chen, X., Rohrs, J.A., Liu, Y., and Wang, P. (2018). CAR-T Cells Surface-Engineered with Drug-Encapsulated Nanoparticles Can Ameliorate Intratumoral T-cell Hypofunction. Cancer Immunol Res 6, 812-824. 10.1158/2326-6066.Cir-17-0502.
- Hato, L. , Vizcay, A., Eguren, I., Pérez-Gracia, J.L., Rodríguez, J., Gállego Pérez-Larraya, J., Sarobe, P., Inogés, S., Díaz de Cerio, A.L., and Santisteban, M. (2024). Dendritic Cells in Cancer Immunology and Immunotherapy. Cancers (Basel) 16. 10.3390/cancers16050981.
- Komita, H. , Zhao, X., Katakam, A.K., Kumar, P., Kawabe, M., Okada, H., Braughler, J.M., and Storkus, W.J. (2009). Conditional interleukin-12 gene therapy promotes safe and effective antitumor immunity. Cancer Gene Ther 16, 883-891. 10.1038/cgt.2009.33.
- Akiyama, Y. , Watanabe, M., Maruyama, K., Ruscetti, F.W., Wiltrout, R.H., and Yamaguchi, K. (2000). Enhancement of antitumor immunity against B16 melanoma tumor using genetically modified dendritic cells to produce cytokines. Gene Ther 7, 2113-2121. 10.1038/sj.gt.3301353.
- Yoshida, M. , Jo, J., and Tabata, Y. (2010). Augmented anti-tumor effect of dendritic cells genetically engineered by interleukin-12 plasmid DNA. J Biomater Sci Polym Ed 21, 659-675. 10.1163/156856209x434674.
- Yao, W. , Li, Y., Zeng, L., Zhang, X., Zhou, Z., Zheng, M., and Wan, H. (2019). Intratumoral injection of dendritic cells overexpressing interleukin-12 inhibits melanoma growth. Oncol Rep 42, 370-376. 10.3892/or.2019.7165.
- Zhao, X. , Bose, A., Komita, H., Taylor, J.L., Kawabe, M., Chi, N., Spokas, L., Lowe, D.B., Goldbach, C., Alber, S., et al. (2011). Intratumoral IL-12 gene therapy results in the crosspriming of Tc1 cells reactive against tumor-associated stromal antigens. Mol Ther 19, 805-814. 10.1038/mt.2010.295.
- Okada, N. , Iiyama, S., Okada, Y., Mizuguchi, H., Hayakawa, T., Nakagawa, S., Mayumi, T., Fujita, T., and Yamamoto, A. (2005). Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12. Cancer Gene Ther 12, 72-83. 10.1038/sj.cgt.7700772.
- Rodríguez-Calvillo, M. , Duarte, M., Tirapu, I., Berraondo, P., Mazzolini, G., Qian, C., Prieto, J., and Melero, I. (2002). Upregulation of natural killer cells functions underlies the efficacy of intratumorally injected dendritic cells engineered to produce interleukin-12. Exp Hematol 30, 195-204. 10.1016/s0301-472x(01)00792-5.
- Mierzejewska, J. Mierzejewska, J. , Węgierek-Ciura, K., Rossowska, J., Szczygieł, A., Anger-Góra, N., Szermer-Olearnik, B., Geneja, M., and Pajtasz-Piasecka, E. (2022). The Beneficial Effect of IL-12 and IL-18 Transduced Dendritic Cells Stimulated with Tumor Antigens on Generation of an Antitumor Response in a Mouse Colon Carcinoma Model. J Immunol Res 2022, 7508928. 10.1155/2022/7508928.
- Melero, I. , Duarte, M., Ruiz, J., Sangro, B., Galofré, J., Mazzolini, G., Bustos, M., Qian, C., and Prieto, J. (1999). Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas. Gene Ther 6, 1779-1784. 10.1038/sj.gt.3301010.
- Tatsumi, T. , Huang, J., Gooding, W.E., Gambotto, A., Robbins, P.D., Vujanovic, N.L., Alber, S.M., Watkins, S.C., Okada, H., and Storkus, W.J. (2003). Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Res 63, 6378-6386.
- Tatsumi, T. , Takehara, T., Yamaguchi, S., Sasakawa, A., Miyagi, T., Jinushi, M., Sakamori, R., Kohga, K., Uemura, A., Ohkawa, K., et al. (2007). Injection of IL-12 gene-transduced dendritic cells into mouse liver tumor lesions activates both innate and acquired immunity. Gene Ther 14, 863-871. 10.1038/sj.gt.3302941.
- Shimizu, T. , Berhanu, A., Redlinger, R.E., Jr., Watkins, S., Lotze, M.T., and Barksdale, E.M., Jr. (2001). Interleukin-12 transduced dendritic cells induce regression of established murine neuroblastoma. J Pediatr Surg 36, 1285-1292. 10.1053/jpsu.2001.25796.
- Saika, T. , Satoh, T., Kusaka, N., Ebara, S., Mouraviev, V.B., Timme, T.L., and Thompson, T.C. (2004). Route of administration influences the antitumor effects of bone marrow-derived dendritic cells engineered to produce interleukin-12 in a metastatic mouse prostate cancer model. Cancer Gene Ther 11, 317-324. 10.1038/sj.cgt.7700709.
- Huang, C. , Ramakrishnan, R., Trkulja, M., Ren, X., and Gabrilovich, D.I. (2012). Therapeutic effect of intratumoral administration of DCs with conditional expression of combination of different cytokines. Cancer Immunol Immunother 61, 573-579. 10.1007/s00262-011-1198-9.
- Mazzolini, G. , Alfaro, C., Sangro, B., Feijoó, E., Ruiz, J., Benito, A., Tirapu, I., Arina, A., Sola, J., Herraiz, M., et al. (2005). Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J Clin Oncol 23, 999-1010. 10.1200/jco.2005.00.463.
- Di Trani, C.A. , Cirella, A., Arrizabalaga, L., Bella, Á., Fernandez-Sendin, M., Russo-Cabrera, J.S., Gomar, C., Olivera, I., Bolaños, E., González-Gomariz, J., et al. (2023). Intracavitary adoptive transfer of IL-12 mRNA-engineered tumor-specific CD8(+) T cells eradicates peritoneal metastases in mouse models. Oncoimmunology 12, 2147317. 10.1080/2162402x.2022.2147317.
- Etxeberria, I. , Bolaños, E., Quetglas, J.I., Gros, A., Villanueva, A., Palomero, J., Sánchez-Paulete, A.R., Piulats, J.M., Matias-Guiu, X., Olivera, I., et al. (2019). Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8(+) T Cells. Cancer Cell 36, 613-629.e617. 10.1016/j.ccell.2019.10.006.
- Olivera, I. , Bolaños, E., Gonzalez-Gomariz, J., Hervas-Stubbs, S., Mariño, K.V., Luri-Rey, C., Etxeberria, I., Cirella, A., Egea, J., Glez-Vaz, J., et al. (2023). mRNAs encoding IL-12 and a decoy-resistant variant of IL-18 synergize to engineer T cells for efficacious intratumoral adoptive immunotherapy. Cell Rep Med 4, 100978. 10.1016/j.xcrm.2023.100978.
- Chinnasamy, D. , Yu, Z., Kerkar, S.P., Zhang, L., Morgan, R.A., Restifo, N.P., and Rosenberg, S.A. (2012). Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin Cancer Res 18, 1672-1683. 10.1158/1078-0432.Ccr-11-3050.
- Kerkar, S.P. , Leonardi, A.J., van Panhuys, N., Zhang, L., Yu, Z., Crompton, J.G., Pan, J.H., Palmer, D.C., Morgan, R.A., Rosenberg, S.A., and Restifo, N.P. (2013). Collapse of the tumor stroma is triggered by IL-12 induction of Fas. Mol Ther 21, 1369-1377. 10.1038/mt.2013.58.
- Chmielewski, M. , Kopecky, C., Hombach, A.A., and Abken, H. (2011). IL-12 release by engineered T cells expressing chimeric antigen receptors can effectively Muster an antigen-independent macrophage response on tumor cells that have shut down tumor antigen expression. Cancer Res 71, 5697-5706. 10.1158/0008-5472.Can-11-0103.
- Meister, H. , Look, T., Roth, P., Pascolo, S., Sahin, U., Lee, S., Hale, B.D., Snijder, B., Regli, L., Ravi, V.M., et al. (2022). Multifunctional mRNA-Based CAR T Cells Display Promising Antitumor Activity Against Glioblastoma. Clin Cancer Res 28, 4747-4756. 10.1158/1078-0432.Ccr-21-4384.
- Pegram, H.J. , Lee, J.C., Hayman, E.G., Imperato, G.H., Tedder, T.F., Sadelain, M., and Brentjens, R.J. (2012). Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 119, 4133-4141. 10.1182/blood-2011-12-400044.
- Kueberuwa, G. , Kalaitsidou, M., Cheadle, E., Hawkins, R.E., and Gilham, D.E. (2018). CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity. Mol Ther Oncolytics 8, 41-51. 10.1016/j.omto.2017.12.003.
- Koneru, M. , Purdon, T.J., Spriggs, D., Koneru, S., and Brentjens, R.J. (2015). IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology 4, e994446. 10.4161/2162402x.2014.994446.
- Liu, Y. , Di, S., Shi, B., Zhang, H., Wang, Y., Wu, X., Luo, H., Wang, H., Li, Z., and Jiang, H. (2019). Armored Inducible Expression of IL-12 Enhances Antitumor Activity of Glypican-3-Targeted Chimeric Antigen Receptor-Engineered T Cells in Hepatocellular Carcinoma. J Immunol 203, 198-207. 10.4049/jimmunol.1800033.
- Luo, Y. , Chen, Z., Sun, M., Li, B., Pan, F., Ma, A., Liao, J., Yin, T., Tang, X., Huang, G., et al. (2022). IL-12 nanochaperone-engineered CAR T cell for robust tumor-immunotherapy. Biomaterials 281, 121341. 10.1016/j.biomaterials.2021.121341.
- Yang, Z. , Pietrobon, V., Bobbin, M., Stefanson, O., Yang, J., Goswami, A., Alphson, B., Choi, H., Magallanes, K., Cai, Q., et al. (2023). Nanoscale, antigen encounter-dependent, IL-12 delivery by CAR T cells plus PD-L1 blockade for cancer treatment. J Transl Med 21, 158. 10.1186/s12967-023-04014-9.
- Kułach, N. , Pilny, E., Cichoń, T., Czapla, J., Jarosz-Biej, M., Rusin, M., Drzyzga, A., Matuszczak, S., Szala, S., and Smolarczyk, R. (2021). Mesenchymal stromal cells as carriers of IL-12 reduce primary and metastatic tumors of murine melanoma. Sci Rep 11, 18335. 10.1038/s41598-021-97435-9.
- Park, J. , Park, S.A., Kim, Y.-S., Kim, D., Shin, S., Lee, S.H., Jeun, S.-S., Chung, Y.-J., and Ahn, S. (2024). Intratumoral IL-12 delivery via mesenchymal stem cells combined with PD-1 blockade leads to long-term antitumor immunity in a mouse glioblastoma model. Biomedicine & Pharmacotherapy 173, 115790. [CrossRef]
- Elzaouk, L. , Moelling, K., and Pavlovic, J. (2006). Anti-tumor activity of mesenchymal stem cells producing IL-12 in a mouse melanoma model. Exp Dermatol 15, 865-874. 10.1111/j.1600-0625.2006.00479.x.
- McKenna, M.K. , Englisch, A., Brenner, B., Smith, T., Hoyos, V., Suzuki, M., and Brenner, M.K. (2021). Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Mol Ther 29, 1808-1820. 10.1016/j.ymthe.2021.02.004.
- Eliopoulos, N. , Francois, M., Boivin, M.N., Martineau, D., and Galipeau, J. (2008). Neo-organoid of marrow mesenchymal stromal cells secreting interleukin-12 for breast cancer therapy. Cancer Res 68, 4810-4818. 10.1158/0008-5472.Can-08-0160.
- Hong, X. , Miller, C., Savant-Bhonsale, S., and Kalkanis, S.N. (2009). Antitumor treatment using interleukin- 12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery 64, 1139-1146; discussion 1146-1137. 10.1227/01.Neu.0000345646.85472.Ea.
- Gao, P. , Ding, Q., Wu, Z., Jiang, H., and Fang, Z. (2010). Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma. Cancer Lett 290, 157-166. 10.1016/j.canlet.2009.08.031.
- Jeong, K.Y. , Lee, E.J., Kim, S.J., Yang, S.H., Sung, Y.C., and Seong, J. (2015). Irradiation-induced localization of IL-12-expressing mesenchymal stem cells to enhance the curative effect in murine metastatic hepatoma. Int J Cancer 137, 721-730. 10.1002/ijc.29428.
- Wu, J. , Xie, S., Li, H., Zhang, Y., Yue, J., Yan, C., Liu, K., Liu, Y., Xu, R., and Zheng, G. (2021). Antitumor effect of IL-12 gene-modified bone marrow mesenchymal stem cells combined with Fuzheng Yiliu decoction in an in vivo glioma nude mouse model. J Transl Med 19, 143. 10.1186/s12967-021-02809-2.
- Zhang, H. , Feng, Y., Xie, X., Song, T., Yang, G., Su, Q., Li, T., Li, S., Wu, C., You, F., et al. (2022). Engineered Mesenchymal Stem Cells as a Biotherapy Platform for Targeted Photodynamic Immunotherapy of Breast Cancer. Adv Healthc Mater 11, e2101375. 10.1002/adhm.202101375.
- Hombach, A.A. , Geumann, U., Günther, C., Hermann, F.G., and Abken, H. (2020). IL7-IL12 Engineered Mesenchymal Stem Cells (MSCs) Improve A CAR T Cell Attack Against Colorectal Cancer Cells. Cells 9. 10.3390/cells9040873.
- Seo, S.H. , Kim, K.S., Park, S.H., Suh, Y.S., Kim, S.J., Jeun, S.S., and Sung, Y.C. (2011). The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther 18, 488-495. 10.1038/gt.2010.170.
- Ryu, C.H. , Park, S.H., Park, S.A., Kim, S.M., Lim, J.Y., Jeong, C.H., Yoon, W.S., Oh, W.I., Sung, Y.C., and Jeun, S.S. (2011). Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum Gene Ther 22, 733-743. 10.1089/hum.2010.187.
- Asada, H. , Kishida, T., Hirai, H., Satoh, E., Ohashi, S., Takeuchi, M., Kubo, T., Kita, M., Iwakura, Y., Imanishi, J., and Mazda, O. (2002). Significant antitumor effects obtained by autologous tumor cell vaccine engineered to secrete interleukin (IL)-12 and IL-18 by means of the EBV/lipoplex. Mol Ther 5, 609-616. 10.1006/mthe.2002.0587.
- Satoh, T., Saika, T., Ebara, S., Kusaka, N., Timme, T.L., Yang, G., Wang, J., Mouraviev, V., Cao, G., Fattah el, M.A., and Thompson, T.C. (2003). Macrophages transduced with an adenoviral vector expressing interleukin 12 suppress tumor growth and metastasis in a preclinical metastatic prostate cancer model. Cancer Res 63, 7853-7860.
- Tabata, K. , Watanabe, M., Naruishi, K., Edamura, K., Satoh, T., Yang, G., Abdel Fattah, E., Wang, J., Goltsov, A., Floryk, D., et al. (2009). Therapeutic effects of gelatin matrix-embedded IL-12 gene-modified macrophages in a mouse model of residual prostate cancer. Prostate Cancer Prostatic Dis 12, 301-309. 10.1038/pcan.2008.57.
- Landoni, E. , Woodcock, M.G., Barragan, G., Casirati, G., Cinella, V., Stucchi, S., Flick, L.M., Withers, T.A., Hudson, H., Casorati, G., et al. (2024). IL-12 reprograms CAR-expressing natural killer T cells to long-lived Th1-polarized cells with potent antitumor activity. Nat Commun 15, 89. 10.1038/s41467-023-44310-y.
- Croce, M. , Meazza, R., Orengo, A.M., Radić, L., De Giovanni, B., Gambini, C., Carlini, B., Pistoia, V., Mortara, L., Accolla, R.S., et al. (2005). Sequential immunogene therapy with interleukin-12- and interleukin-15-engineered neuroblastoma cells cures metastatic disease in syngeneic mice. Clin Cancer Res 11, 735-742.
- Galvan, D.L. , O'Neil, R.T., Foster, A.E., Huye, L., Bear, A., Rooney, C.M., and Wilson, M.H. (2015). Anti-Tumor Effects after Adoptive Transfer of IL-12 Transposon-Modified Murine Splenocytes in the OT-I-Melanoma Mouse Model. PLoS One 10, e0140744. 10.1371/journal.pone.0140744.
- Strauss, J. , Heery, C.R., Kim, J.W., Jochems, C., Donahue, R.N., Montgomery, A.S., McMahon, S., Lamping, E., Marté, J.L., Madan, R.A., et al. (2019). First-in-Human Phase I Trial of a Tumor-Targeted Cytokine (NHS-IL12) in Subjects with Metastatic Solid Tumors. Clin Cancer Res 25, 99-109. 10.1158/1078-0432.Ccr-18-1512.
| Name | manner | Cancer Model | RoA | Combination therapy | Ref |
|---|---|---|---|---|---|
| pro-IL-12 | extracellular matrix proteins | MC38, B16F10, 4T1 | i.p. | / | [17] |
| M-L-IL-12 | fused a domain of the IL-12 receptor | EMT6, B16F10 | intravenous (i.v.) | PD-1 antibodies | [18] |
| IL-12-MSA-Lumican | fuses with Lumican | B16F10 | i.t. | PD-1 antibodies | [19] |
| CBD-IL-12 | fusion collagen-binding domain | EMT6, B16F10 | i.t. | PD-1 antibodies | [20] |
| IL12-scFv(L19)-FLAG | fuse anti-EDB antibody fragment scFv(L19) | F9 | i.v. | / | [22] |
| mIL12-FHAB-hIL15 | fused single-chain human IL-12 and native human IL-15 in cis onto a fully human albumin binding (FHAB) domain single-chain antibody fragment (scFv) | B16F10 | i.v. | / | [26] |
| scIL-12-B7TM | membrane-bound IL-12 containing murine single-chain IL-12 and B7-1 transmembrane and cytoplasmic domains | CT26 | i.t. | / | [27] |
| NHS-IL12 | fuses a DNA/ DNA-histone complex antibody (NHS76) | MC38, MB49, 4T1, EMT-6 | s.c. | Bintrafusp alfa, PD-L1 antibodies | [23,24,25] |
| Name | Dose (pfu) | Cancer Model | RoA | Combination therapy | Ref |
|---|---|---|---|---|---|
| dvIL12-tk/tsK | 2 × 105 | CT26 | i.t. | / | [32] |
| VG161 | 5×106 | CT26, A20 | i.t. | / | [33] |
| O-HSV12 | 107 | MC38 | i.t. | / | [36] |
| VG2026 | 108 | A20 | i.t. | / | [47] |
| ∆6/GM/IL12 | 107 | B16-F10 | i.t. | / | [48] |
| G47Δ-mIL2 | 5×105 | 005 GSC, CT-2A, GL261 | i.t. | / | [45] |
| 9× 105 | M3 cells | i.t. | / | [49] | |
| 2 × 106 | 4T1 | i.t. | / | [37] | |
| 106 | U87 | i.t. | G47Δ-mAngio | [43] | |
| 5 × 105 | 005 GSCs | i.t. | / | [50] | |
| 5 × 105 | 005 GSCs | i.t. | TMZ, d O6-BG | [39] | |
| 2.5 × 105 | 005 GSCs, MGG123 GSCs |
i.t. | Axitinib, CTLA-4 antibodies |
[38] | |
| 5 × 105 | 005 GSCs | i.t. | PD-1, CTLA-4 antibodies | [40] | |
| 5 × 105 | Glioma, CT-2A | i.t. | PD-1, CTLA-4 antibodies | [41] | |
| C5252 | 5 × 106 | U87 | i.t. | / | [44] |
| oHSV2-IL12 | 107 | 4T1, CT26 | i.t. | oHSV2-PD1v, IL7 × CCL19, GM-CSF and IL15 | [34] |
| vHsv-IL-12 | 8 × 103-2 × 106 | Neuro2a | i.t. | vHsv-B7.1-Ig and IL-18 | [42] |
| NV1042 | 5 × 107 | SCC | i.v. | / | [51] |
| 1 × 107 | CT26 | i.t. | / | [35] | |
| 5 × 105 | CWr22 | i.t. | Vinblastine | [52] | |
| 2 × 107 | SCC VII | i.t. | / | [53,54] | |
| 107 | TRAMP-C2, Pr14-2 | i.p. | / | [55] | |
| 107 | McA-R-7777 | i.t. | / | [56] | |
| M002 | 107 | Neuro-2a | i.t. | M010 (HSV expressing CCL2) | [57] |
| 107 | SARC | i.t. | / | [58] | |
| 107 | X21415, D456, GBM-12, UAB106 | i.t. | / | [59] | |
| 1.5 × 107 | Intracranial SCK | i.t. | / | [60] | |
| 107 | Xenograft SK-N-AS and SK-N-BE, Neuro-2a | i.t. | irradiation (XRT) | [61] | |
| 107 | HuH6, G401, SK-NEP-1 | i.t. | irradiation (XRT) | [62] | |
| R-115 | 1 × 108-2 × 109 | HER2 | i.p. | / | [63] |
| 2 × 106, 1 × 108 | HER2 | i.t. | [64] | ||
| R-123 | 108 | HER2-LLC1 | i.t. | PD-1 antibodies | [46] |
| T2850 T3855 |
107 | A20, MFC | i.t. | / | [65] |
| 5 ×106 107 3 ×107 |
B16 | i.t. | / | [65] |
| Name | Dose (pfu) | Cancer Model | RoA | Combination therapy | Ref |
|---|---|---|---|---|---|
| AdmIL-12 | 108 | RM-9 | i.p. | / | [28] |
| murine IL-12 | 2.5 × 108 | Renca cells | i.t. | / | [84] |
| AAV9.RS-mIL-12 | 2.5 × 1010 vg/kg | Hepa1-6 | i.v. | / | [85] |
| Ad-RTS-mIL-12 | 5 × 109 vp | GL-261 | i.t. | / | [86] |
| Ad-ΔB7/IL12/GMCSF | 5 × 107 | B16-F10 | i.t. | / | [87] |
| AdV5-IL-12 | 1.5 × 108 | EMT6-HER2 | p.t. | / | [88] |
| Ad.mIL12 | / | GL261 | i.t. | / | [72] |
| AdRGD-IL12 | 2 × 107 | Meth-A | i.t. | / | [71] |
| AdCMVIL-12 | 108 and 109 | CT-26 cells | i.t. | / | [75] |
| ADV/mIL-12 | 3 × 108 | MCA-26 | i.t. | / | [76] |
| oAd+DC | 2 × 1010 | LLC | i.t. | / | [83] |
| rAAV/IL-12 | 1011 vp | DBTRG | i.t. | / | [73] |
| rAAV2/IL12 | 1.96 × 1012 | RG2 | i.t. | / | [74] |
| AAV8-Tetbidir-Alb-IL-12 | 5 × 1011 vg/kg | MC38 | i.v. | / | [69] |
| AAV8/IL-12 | 109 - 1011 | BNL HCC | i.v. | / | [79] |
| OAV-scIL-12-TM | 2.5 × 108 109 iu |
HaP-T1 | i.t. | / | [89] |
| Ad-DHscIL12 | 107 iu | H2T | i.t. | / | [90] |
| Ad.IL-12 | 2.5 × 1010- 3 × 1012 vp | advanced pancreatic, colorectal, or primary liver malignancies | i.t. | / | [91] |
| RdB/IL-12/IL-18 | 108 | B16-F10 | i.t. | / | [92] |
| YKL-IL12/B7 | 5 × 108 | B16-F10 | i.t. | / | [93] |
| AdCMVIL-12 | 7.5 × 107 | CT26 | i.t. | / | [94] |
| Ad-IL-12 | 109 | PyMidT | i.t. | / | [95] |
| Ad.mIL-12 | 3.3 × 109 | 7500 RM-1 | i.t. | / | [96] |
| GL-Ad/RUhIL-12 | 3 × 109 iu | MC-38 | i.v. | RU486 | [97] |
| Ad/IL-12 | 109 | BNL cells | i.t. | GM-CSF | [98] |
| AdmIL-12 | 108-109 | 178-2 BMA | i.t. | radiation therapy | [81] |
| AdIL-12 | 2.5x109 | Hepa129 | i.t. | AdK1-3 | [80] |
| HC-Ad/RUmIL-12 | 2.5×108 iu | MC38 | Intrahepatic | Oxaliplatin | [82] |
| Adv.mIL-12 | 3.2 × 108 | MCA26 | i.t. | 4-1BB antibodies | [99] |
| Ad5-ZD55-CCL5-IL12 | 109 | OSRC-2 | i.t. | CA9-CAR-T | [100] |
| Ad-ΔB7/IL-12/4-1BBL | 5 × 109 | B16-F10 | i.t. | Dendritic Cells | [77] |
| Ad-ΔB7/IL12/GMCSF | 5 × 1010 | B16-F10 | i.t. | Dendritic Cells | [78] |
| Name | Dose (pfu) | Cancer Model | RoA | Combination therapy | Ref |
|---|---|---|---|---|---|
| rVV–mIL-12 | 105-107 | C6 glioma | i.t. | / | [107] |
| rVV-p53/rVV-2-12 | 2×107 | C6 glioma | i.t. | / | [108] |
| VVΔTKΔN1L-IL12 | 108 | LLC, LY2, DT6606,4T1, CT26, SCCVII, HCPC1 | i.t. | / | [109] |
| VAC-2-12 | 107 | CT26.CL25 | i.v | / | [110] |
| rVVHA-IL-12 | 5×106 | AE17 | i.t. | / | [111] |
| hIL-7/mIL-12-VV | 2 × 107 | B16-F10, CT26, LLC, TRAMP-C2 | i.t. | PD-1 or CTLA4 antibodies | [106] |
| VV-IL-12mCLTX-HiBiT | 107 108 |
U2OS, ID8, 4T1.2, MC38 | i.t. | PD-1 antibodies | [112] |
| vvDD-IL-12 | 109 | MC38, B16, AB12, CT26 | i.p. | PD-1 antibodies | [113] |
| VACV muIL-12 | 107 | CT26, MC38 | i.t. | PD-L1 antibodies | [114] |
| MVA-IL-12 | 6 × 105 | MC38, B16F10, CT26 | i.t. | PD-1 antibodies | [115] |
| MVA.scIL-12 | 5 × 107 | MC38, CT26 | i.p. | PD-L1 antibodies | [116] |
| Name | Dose (pfu) | Cancer Model | RoA | Combination therapy | Ref |
|---|---|---|---|---|---|
| Measles vaccine strain viruses (MeV) | |||||
| FmIL-12 | 5 × 105 ciu | MC38cea, B16hCD46 | i.t. | / | [117] |
| FmIL-12 | / | MC38cea | i.t. | / | [118] |
| Newcastle disease virus (NDV) | |||||
| rAF-IL12 | 27 HA | CT26 | i.t. | / | [119] |
| rClone30s-IL12 | 107 | H22 | i.t. | / | [120] |
| rAF-IL12 | / | HT29 | i.t. | / | [121] |
| Semliki Forest virus (SFV) | |||||
| SFV-IL12 | 107 iu | B16 | i.t. | / | [122] |
| rSFV/IL12 | 106 iu | P815 | i.t. | / | [123] |
| SFV-IL12 | 108 vp | MC38 or TC-1 | i.v. | / | [124] |
| IL-12 VLPs | 5 × 108 | RG2 | i.t. | / | [125] |
| SFV-IL12 | 108 vp | B16, MC38, 4T1 cells | i.t. | PD-1 antibodies | [126] |
| SFV-IL-12 | 108 | B16, TC-1 | i.t. | CD137 antibodies | [127] |
| SFV-IL12 | 108 | 203-glioma cells | i.t. | / | [128] |
| rSFV10-E-IL12 | 4 × 109 iu | CT26, 4T1 | i.t. | / | [129] |
| SFV-IL-12 | 108 vp | MC38 | i.t. | / | [130,131] |
| SFV-IL-12 | 108 vp | HCC | i.t. | / | [132] |
| SFV-enhIL-12 | 1.2 ×1010 | HCC | i.t. | / | [133] |
| LSFV-IL12 | 107-109 | Panc-1 | i.t. | / | [134] |
| SFV-IL-12 | 2 × 108 vp | 4T1 | i.t. | / | [135] |
| Maraba Virus (MV) | |||||
| MG1-IL12-ICV | 105 | CT26 | i.p. | / | [136] |
| Vesicular stomatitis virus (VSV) | |||||
| rVSV-IL12 | 107 | SCC | i.t. | / | [137] |
| rVSV-mIL12-mGMCSF | 107 TCID50 | B16F10 | i.t. | / | [138] |
| Sindbis virus (SV) | |||||
| Sin/IL12 | 107 | ES-2 | i.p. | / | [139] |
| Sindbis/IL-12 | 107 | ES-2, MOSEC | i.p. | / | [140] |
| SV.IgGOX40.IL-12 | 5× 106 TU | MOSEC | i.p. | / | [141] |
| SV.IL12 | 5× 106 TU | CT.26 | i.p. | OX40 antibodies | [142] |
| Canarypox virus | |||||
| ALVAC-IL-12 | 1-4 × 106 TCID50 | Metastatic Melanoma | i.t. | / | [143,144] |
| ALVAC-IL12. | 2.5 × 105 TCID50 | TS/A | i.t. | / | [145] |
| Varicella-zoster virus (VZV) | |||||
| Ellen-ΔORF8-tet-off-scIL12 | 105 | B16F10 | i.t. | / | [146] |
| Name | Carrier description | Cancer Model | RoA | Combination therapy | Ref |
|---|---|---|---|---|---|
| chemical-based delivery systems—Polymer-based nanoparticles | |||||
| PEI:IL-12 | polyethylenimine (PEI) | osteosarcoma | aerosol | / | [171] |
| PEI-IL12 | PEI-DNA nanoparticles carrying IL12 gene | LLC, CT26 | i.v. | / | [172] |
| mIL-12 | polyethylenimine (PEI) | osteosarcoma | intranasal (i.n.) | / | [173] |
| IL-12 | ifosfamide (IFX) with or without intranasal polyethylenimine (PEI) | LM7 osteosarcoma | i.n. | ifosfamide | [174] |
| mIL-12 | poly[α-(4-aminobutyl)-Lglycolic acid] (PAGA) | CT26 | i.t. | / | [175] |
| p2CMVmlL12 | poly-(D,L-lactic-co-glycolic acid) (PLGA) microspheres | CT26 | s.c. | / | [176] |
| pmIL-12 | Poly[alpha-(4-aminobutyl)-L-glycolic acid] (PAGA) | CT26 | i.t. | / | [177] |
| 4-1BBL and IL-12 mRNA | Biodegradable, lipophilic poly (beta-amino ester) (PBAE) nanoparticles | E0771, MC38 | i.t. | PD-1 antibodies | [160] |
| HC/pIL-12/polyMET | HC/pIL-12/polyMET micelleplexes | LLC | i.v. | / | [161] |
| HA/pIL-12/DOX-PMet | HA/pIL-12/DOX-PMet micelleplexes | 4T1 | i.v. | / | [162] |
| p2CMVmIL-12 | water-soluble lipopolymer (WSLP) | CT26 | i.t. | / | [178] |
| p2CMVmIL-12 | water soluble lipopolymer (WSLP) | 4T1, EMT-6 | i.t. | paclitaxel | [179] |
| p2CMVmIL-12 | water-soluble lipopolymer (WSLP) | 4T1 | i.t. | paclitaxel | [180] |
| p2CMVmIL-12 | Water soluble lipopolymers using cholesteryl chloroformate (WSLP) and PEI | CT26 | i.t. | / | [181] |
| IL-12 plasmid | puly(N-lnethyldietheneamine sebacate) (PMDS) and cholesterol | 4T1 | i.t. | / | [182] |
| pmIL-12 | Mannosylated chitosan | CT26 | i.t. | / | [183] |
| pmIL-12 | polyethylenimine covalently modified with methoxypolyethyleneglycol and cholesterol | GL261 | Intracranial (i.c.) | carmustine | [184] |
| pCMV IL-12 | Poly (D,L-lactic-co-glycolic) acid (PLGA) (50 : 50) with the cationic lipid 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and the ligand asialofetuin (AF) | BNL | i.t. | / | [185] |
| CPP-IL-12 | CaCO3-polydopamine-polyethylenimine (CPP) | B16-F10 | i.t. | / | [186] |
| Nano-IL-12 | carboxydimethyl-maleic anhydride (CDM)-modified poly(ethylene glycol)-poly(L-Lysine) (PEG-pLL(CDM)) | 4T1 TNBC, B16F10 |
i.v. | CTLA4 and PD-1 antibodies | [187] |
| TINPs | dualtarget PLGA nanoparticles | HepG-2 | / | / | [188] |
| chemical-based delivery systems—LNPs | |||||
| IL-12-LNP | lipid nanoparticle (LNP) | HCC | i.v. | / | [168] |
| IL12 mRNA | a novel lipid nanoparticle (LNP) | MC38, B16F10, A20 | i.t. | PD-L1 antibodies | [169] |
| F-PLP/pIL12 | an FRα-targeted lipoplex | CT26 | i.p. | / | [170] |
| DAL4-LNP-IL-12 mRNA and IL-27 mRNA | ionizable lipid materials containing di-amino groups with various head groups (DALs)-DAL4-LNP | B16F10 | i.t. | / | [189] |
| JCXH-211 | lipid nanoparticle-encapsulated self-replicating RNA (srRNA) encoding IL-12 | MC38, B16F10, EMT6 | i.v. i.t. |
PD-1 antibodies | [190] |
| LNP-Rep(IL-12-alb) | lipid nanoparticles (LNP) | B16F10, CT26 | i.t. | PD-1 antibodies | [191] |
| IL-12 mRNA | calcium carbonate nanoparticles | GL261 | i.v. | ultrasound | [192] |
| IL12LNP | lipid nanoparticles (LNP) | HT29 | i.t. | / | [193] |
| IL-12 circRNA LNP | ionizable lipid nanoparticles | LLC1 | i.t. | PD-L1 antibodies | [194] |
| pCMVIL-12 | transferrin (Tf)-lipoplexes | CT26 | i.t. | / | [195] |
| DMP/IL-12 | Monomethoxy poly (ethylene glycol)–poly (caprolactone) with the DOTAP lipid | C26,LL/2 | i.p. | / | [196] |
| ATRA-cationic liposome/IL-12 pDNA | All-trans-retinoic acid (ATRA)-incorporated cationic liposome (ATRA-cationic liposome) | colon26 cells | i.v. | / | [197] |
| Name | Source | Dose | Cancer Model | RoA | Ref |
|---|---|---|---|---|---|
| IL-12-Exo | human embryonic kidney cell-derived exosomes | 2 × 109 particles | LL/2, B16F10, 4T1 | Inhal | [198] |
| ITGB1−mscIL12+HN3+Deg EVs | HEK293-derived EVs | 5 × 1010 particles | Hepa1-6-hGPC3 | i.v. | [199] |
| Tex MC38/IL12shTGFβ1 | MC38-derived particles | 2 × 106 Particles | MC38 | p.t. | [200] |
| exoIL-12 | HEK293SF-3F6 | 100 ng | B16F10, MC38, CT26 | i.t. | [201] |
| IL-12-encapsulated DEVs (DEV-IL) | mature dendritic cells (DEVs) | 25 μg | GL-261 | s.c. | [202] |
| Name | Cancer Model | ROA | Ref |
|---|---|---|---|
| DC.RheoIL12 | B16 | i.t. | [208] |
| DC-mIL-12 | B16F10 | i.t. | [209] |
| mIL-12 | B16 | i.t. | [210] |
| DC+IL-12 | Melanoma B6 | i.t. | [211] |
| DC.IL12 | B16 | i.t. | [212] |
| gp100+IL12/DCs | B16BL6 | i.d. | [213] |
| DC/IL-18+IL-12/TAg | MC38 | p.t. | [215] |
| AdCMVmIL-12 | CT26 | i.t. | [214] |
| BM-derived DC infected with AdCMVIL-12 | CT26, MC38 | i.t. | [216] |
| AdIL12/IL18DC | CMS4, MethA | i.t. | [217] |
| AdIL12DC | CMS4 | i.t. | [218] |
| mIL-12 | TBJ-NB | i.t. | [219] |
| DC/IL-12 | 178-2 BMA | i.t. | [220] |
| DC-IL-12 | RENCA | i.t. | [221] |
| AFIL-12 | pancreatic, colorectal, primary liver, gastrointestinal cancers malignancies |
i.t. | [222] |
| Name | Cancer Model | ROA | Ref |
|---|---|---|---|
| OT-I-IL-12 | B16-OVA, PANC02-OVA |
i.p. | [223] |
| OT1-IL-12 mRNA | B16-OVA | i.t. | [224] |
| IL-12 + DRIL18 | B16-OVA | i.t. | [225] |
| IL-12 | B16 tumors | i.v. | [227] |
| DC101 CAR-Flexi-IL12 | B16F10, MCA205, MC17–51, MC38, CT26 | i.v. | [226] |
| T cells CAR+iIL-12 | CEA-MC38, CEA+ C15A3 |
s.c. | [228] |
| mIL12 and mIFNα2 | GL-261, CT-2A, SMA-560 | i.v. | [229] |
| 19mz/IL-12 | EL4 | i.v. | [230] |
| CAR-IL12 T-cells | A20 | i.v. | [231] |
| 4H11-28z/IL-12 | SKOV3 | i.p. | [232] |
| GPC3-28Z-NFAT-IL-12 | PLC/PRF/5, Huh-7 | i.v. | [233] |
| INS-CAR T | Raji | i.v. | [234] |
| RB-312 | HT1080, FaDu | i.t. | [235] |
| Name | Cancer Model | ROA | Ref |
|---|---|---|---|
| MSC/IL-12 | B16-F10 | i.t. | [236] |
| MSC/IL-12 | B16-F10 | i.p. | [238] |
| MSC(IL-12) | glioblastoma GL26 | i.t. | [237] |
| CAd12_PD-L1 MSCs | A549, H1650 | i.v. | [239] |
| IL-12 MSCs | 4T1 | s.c. | [240] |
| MSC-AdIL12 | Ast11.9-2 | / | [241] |
| MSC/IL-12 | 786-0 | i.v | [242] |
| MSCs/IL-12 | HCa-I, Hepa 1-6 | i.t. | [243] |
| FYD + IL-12 + BMSCs | U251 | i.v | [244] |
| MB/IL12-MSCs | EMT6 | i.v | [245] |
| CAR+MSC IL7/IL12 | LS174T | s.c. | [246] |
| MSCs/IL-12M | B16F10 | i.t. | [247] |
| UCB-MSC-IL12M | GL26 | i.t. | [248] |
| Name | Cancer Model | ROA | Ref |
|---|---|---|---|
| AdmIL-12 | 178-2BMA | i.t. | [250] |
| G/M//AdmIL-12 | 178-2BMA | i.t. | [251] |
| GD2.CAR(I)IL12 | BV-173, CHLA-255 | i.v. | [252] |
| B16/mIL-12+mIL-18 | B16 | s.c. | [249] |
| Neuro2a/IL-12/IL-15 | neuroblastoma | i.v. | [253] |
| pT-mIL12 and pCMV-m7pB | B16/OVA | ACT | [254] |
| Name | Tumor type | ROA | Status | NCT Number |
|---|---|---|---|---|
| rhIL-12 and IL-2 | Advanced Solid Tumors | i.v.+s.c. | Phase I | NCT00005604 |
| recombinant IL-12 | Primary Peritoneal Cavity Cancer Recurrent Ovarian Epithelial Cancer |
i.p. | Phase II | NCT00016289 |
| NHS-IL12 | Epithelial Neoplasms, Malignant Epithelial Tumors, Malignant Malignant Mesenchymal Tumor |
s.c. | Phase I | NCT01417546 |
| NHS-IL12 | Advanced HPV Associated Malignancies | s.c. | Phase I/II | NCT04287868 |
| NHS-IL12 | Small Bowel and Colorectal Cancers | s.c. | Phase II | NCT04491955 |
| NHS-IL12 | Advanced Solid Tumors | i.v. | Phase Ib | NCT02994953 |
| NHS-IL12 | Kaposi Sarcoma | i.v. | Phase I/II | NCT04303117 |
| NHS-IL12 | Urothelial Cancer Bladder Cancer Genitourinary Cancer Urogenital Cancer |
i.v. | Phase I | NCT04235777 |
| NM-IL-12 | Colostomy Stoma | s.c. | Phase IIa | NCT02544061 |
| SON-1010 (IL12-FHAB) | Platinum-resistant Ovarian Cancer | / | Phase 1b/2a | NCT05756907 |
| Ad5-yCD/mutTKSR39rep-hIL12 | Prostate Cancer | i.t. | Phase I | NCT02555397 |
| Adv/IL-12 | Prostate Cancer | i.t. | Phase I | NCT00406939 |
| Ad5-yCD/mutTKSR39rep-hIL12 | Metastatic Pancreatic Cancer | i.t. | Phase I | NCT03281382 |
| adenovirus-mediated human interleukin-12 | Breast Cancer | i.t. | Phase I | NCT00849459 |
| Ad.hIL-12 | Radiorecurrent Prostate Cancer | i.p. | Phase I | NCT00110526 |
| Ad-RTS-hIL-12 | Melanoma | i.t. | Phase I/II | NCT01397708 |
| Ad-RTS-hIL-12 | Pediatric Brain Tumor Diffuse Intrinsic Pontine Glioma |
i.t. | Phase I/II | NCT03330197 |
| Ad-RTS-hIL-12 | Glioblastoma Multiforme Anaplastic Oligoastrocytoma |
i.t. | Phase I | NCT02026271 |
| Ad-RTS-hIL-12 | Glioblastoma | i.t. | Phase I | NCT03636477 |
| Adv.RSV-hIL12 | Breast Cancer Metastatic Cancer |
i.t. | Phase I | NCT00301106 |
| canarypox-hIL-12 | melanoma | i.t. | Phase I | NCT00003556 |
| MEDI9253(Recombinant Newcastle Disease Virus Encoding Interleukin-12) | Solid Tumors | i.t. | Phase I | NCT04613492 |
| MEDI9253 + Durvalumab | Solid Tumors | i.t. | Phase I | NCT04613492 |
| M032 (a Genetically Engineered HSV-1 Expressing IL-12) | Glioblastoma | i.t. | Phase I/II | NCT05084430 |
| hTERT and IL-12 DNA | Breast Cancer Lung Cancer Pancreatic Cancer Head and Neck Cancer Ovarian Cancer ColoRectal Cancer Gastric Cancer Esophageal Cancer HepatoCellular Carcinoma |
i.m. | Phase I | NCT02960594 |
| IT-pIL12-EP | Triple negative breast cancer | i.t. | Phase I | NCT02531425 |
| IL-12p DNA | Malignant Melanoma | i.t. | Phase I | NCT00323206 |
| IL-12 DNA | Metastatic Cancer | i.t. | Phase Ib | NCT00028652 |
| Interleukin-12 cDNA | Colorectal Cancer Metastatic Cancer |
i.t. | Phase I | NCT00072098 |
| Interleukin-12 Plasmid | Merkel Cell Carcinoma | i.t. | Phase II | NCT01440816 |
| INO-3112 (plasmid-encoding interleukin-12/HPV DNA plasmids) and durvalumab | Recurrent/Metastatic Human Papilloma Virus Associated Cancers | i.m. | Phase II | NCT03439085 |
| IMNN-001 (IL-12 Plasmid Formulated With PEG-PEI-Cholesterol Lipopolymer) | Epithelial Ovarian Cancer Fallopian Tube Cancer Primary Peritoneal Cancer |
i.p. | Phase I | NCT02480374 |
| Egen-001 (IL-12 Plasmid Formulated With PEG-PEI-Cholesterol Lipopolymer) | Ovarian Clear Cell Cystadenocarcinoma Ovarian Endometrioid Adenocarcinoma Ovarian Seromucinous Carcinoma |
i.p. | Phase I | NCT01489371 |
| EGEN-001 (IL-12 Plasmid Formulated With PEG-PEI-Cholesterol Lipopolymer) | Fallopian Tube Carcinoma Primary Peritoneal Carcinoma Recurrent Ovarian Carcinoma |
i.p. | Phase II | NCT01118052 |
| EGEN-001 and Pegylated Liposomal Doxorubicin Hydrochloride | Ovarian Clear Cell Cystadenocarcinoma Ovarian Endometrioid Adenocarcinoma Ovarian Seromucinous Carcinoma Ovarian Serous Cystadenocarcinoma Ovarian Undifferentiated Carcinoma Recurrent Fallopian Tube Carcinoma Recurrent Ovarian Carcinoma Recurrent Primary Peritoneal Carcinoma |
i.p. | Phase I | NCT01489371 |
| phIL12 GET | basal cell carcinomas | i.t. | Phase I | NCT05077033 |
| EGFR-IL12-CART | Metastatic Colorectal Cancer | / | Phase I/II | NCT03542799 |
| Interleukin 12-Primed Activated T Cells (12ATC) | Melanoma | i.v. | Phase I | NCT00016055 |
| interleukin-12-primed activated T cells (12ATC) | Colorectal Cancer Kidney Cancer |
i.v. | Phase I | NCT00016042 |
| Interleukin-12-Primed Activated T Cells in combination with 5FU, GM-CSF And Interferon Alfa-2b | Colorectal Cancer Kidney Cancer |
i.v. | Phase I/II | NCT00030342 |
| EGFRt/19-28z/IL-12 CAR T Cells | Hematologic Malignancies | i.v. | Phase I | NCT06343376 |
| CAR-T Cells (IL7 and CCL19 or / and IL12) Targeting Nectin4/FAP | Nectin4-positive Advanced Malignant Solid Tumor | i.t. | Phase I | NCT03932565 |
| T-Cell Membrane-Anchored Tumor Targeted Il12 (Attil12) | Soft Tissue Sarcoma Bone Sarcoma |
i.v. | Phase 1 | NCT05621668 |
| IL-12 gene-transduced TIL | Melanoma | i.v. | Phase I/II | NCT01236573 |
| Dendritic and Glioma Cells Fusion Vaccine With IL-12 | Glioblastoma | i.d. | phase I/II | NCT04388033 |
| anti-ESO-1/IL-12 white blood cells | Metastatic Melanoma Metastatic Renal Cancer |
i.v. | Phase I/II | NCT01457131 |
| bacTRL-IL-12 | Treatment-refractory Solid Tumours | i.v. | Phase I | NCT04025307 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).