Submitted:
20 September 2024
Posted:
24 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methodology
2.1. Detection of Keywords
| Keywords | Number of Manuscript Containing Key Words |
|---|---|
| Compressive strength | 52 |
| Concrete | 52 |
| Predict | 52 |
| Artificial | 42 |
| ANN | 32 |
| Machine Learning | 25 |
| Adaptive Neuro Fuzzy Inference ANFIS | 10 |
| Multiple Linear Regression | 9 |
| Estimate | 8 |
| Support Vector Regression | 7 |
| Random Forest | 6 |
| Support Vector Machine | 6 |
| AI | 5 |
| Artificial intelligence | 5 |
| Decision Tree | 5 |
| Gene Expression Programming | 5 |
| Gradient Boosting Regression | 5 |
2.2. Detection of Relevant Documents
2.3. The Selection of a Science Mapping Tool
2.4. Bibliometric and Scientometric Techniques
3. Findings
3.1. Density of Publications Concerning Studies on Concrete Compressive Strength Prediction
3.2. Main Research Interests Predicting Compressive Strength
3.3. Best Journals on Estimating Concrete Compressive Strength
3.4. Key Researchers
3.5. Leading Organizations
3.6. Key Countries
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Coffetti D, Crotti E, Gazzaniga G, Carrara M, Pastore T, Coppola L. Pathways towards sustainable concrete. Cem Concr Res. 2022;154:106718. [CrossRef]
- Ulucan M, Alyamac KE. A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental. Waste Manag. 2022;146:53-65. [CrossRef]
- Zhang Y, Luo W, Wang J, Wang Y, Xu Y, Xiao J. A review of life cycle assessment of recycled aggregate concrete. Constr Build Mater. 2019;209:115-125. [CrossRef]
- Marinković S, Radonjanin V, Malešev M, Ignjatović I. Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag. 2010;30(11):2255-2264. [CrossRef]
- Kumar Tipu R, Panchal VR, Pandya KS. An ensemble approach to improve BPNN model precision for predicting compressive strength of high-performance concrete. Structures. 2022;45:500-508. [CrossRef]
- Ali-Benyahia K, Kenai S, Ghrici M, Sbartaï ZM, Elachachi SM. Analysis of the accuracy of in-situ concrete characteristic compressive strength assessment in real structures using destructive and non-destructive testing methods. Constr Build Mater. 2023;366:130161. [CrossRef]
- Shariati M, Mafipour MS, Ghahremani B, et al. A novel hybrid extreme learning machine–grey wolf optimizer (ELM-GWO) model to predict compressive strength of concrete with partial replacements for cement. Eng Comput. 2022;38(1):757-779. [CrossRef]
- Khademi F, Akbari M, Jamal SM, Nikoo M. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front Struct Civ Eng. 2017;11(1):90-99. [CrossRef]
- Zhou Q, Wang F, Zhu F. Estimation of compressive strength of hollow concrete masonry prisms using artificial neural networks and adaptive neuro-fuzzy inference systems. Constr Build Mater. 2016;125:417-426. [CrossRef]
- Al-Mughanam T, Aldhyani THH, Alsubari B, Al-Yaari M. Modeling of compressive strength of sustainable self-compacting concrete incorporating treated palm oil fuel ash using artificial neural network. Sustain. 2020;12(22):1-13. [CrossRef]
- Hoang ND, Pham AD, Nguyen QL, Pham QN. Estimating Compressive Strength of High Performance Concrete with Gaussian Process Regression Model. Adv Civ Eng. 2016;2016. [CrossRef]
- Farooq F, Czarnecki S, Niewiadomski P, et al. A comparative study for the prediction of the compressive strength of self-compacting concrete modified with fly ash. Materials (Basel). 2021;14(17). [CrossRef]
- Shishegaran A, Varaee H, Rabczuk T, Shishegaran G. High correlated variables creator machine: Prediction of the compressive strength of concrete. Comput Struct. 2021;247:106479. [CrossRef]
- Ashrafian A, Taheri Amiri MJ, Rezaie-Balf M, Ozbakkaloglu T, Lotfi-Omran O. Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods. Constr Build Mater. 2018;190:479-494. [CrossRef]
- Ahmad M, Hu JL, Ahmad F, et al. Supervised learning methods for modeling concrete compressive strength prediction at high temperature. Materials (Basel). 2021;14(8):1-19. [CrossRef]
- Behnood A, Verian KP, Modiri Gharehveran M. Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength. Constr Build Mater. 2015;98:519-529. [CrossRef]
- Golafshani EM, Behnood A, Arashpour M. Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer. Constr Build Mater. 2020;232:117266. [CrossRef]
- Vakharia V, Gujar R. Prediction of compressive strength and portland cement composition using cross-validation and feature ranking techniques. Constr Build Mater. 2019;225:292-301. [CrossRef]
- Nguyen-Sy T, Wakim J, To QD, Vu MN, Nguyen TD, Nguyen TT. Predicting the compressive strength of concrete from its compositions and age using the extreme gradient boosting method. Constr Build Mater. 2020;260:119757. [CrossRef]
- Asteris PG, Skentou AD, Bardhan A, Samui P, Pilakoutas K. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cem Concr Res. 2021;145:106449. [CrossRef]
- Güçlüer K, Özbeyaz A, Göymen S, Günaydın O. A comparative investigation using machine learning methods for concrete compressive strength estimation. Mater Today Commun. 2021;27:102278. [CrossRef]
- Ghanizadeh AR, Abbaslou H, Amlashi AT, Alidoust P. Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine. Front Struct Civ Eng. 2019;13(1):215-239. [CrossRef]
- Quan Tran V, Quoc Dang V, Si Ho L. Evaluating compressive strength of concrete made with recycled concrete aggregates using machine learning approach. Constr Build Mater. 2022;323:126578. [CrossRef]
- Van Dao D, Adeli H, Ly HB, et al. A sensitivity and robustness analysis of GPR and ANN for high-performance concrete compressive strength prediction using a monte carlo simulation. Sustain. 2020;12(3). [CrossRef]
- Feng DC, Liu ZT, Wang XD, et al. Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Constr Build Mater. 2020;230:117000. [CrossRef]
- Ly HB, Nguyen MH, Pham BT. Metaheuristic optimization of Levenberg–Marquardt-based artificial neural network using particle swarm optimization for prediction of foamed concrete compressive strength. Neural Comput Appl. 2021;33(24):17331-17351. [CrossRef]
- Van Dao D, Ly HB, Trinh SH, Le TT, Pham BT. Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete. Materials (Basel). 2019;12(6). [CrossRef]
- Tam VWY, Butera A, Le KN, Silva LCFD, Evangelista ACJ. A prediction model for compressive strength of CO2 concrete using regression analysis and artificial neural networks. Constr Build Mater. 2022;324:126689. [CrossRef]
- Xu Y, Ahmad W, Ahmad A, et al. Computation of high-performance concrete compressive strength using standalone and ensembled machine learning techniques. Materials (Basel). 2021;14(22). [CrossRef]
- Ashrafian A, Shokri F, Taheri Amiri MJ, Yaseen ZM, Rezaie-Balf M. Compressive strength of Foamed Cellular Lightweight Concrete simulation: New development of hybrid artificial intelligence model. Constr Build Mater. 2020;230:117048. [CrossRef]
- Nikoo M, Torabian Moghadam F, Sadowski Ł. Prediction of concrete compressive strength by evolutionary artificial neural networks. Adv Mater Sci Eng. 2015;2015. [CrossRef]
- Shafighfard T, Bagherzadeh F, Rizi RA, Yoo DY. Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms. J Mater Res Technol. 2022;21:3777-3794. [CrossRef]
- Yaseen ZM, Deo RC, Hilal A, et al. Predicting compressive strength of lightweight foamed concrete using extreme learning machine model. Adv Eng Softw. 2018;115:112-125. [CrossRef]
- Al-Shamiri AK, Kim JH, Yuan TF, Yoon YS. Modeling the compressive strength of high-strength concrete: An extreme learning approach. Constr Build Mater. 2019;208:204-219. [CrossRef]
- Kang MC, Yoo DY, Gupta R. Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete. Constr Build Mater. 2021;266:121117. [CrossRef]
- Bui DK, Nguyen T, Chou JS, Nguyen-Xuan H, Ngo TD. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr Build Mater. 2018;180:320-333. [CrossRef]
- Dutta S, Samui P, Kim D. Comparison of machine learning techniques to predict compressive strength of concrete. Comput Concr. 2018;21(4):463-470. [CrossRef]
- Aslam F, Farooq F, Amin MN, et al. Applications of Gene Expression Programming for Estimating Compressive Strength of High-Strength Concrete. Adv Civ Eng. 2020;2020. [CrossRef]
- Behnood A, Golafshani EM. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves. J Clean Prod. 2018;202:54-64. [CrossRef]
- Khan MA, Zafar A, Farooq F, et al. Geopolymer Concrete Compressive Strength via Artificial Neural Network, Adaptive Neuro Fuzzy Interface System, and Gene Expression Programming With K-Fold Cross Validation. Front Mater. 2021;8(May):1-19. [CrossRef]
- Huynh AT, Nguyen QD, Xuan QL, et al. A machine learning-assisted numerical predictor for compressive strength of geopolymer concrete based on experimental data and sensitivity analysis. Appl Sci. 2020;10(21):1-16. [CrossRef]
- Farooq F, Amin MN, Khan K, et al. A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC). Appl Sci. 2020;10(20):1-18. [CrossRef]
- Hammoudi A, Moussaceb K, Belebchouche C, Dahmoune F. Comparison of artificial neural network (ANN) and response surface methodology (RSM) prediction in compressive strength of recycled concrete aggregates. Constr Build Mater. 2019;209:425-436. [CrossRef]
- Kaloop MR, Kumar D, Samui P, Hu JW, Kim D. Compressive strength prediction of high-performance concrete using gradient tree boosting machine. Constr Build Mater. 2020;264:120198. [CrossRef]
- Ling H, Qian C, Kang W, Liang C, Chen H. Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment. Constr Build Mater. 2019;206:355-363. [CrossRef]
- Chithra S, Kumar SRRS, Chinnaraju K, Alfin Ashmita F. A comparative study on the compressive strength prediction models for High Performance Concrete containing nano silica and copper slag using regression analysis and Artificial Neural Networks. Constr Build Mater. 2016;114:528-535. [CrossRef]
- Zhang J, Li D, Wang Y. Predicting uniaxial compressive strength of oil palm shell concrete using a hybrid artificial intelligence model. J Build Eng. 2020;30:101282. [CrossRef]
- Zhang L V., Marani A, Nehdi ML. Chemistry-informed machine learning prediction of compressive strength for alkali-activated materials. Constr Build Mater. 2022;316:126103. [CrossRef]
- Elemam WE, Abdelraheem AH, Mahdy MG, Tahwia AM. Optimizing fresh properties and compressive strength of self-consolidating concrete. Constr Build Mater. 2020;249:118781. [CrossRef]
- Van Dao D, Trinh SH, Ly HB, Pham BT. Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates: Novel hybrid artificial intelligence approaches. Appl Sci. 2019;9(6):1-16. [CrossRef]
- Wu Y, Zhou Y. Hybrid machine learning model and Shapley additive explanations for compressive strength of sustainable concrete. Constr Build Mater. 2022;330:127298. [CrossRef]
- Chen H, Qian C, Liang C, Kang W. An approach for predicting the compressive strength of cement-based materials exposed to sulfate attack. PLoS One. 2018;13(1):1-17. [CrossRef]
- Asadi Shamsabadi E, Roshan N, Hadigheh SA, Nehdi ML, Khodabakhshian A, Ghalehnovi M. Machine learning-based compressive strength modelling of concrete incorporating waste marble powder. Constr Build Mater. 2022;324:126592. [CrossRef]
- Song H, Ahmad A, Farooq F, et al. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr Build Mater. 2021;308:125021. [CrossRef]
- Cihan MT. Prediction of Concrete Compressive Strength and Slump by Machine Learning Methods. Adv Civ Eng. 2019;2019. [CrossRef]
- Ahmadi M, Naderpour H, Kheyroddin A. ANN Model for Predicting the Compressive Strength of Circular Steel-Confined Concrete. Int J Civ Eng. 2017;15(2):213-221. [CrossRef]
- Asteris PG, Mokos VG. Concrete compressive strength using artificial neural networks. Neural Comput Appl. 2020;32(15):11807-11826. [CrossRef]
- Shahmansouri AA, Yazdani M, Hosseini M, Akbarzadeh Bengar H, Farrokh Ghatte H. The prediction analysis of compressive strength and electrical resistivity of environmentally friendly concrete incorporating natural zeolite using artificial neural network. Constr Build Mater. 2022;317:125876. [CrossRef]
- Çevikbaş M, Işık Z. An overarching review on delay analyses in construction projects. Buildings. 2021;11(3). [CrossRef]
- Antwi-Afari MF, Li H, Chan AHS, et al. A science mapping-based review of work-related musculoskeletal disorders among construction workers. J Safety Res. 2023;85:114-128. [CrossRef]
- Migallón V, Penadés H, Penadés J, Tenza-Abril AJ. A Machine Learning Approach to Prediction of the Compressive Strength of Segregated Lightweight Aggregate Concretes Using Ultrasonic Pulse Velocity. Appl Sci. 2023;13(3). [CrossRef]
- Ankur N, Singh N. Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review. Renew Sustain Energy Rev. 2021;149:111361. [CrossRef]
- Mejdi M, Saillio M, Chaussadent T, Divet L, Tagnit-Hamou A. Hydration mechanisms of sewage sludge ashes used as cement replacement. Cem Concr Res. 2020;135.
- Aytekin B, Mardani A, Yazıcı Ş. State-of-art review of bacteria-based self-healing concrete: Biomineralization process, crack healing, and mechanical properties. Constr Build Mater. 2023;378:131198. [CrossRef]
- Hamada HM, Al-Attar A, Abed F, et al. Enhancing sustainability in concrete construction: A comprehensive review of plastic waste as an aggregate material. Sustain Mater Technol. 2024;40:e00877. [CrossRef]
- Mashhadban H, Kutanaei SS, Sayarinejad MA. Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network. Constr Build Mater. 2016;119:277-287. [CrossRef]
- Monteiro H, Moura B, Soares N. Advancements in nano-enabled cement and concrete: Innovative properties and environmental implications. J Build Eng. 2022;56:104736. [CrossRef]
- Winnefeld F, Leemann A, German A, Lothenbach B. CO2 storage in cement and concrete by mineral carbonation. Curr Opin Green Sustain Chem. 2022;38:100672. [CrossRef]
- Habibi A, Ramezanianpour AM, Mahdikhani M. RSM-based optimized mix design of recycled aggregate concrete containing supplementary cementitious materials based on waste generation and global warming potential. Resour Conserv Recycl. 2021;167:105420. [CrossRef]
- Sultana I, Islam GMS. Potential of ladle furnace slag as supplementary cementitious material in concrete. Case Stud Constr Mater. 2023;18:e02141. [CrossRef]
- Zhang W, Zheng Q, Ashour A, Han B. Self-healing cement concrete composites for resilient infrastructures: A review. Compos Part B Eng. 2020;189:107892. [CrossRef]
- Kirthika SK, Singh SK, Chourasia A. Alternative fine aggregates in production of sustainable concrete- A review. J Clean Prod. 2020;268:122089. [CrossRef]
- Zhang X, Jin Z, Li M, Qian C. Effects of carrier on the performance of bacteria-based self-healing concrete. Constr Build Mater. 2021;305:124771. [CrossRef]
- Siamardi K. Optimization of fresh and hardened properties of structural light weight self-compacting concrete mix design using response surface methodology. Constr Build Mater. 2022;317:125928. [CrossRef]
- Habibi A, Ramezanianpour AM, Mahdikhani M, Bamshad O. RSM-based evaluation of mechanical and durability properties of recycled aggregate concrete containing GGBFS and silica fume. Constr Build Mater. 2021;270:121431. [CrossRef]
- Karaaslan C, Yener E, Bağatur T, Polat R. Improving the durability of pumice-fly ash based geopolymer concrete with calcium aluminate cement. J Build Eng. 2022;59:105110. [CrossRef]
- Burciaga-Díaz O, Escalante-García JI. Structural transition to well-ordered phases of NaOH-activated slag-metakaolin cements aged by 6 years. Cem Concr Res. 2022;156:106791. [CrossRef]
- Zeyad AM, Hakeem IY, Amin M, Tayeh BA, Agwa IS. Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding. J Build Eng. 2022;58:104960. [CrossRef]
- Nasr MS, Shubbar AA, Abed ZAAR, Ibrahim MS. Properties of eco-friendly cement mortar contained recycled materials from different sources. J Build Eng. 2020;31:101444. [CrossRef]
- McDonald LJ, Carballo-Meilan MA, Chacartegui R, Afzal W. The physicochemical properties of Portland cement blended with calcium carbonate with different morphologies as a supplementary cementitious material. J Clean Prod. 2022;338:130309. [CrossRef]
- Jalal M, Arabali P, Grasley Z, Bullard JW, Jalal H. RETRACTED: Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete. J Clean Prod. 2020;273:122960. [CrossRef]
- Yang H, Long D, Zhenyu L, et al. Effects of bentonite on pore structure and permeability of cement mortar. Constr Build Mater. 2019;224:276-283. [CrossRef]
- Khan M, Cao M, Xie C, Ali M. Effectiveness of hybrid steel-basalt fiber reinforced concrete under compression. Case Stud Constr Mater. 2022;16:e00941. [CrossRef]
- Ata AA, Salem TN, Elkhawas NM. Properties of soil–bentonite–cement bypass mixture for cutoff walls. Constr Build Mater. 2015;93:950-956. [CrossRef]
- Pereira Dias P, Bhagya Jayasinghe L, Waldmann D. Machine learning in mix design of Miscanthus lightweight concrete. Constr Build Mater. 2021;302:124191. [CrossRef]
- Ma W, Sun D, Ma X, Cui S. Preparation and investigation of self-healing cementitious composite based on DMTDA - epoxy binary microcapsules system. J Build Eng. 2022;56:104779. [CrossRef]
- Rudžionis Ž, Adhikary SK, Manhanga FC, et al. Natural zeolite powder in cementitious composites and its application as heavy metal absorbents. J Build Eng. 2021;43:103085. [CrossRef]
- Oliva M, Vargas F, Lopez M. Designing the incineration process for improving the cementitious performance of sewage sludge ash in Portland and blended cement systems. J Clean Prod. 2019;223:1029-1041. [CrossRef]
- Tayeh BA, Hasaniyah MW, Zeyad AM, et al. Durability and mechanical properties of seashell partially-replaced cement. J Build Eng. 2020;31:101328. [CrossRef]
- Ho CM, Doh SI, Li X, Chin SC, Ashraf T. RSM-based modelling of cement mortar with various water to cement ratio and steel slag content. Phys Chem Earth, Parts A/B/C. 2022;128:103256. [CrossRef]
- Chakraborty S, Jo BW, Jo JH, Baloch Z. Effectiveness of sewage sludge ash combined with waste pozzolanic minerals in developing sustainable construction material: An alternative approach for waste management. J Clean Prod. 2017;153:253-263. [CrossRef]
- Gunning PJ, Hills CD, Antemir A, Carey PJ. Secondary aggregate from waste treated with carbon dioxide. Proc Inst Civ Eng Constr Mater. 2011;164(5):231-239. [CrossRef]
- Forth JP, Zoorob SE, Thanaya INA. Development of bitumen-bound waste aggregate building blocks. Proc Inst Civ Eng Constr Mater. 2006;159(1):23-32. [CrossRef]
- Ali MH, Atiş CD, Al-Kamaki YSS. Mechanical properties and efficiency of SIFCON samples at elevated temperature cured with standard and accelerated method. Case Stud Constr Mater. 2022;17:e01281. [CrossRef]
- Ateş KT, Şahin C, Kuvvetli Y, Küren BA, Uysal A. Sustainable production in cement via artificial intelligence based decision support system: Case study. Case Stud Constr Mater. 2021;15:e00628. [CrossRef]
- Adhikary SK, Rudžionis Ž, Tučkutė S. Characterization of novel lightweight self-compacting cement composites with incorporated expanded glass, aerogel, zeolite and fly ash. Case Stud Constr Mater. 2022;16:e00879. [CrossRef]
- Rahman F, Adil W, Raheel M, Saberian M, Li J, Maqsood T. Experimental investigation of high replacement of cement by pumice in cement mortar: A mechanical, durability and microstructural study. J Build Eng. 2022;49:104037. [CrossRef]
- Galan I, Baldermann A, Kusterle W, Dietzel M, Mittermayr F. Durability of shotcrete for underground support– Review and update. Constr Build Mater. 2019;202:465-493. [CrossRef]
- Altunci YT, Öcal C, Saplioglu K, İnce HH, Cevikbas M. Determination of Performance Characteristics of Screed Mortar with Expanded Glass Aggregate and Expanded Perlite Aggregate. El-Cezerî J Sci Eng. 2020;2021(1). [CrossRef]
- Saafan MA, Etman ZA, Jaballah AS, Abdelati MA. Strength and nuclear shielding performance of heavyweight concrete experimental and theoretical analysis using WinXCom program. Prog Nucl Energy. 2023;160:104688. [CrossRef]
- Ismail Ahmed Ali S, Lublóy E. Effect of elevated temperature on the magnetite and quartz concrete at different W/C ratios as nuclear shielding concretes. Nucl Mater Energy. 2022;33:101234. [CrossRef]
- Ababneh A, Alhassan M, Abu-Haifa M. Predicting the contribution of recycled aggregate concrete to the shear capacity of beams without transverse reinforcement using artificial neural networks. Case Stud Constr Mater. 2020;13:e00414. [CrossRef]
- Zhang Z, Yuvaraj A, Di J, Qian S. Matrix design of light weight, high strength, high ductility ECC. Constr Build Mater. 2019;210:188-197. [CrossRef]
- Elemam WE, Agwa IS, Tahwia AM. Reusing Ceramic Waste as a Fine Aggregate and Supplemental Cementitious Material in the Manufacture of Sustainable Concrete. Buildings. 2023;13(11). [CrossRef]
- AL-Bukhaiti K, Liu Y, Zhao S, Abas H. An Application of BP Neural Network to the Prediction of Compressive Strength in Circular Concrete Columns Confined with CFRP. KSCE J Civ Eng. 2023;27(7):3006-3018. [CrossRef]
- Zhou Y, Zhang Y, Pang R, Xu B. Seismic fragility analysis of high concrete faced rockfill dams based on plastic failure with support vector machine. Soil Dyn Earthq Eng. 2021;144:106587. [CrossRef]
- Kumar A, Arora HC, Kumar K, Garg H. Performance prognosis of FRCM-to-concrete bond strength using ANFIS-based fuzzy algorithm. Expert Syst Appl. 2023;216:119497. [CrossRef]
- Migallón V, Navarro-González F, Penadés J, Villacampa Y. Parallel approach of a Galerkin-based methodology for predicting the compressive strength of the lightweight aggregate concrete. Constr Build Mater. 2019;219:56-68. [CrossRef]
- Bober P, Zgodavová K, Čička M, Mihaliková M, Brindza J. Predictive Quality Analytics of Surface Roughness in Turning Operation Using Polynomial and Artificial Neural Network Models. Processes. 2024;12(1). [CrossRef]
- Duan J, Asteris PG, Nguyen H, Bui XN, Moayedi H. A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model. Eng Comput. 2021;37(4):3329-3346. [CrossRef]
- Linka K, Kuhl E. A new family of Constitutive Artificial Neural Networks towards automated model discovery. Comput Methods Appl Mech Eng. 2023;403:115731. [CrossRef]
- Gao Y, Li Z, Li Y, Zhu Z, Zhu J. Development of chemistry-informed interpretable model for predicting compressive strength of recycled aggregate concrete containing supplementary cementitious materials. J Clean Prod. 2023;425:138733. [CrossRef]
- Li J, Yan G, Abbud LH, et al. Predicting the shear strength of concrete beam through ANFIS-GA–PSO hybrid modeling. Adv Eng Softw. 2023;181:103475. [CrossRef]
- Bushenkova A, Soares PMM, Johannsen F, Lima DCA. Towards an improved representation of the urban heat island effect : A multi-scale application of XGBoost for madrid. Urban Clim. 2024;55:101982. [CrossRef]
- Salami BA, Olayiwola T, Oyehan TA, Raji IA. Data-driven model for ternary-blend concrete compressive strength prediction using machine learning approach. Constr Build Mater. 2021;301:124152. [CrossRef]
- de-Prado-Gil J, Palencia C, Silva-Monteiro N, Martínez-García R. To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models. Case Stud Constr Mater. 2022;16:e01046. [CrossRef]
- Munir MJ, Kazmi SMS, Wu YF, Lin X, Ahmad MR. Development of a novel compressive strength design equation for natural and recycled aggregate concrete through advanced computational modeling. J Build Eng. 2022;55:104690. [CrossRef]
- Ziyad Sami BH, Ziyad Sami BF, Kumar P, et al. Feasibility analysis for predicting the compressive and tensile strength of concrete using machine learning algorithms. Case Stud Constr Mater. 2023;18:e01893. [CrossRef]
- Xi B, Li E, Fissha Y, Zhou J, Segarra P. LGBM-based modeling scenarios to compressive strength of recycled aggregate concrete with SHAP analysis. Mech Adv Mater Struct. 2023;0(0):1-16. [CrossRef]
- Wang J, Xie Y, Guo T, Du Z. Predicting the Influence of Soil–Structure Interaction on Seismic Responses of Reinforced Concrete Frame Buildings Using Convolutional Neural Network. Buildings. 2023;13(2). [CrossRef]
- Zhang C, Lu Y. Study on artificial intelligence: The state of the art and future prospects. J Ind Inf Integr. 2021;23:100224. [CrossRef]
- Atici U. Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network. Expert Syst Appl. 2011;38(8):9609-9618. [CrossRef]
- al-Swaidani AM, Khwies WT, al-Baly M, Lala T. Development of multiple linear regression, artificial neural networks and fuzzy logic models to predict the efficiency factor and durability indicator of nano natural pozzolana as cement additive. J Build Eng. 2022;52:104475. [CrossRef]
- Shakya D, Deshpande V, Safari MJS, Agarwal M. Performance evaluation of machine learning algorithms for the prediction of particle Froude number (Frn) using hyper-parameter optimizations techniques. Expert Syst Appl. 2024;256:124960. [CrossRef]
- Tipu RK, Batra V, Suman, Pandya KS, Panchal VR. Efficient compressive strength prediction of concrete incorporating recycled coarse aggregate using Newton’s boosted backpropagation neural network (NB-BPNN). Structures. 2023;58:105559. [CrossRef]
- Shi H yang, Wang S, Wang P yang. From simulation to reality: CFD-ML-driven structural optimization and experimental analysis of thermal plasma reactors. J Environ Chem Eng. 2024;12(3):112998. [CrossRef]
- Afshoon I, Miri M, Mousavi SR. Using the Response Surface Method and Artificial Neural Network to Estimate the Compressive Strength of Environmentally Friendly Concretes Containing Fine Copper Slag Aggregates. Iran J Sci Technol - Trans Civ Eng. 2023;47(6):3415-3429. [CrossRef]
- Ateş KT. Solar Power Estimation Methods Using ANN and CA-ANN Models for Hydrogen Production Potential in Mediterranean Region. IETE J Res. 2023;70(3):3280-3294. [CrossRef]
- Behery GM, El-Harby AA, El-Bakry MY. Anfis and neural networks systems for multiplicity distributions in proton-proton interactions. Appl Artif Intell. 2013;27(4):304-322. [CrossRef]
- Nafees A, Javed MF, Khan S, et al. Predictive modeling of mechanical properties of silica fume-based green concrete using artificial intelligence approaches: MLPNN, ANFIS, and GEP. Materials (Basel). 2021;14(24):1-28. [CrossRef]
- Yasmin M. Compressive strength prediction for concrete modified with nanomaterials. Case Stud Constr Mater. 2021;15:e00660. [CrossRef]
- Fakharian P, Rezazadeh Eidgahee D, Akbari M, Jahangir H, Ali Taeb A. Compressive strength prediction of hollow concrete masonry blocks using artificial intelligence algorithms. Structures. 2023;47:1790-1802. [CrossRef]








| ID | Keywords | Subject Areas | Occurrences | Rate (%) | Total Link Strength |
|---|---|---|---|---|---|
| 1 | Compressive strength | Mechanical properties of concrete | 641 | 36.00 | 699 |
| 2 | Mechanical properties | 110 | 77 | ||
| 3 | Strength | 49 | 48 | ||
| 4 | Flexural strength | 39 | 59 | ||
| 5 | Concrete compressive strength | 37 | 20 | ||
| 6 | Shear strength | 36 | 25 | ||
| 7 | Bond strength | 32 | 30 | ||
| 8 | Concrete | Concrete types | 285 | 20.82 | 355 |
| 9 | Self-compacting concrete | 63 | 89 | ||
| 10 | Recycled aggregate concrete | 48 | 55 | ||
| 11 | Reinforced concrete | 41 | 28 | ||
| 12 | Geopolymer concrete | 39 | 68 | ||
| 13 | Lightweight concrete | 36 | 31 | ||
| 14 | High-strength concrete | 34 | 31 | ||
| 15 | Machine learning | Modeling and Analysis Methods | 281 | 31.92 | 368 |
| 16 | Artificial neural network | 156 | 186 | ||
| 17 | Prediction | 72 | 127 | ||
| 18 | Artificial neural networks | 65 | 88 | ||
| 19 | Gene expression programming | 62 | 94 | ||
| 20 | Modeling | 48 | 72 | ||
| 21 | Artificial intelligence | 46 | 80 | ||
| 22 | Sensitivity analysis | 41 | 55 | ||
| 23 | Ann | 35 | 39 | ||
| 24 | Random forest | 31 | 46 | ||
| 25 | Fly ash | Pozzolanic additives | 100 | 5.00 | 147 |
| 26 | Silica füme | 31 | 52 | ||
| 27 | Durability | Durability and sustainability | 47 | 3.13 | 45 |
| 28 | Sustainability | 35 | 50 | ||
| 29 | Confinement | Other topics | 47 | 3.13 | 31 |
| 30 | Ultrasonic pulse velocity | 35 | 45 |
| ID | Journals | Documents | Citations | Total Link Strength |
|---|---|---|---|---|
| 1 | Construction and Building Materails | 370 | 20553 | 1781 |
| 2 | Materials | 122 | 3565 | 851 |
| 3 | Case Studies in Construction Materials | 81 | 1608 | 582 |
| 4 | Journal of Building Engineering | 99 | 2841 | 549 |
| 5 | Journal of Cleaner Production | 36 | 2252 | 501 |
| 6 | Applied Sciences | 45 | 1296 | 343 |
| 7 | Buildings | 54 | 701 | 309 |
| 8 | Structural Concrete | 56 | 816 | 290 |
| 9 | Neural Computing and Applications | 26 | 1480 | 280 |
| 10 | Structures | 73 | 1048 | 253 |
| 11 | Advances in Civil Engineering | 31 | 856 | 242 |
| 12 | Materials Today Communications | 21 | 313 | 240 |
| 13 | Engineering Structures | 89 | 3565 | 232 |
| 14 | Sustainability | 38 | 690 | 227 |
| 15 | Scientific Reports | 26 | 250 | 169 |
| 16 | Cement and Concrete Research | 21 | 2949 | 158 |
| 17 | Journal of Materials in Civil Engineering | 57 | 1669 | 157 |
| 18 | Arabian Journal for Science and Engineering | 23 | 310 | 145 |
| 19 | European Journal of Environmental and Civil Engineering | 22 | 424 | 128 |
| 20 | Computers and Concrete, an International Journal | 52 | 822 | 113 |
| 21 | Cement and Concrete Composites | 26 | 1893 | 108 |
| 22 | Composite Structures | 23 | 1118 | 76 |
| 23 | Magazine of Concrete Research | 29 | 473 | 56 |
| 24 | Materials and Structures | 34 | 930 | 48 |
| ID | Author | Documents | Citations | Average Citiations | Total Link Strength |
|---|---|---|---|---|---|
| 1 | Amin, Muhammad Nasir | 36 | 859 | 23,86 | 96 |
| 2 | Javed, Muhammad Faisal | 35 | 1692 | 48,34 | 65 |
| 3 | Khan, Kaffayatullah | 35 | 1029 | 29,40 | 92 |
| 4 | Aslam, Fahid | 24 | 2019 | 84,13 | 62 |
| 5 | Ahmad, Ayaz | 21 | 1188 | 56,57 | 50 |
| 6 | Ahmad, Waqas | 21 | 919 | 43,76 | 56 |
| 7 | Nematzadeh, Mahdi | 20 | 640 | 32,00 | 0 |
| 8 | Ly, Hai-Bang | 18 | 981 | 54,50 | 0 |
| 9 | Behnood, Ali | 17 | 1109 | 65,24 | 9 |
| 10 | Kurda, Rawaz | 17 | 701 | 41,24 | 12 |
| 11 | Nehdi, Moncef L. | 17 | 752 | 44,24 | 2 |
| 12 | Alabduljabbar, Hisham | 16 | 697 | 43,56 | 32 |
| 13 | Farooq, Furqan | 16 | 1515 | 94,69 | 35 |
| 14 | Alyousef, Rayed | 15 | 1100 | 73,33 | 31 |
| 15 | Asteris, Panagiotis G. | 14 | 1828 | 130,57 | 8 |
| 16 | Mohammed, Ahmed Salih | 14 | 458 | 32,71 | 13 |
| 17 | Althoey, Fadi | 13 | 196 | 15,08 | 20 |
| 18 | Iqbal, Mudassir | 13 | 261 | 20,08 | 27 |
| 19 | Golafshani, Emadaldin Mohammadi | 12 | 503 | 41,92 | 9 |
| 20 | Deifalla, Ahmed Farouk | 11 | 222 | 20,18 | 14 |
| 21 | Gamil, Yaser | 11 | 81 | 7,36 | 15 |
| 22 | Huang, Jiandong | 11 | 185 | 16,82 | 1 |
| 23 | Hussain, Qudeer | 11 | 198 | 18,00 | 10 |
| 24 | Joyklad, Panuwat | 11 | 512 | 46,55 | 21 |
| 25 | Samui, Pijush | 11 | 683 | 62,09 | 3 |
| 26 | Yang, Keun-Hyeok | 11 | 99 | 9,00 | 0 |
| 27 | Ahmed, Hemn Unis | 10 | 530 | 53,00 | 12 |
| 28 | Ali, Mujahid | 10 | 147 | 14,70 | 18 |
| 29 | Bahrami, Alireza | 10 | 89 | 8,90 | 4 |
| 30 | Mohammed, Azad A. | 10 | 459 | 45,90 | 8 |
| 31 | Salami, Babatunde Abiodun | 10 | 213 | 21,30 | 16 |
| 32 | Sihag, Parveen | 10 | 390 | 39,00 | 5 |
| ID | Organization | Documents | Citations | Total Link Strength |
|---|---|---|---|---|
| 1 | Department of Civil Engineering, College of Engineering İn Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia | 34 | 2150 | 26 |
| 2 | Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Saudi Arabia | 27 | 456 | 25 |
| 3 | Department of Civil Engineering, Comsats University Islamabad, Abbottabad, 22060, Pakistan | 25 | 790 | 26 |
| 4 | Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam | 24 | 1815 | 10 |
| 5 | Department of Civil Engineering, Comsats University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan | 21 | 1164 | 13 |
| 6 | Department of Civil Engineering, University of Mazandaran, Babolsar, Iran | 16 | 1004 | 0 |
| 7 | Civil Engineering Department, College of Engineering, University of Sulaimani, Iraq | 15 | 566 | 17 |
| 8 | University of Transport Technology, Hanoi, 100000, Viet Nam | 15 | 932 | 5 |
| 9 | Department of Civil Engineering, College of Engineering, Najran University, Najran, Saudi Arabia | 14 | 164 | 15 |
| 10 | Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Viet Nam | 13 | 772 | 5 |
| 11 | Department of Highway and Bridge Engineering, Technical Engineering College, Erbil Polytechnic University, Erbil, 44001, Iraq | 12 | 523 | 25 |
| 12 | Cerıs, Civil Engineering, Architecture and Georresources Department, Instituto Superior Técnico, Universidade De Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal | 11 | 438 | 23 |
| 13 | Department of Civil Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan | 11 | 153 | 5 |
| 14 | Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russian Federation | 11 | 331 | 3 |
| 15 | School of Civil Engineering, Harbin Institute of Technology, Harbin, 150090, China | 11 | 441 | 0 |
| 16 | Department of Civil Engineering, College of Engineering, Nawroz University, Duhok, 42001, Iraq | 10 | 453 | 20 |
| 17 | School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China | 10 | 143 | 2 |
| 18 | School of Civil Engineering, Southeast University, Nanjing, 211189, China | 10 | 664 | 0 |
| ID | Country | Documents | Citations | Total Link Strength |
|---|---|---|---|---|
| 1 | China | 659 | 16848 | 404 |
| 2 | Iran | 270 | 11289 | 199 |
| 3 | United States | 243 | 9484 | 207 |
| 4 | India | 205 | 5195 | 123 |
| 5 | Australia | 179 | 7548 | 205 |
| 6 | Turkey | 177 | 8781 | 62 |
| 7 | Saudi Arabia | 169 | 4860 | 356 |
| 8 | Pakistan | 151 | 4957 | 314 |
| 9 | South Korea | 138 | 4687 | 87 |
| 10 | Viet Nam | 103 | 4865 | 117 |
| 11 | Iraq | 91 | 3376 | 115 |
| 12 | Canada | 89 | 3723 | 96 |
| 13 | Egypt | 87 | 1727 | 170 |
| 14 | United Kingdom | 78 | 4773 | 99 |
| 15 | Malaysia | 77 | 2977 | 162 |
| 16 | Portugal | 57 | 2573 | 51 |
| 17 | Poland | 56 | 2113 | 114 |
| 18 | Taiwan | 47 | 3303 | 15 |
| 19 | Russian Federation | 43 | 1157 | 82 |
| 20 | Spain | 40 | 1361 | 40 |
| 21 | France | 39 | 745 | 32 |
| 22 | Hong Kong | 39 | 1562 | 43 |
| 23 | Italy | 39 | 1225 | 38 |
| 24 | Japan | 35 | 1289 | 37 |
| 25 | Greece | 31 | 2265 | 50 |
| 26 | Thailand | 31 | 1019 | 40 |
| 27 | Germany | 30 | 1006 | 43 |
| 28 | Jordan | 28 | 503 | 16 |
| 29 | Sweden | 28 | 386 | 68 |
| 30 | Singapore | 27 | 1038 | 21 |
| 31 | Nigeria | 23 | 366 | 33 |
| 32 | Algeria | 22 | 712 | 25 |
| 33 | Bangladesh | 22 | 492 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).