Submitted:
21 September 2024
Posted:
23 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. RF Photonic Signal Processing


3. Optical Frequency Comb

4. Real-Time Signal Processing Based on OFC


5. Discussion
References
- J. Yao, “Microwave photonics,” Journal of lightwave technology, vol. 27, no. 3, pp. 314–335, 2009.
- C. Cox III, “Analog photonic links: Theory and practice,” 2004.
- C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of rf-over-fiber links and their impact on device design,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 2, pp. 906–920, 2006. [CrossRef]
- H. V. Roussell, M. D. Regan, J. L. Prince, C. H. Cox, J. X. Chen, W. K. Burns, G. E. Betts, E. I. Ackerman, and J. C. Campbell, “Gain, noise figure and bandwidth-limited dynamic range of a low-biased external modulation link,” in Microwave Photonics, 2007 Interntional Topical Meeting on. IEEE, 2007, pp. 84–87.
- I. Gasulla and J. Capmany, “Analytical model and figures of merit for filtered microwave photonic links,” Optics Express, vol. 19, no. 20, pp. 19 758–19 774, 2011. [CrossRef]
- J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature photonics, vol. 1, no. 6, p. 319, 2007. [CrossRef]
- W. S. Chang, RF photonic technology in optical fiber links. Cambridge University Press, 2002.
- D. Marpaung, J. Yao, and J. Capmany, “Integrated microwave photonics,” Nature photonics, vol. 13, no. 2, pp. 80–90, 2019. [CrossRef]
- J. Azaña, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics Journal, vol. 2, no. 3, pp. 359–386, 2010. [CrossRef]
- J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” Journal of Lightwave Technology, vol. 24, no. 1, pp. 201–229, 2006. [CrossRef]
- A. J. Seeds and K. J. Williams, “Microwave photonics,” Journal of lightwave technology, vol. 24, no. 12, pp. 4628– 4641, 2006. [CrossRef]
- S. Iezekiel, Microwave photonics: devices and applications. John Wiley & Sons, 2009.
- C. Rumelhard, C. Algani, and A.-L. Billabert, Microwaves Photonic Links: Components and Circuits. John Wiley & Sons, 2013.
- T. Berceli and P. R. Herczfeld, “Microwave photonics—a historical perspective,” IEEE transactions on microwave theory and techniques, vol. 58, no. 11, pp. 2992–3000, 2010. [CrossRef]
- A. Vilcot, B. Cabon, and J. Chazelas, Microwave Photonics: from components to applications and systems. Springer Science & Business Media, 2003.
- V. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nature Photonics, vol. 6, no. 3, pp. 186–194, 2012. [CrossRef]
- A. Malacarne, R. Ashrafi, M. Li, S. LaRochelle, J. Yao, and J. Azaña, “Single-shot photonic time-intensity integration based on a time-spectrum convolution system,” Optics Letters, vol. 37, no. 8, pp. 1355–1357, 2012. [CrossRef]
- V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser & Photonics Reviews, vol. 8, no. 3, pp. 368– 393, 2014. [CrossRef]
- Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” nature photonics, vol. 1, no. 8, pp. 463–467, 2007. [CrossRef]
- P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature, vol. 450, pp. 1214–7, 01 2008. [CrossRef]
- W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “High spectral purity kerr frequency comb radio frequency photonic oscillator,” Nature communications, vol. 6, no. 1, p. 7957, 2015. [CrossRef]
- J. S. Levy, A. A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “Cmoscompatible multiple-wavelength oscillator for on-chip optical interconnects,” Nature Photonics, vol. 4, pp. 37–40, 2010. [Online]. Available: https://api.semanticscholar.org/ CorpusID:122006845. [CrossRef]
- T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Integrated frequency comb source based hilbert transformer for wideband microwave photonic phase analysis,” Optics express, vol. 23, no. 17, pp. 22 087–22 097, 2015. [CrossRef]
- M. Frankel and R. Esman, “Fiber-optic tunable microwave transversal filter,” IEEE Photonics Technology Letters, vol. 7, no. 2, pp. 191–193, Feb. 1995. [CrossRef]
- E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable Programmable Microwave Photonic Filters Based on an Optical Frequency Comb,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 11, pp. 3269–3278, Nov. 2010. [CrossRef]
- W. Zhang and R. A. Minasian, “Ultrawide Tunable Microwave Photonic Notch Filter Based on Stimulated Brillouin Scattering,” IEEE Photonics Technology Letters, vol. 24, no. 14, pp. 1182–1184, Jul. 2012. [CrossRef]
- J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nature Communications, vol. 3, no. 1, p. 1075, Sep. 2012. [CrossRef]
- D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Lowpower, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica, vol. 2, no. 2, p. 76, Feb. 2015. [CrossRef]
- S. Gertler, E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “Tunable microwave-photonic filtering with high out-of-band rejection in silicon,” APL Photonics, vol. 5, no. 9, p. 096103, Sep. 2020. [CrossRef]
- Y. Tao, H. Shu, X. Wang, M. Jin, Z. Tao, F. Yang, J. Shi, and J. Qin, “Hybrid-integrated high-performance microwave photonic filter with switchable response,” Photonics Research, vol. 9, no. 8, p. 1569, Aug. 2021. [CrossRef]
- S. Gertler, N. T. Otterstrom, M. Gehl, A. L. Starbuck, C. M. Dallo, A. T. Pomerene, D. C. Trotter, A. L. Lentine, and P. T. Rakich, “Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon,” Nature Communications, vol. 13, no. 1, p. 1947, Apr. 2022. [CrossRef]
- O. Daulay, G. Liu, K. Ye, R. Botter, Y. Klaver, Q. Tan, H. Yu, M. Hoekman, E. Klein, C. Roeloffzen, Y. Liu, and D. Marpaung, “Ultrahigh dynamic range and low noise figure programmable integrated microwave photonic filter,” Nature Communications, vol. 13, no. 1, p. 7798, Dec. 2022. [CrossRef]
- X. Xu and et al., “Advanced adaptive photonic rf filters with 80 taps based on an integrated optical micro-comb source,” Journal of Lightwave Technology, vol. 37, no. 4, pp. 1288–1295, 2019. [CrossRef]
- A. Lindsay, G. Knight, and S. Winnall, “Photonic mixers for wide bandwidth RF receiver applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 9, pp. 2311–2317, Sept./1995. [CrossRef]
- E. A. Michael, B. Vowinkel, R. Schieder, M. Mikulics, M. Marso, and P. Kordoš, “Large-area traveling-wave photonic mixers for increased continuous terahertz power,” Applied Physics Letters, vol. 86, no. 11, p. 111120, Mar. 2005. [CrossRef]
- E. H. W. Chan and R. A. Minasian, “Microwave Photonic Downconverter With High Conversion Efficiency,” Journal of Lightwave Technology, vol. 30, no. 23, pp. 3580–3585, Dec. 2012. [CrossRef]
- E. H. Chan and R. A. Minasian, “High conversion efficiency microwave photonic mixer based on stimulated brillouin scattering carrier suppression technique,” Optics letters, vol. 38, no. 24, pp. 5292–5295, 2013. [CrossRef]
- A. Altaqui, E. H. W. Chan, and R. A. Minasian, “Microwave photonic mixer with high spurious-free dynamic range,” Applied Optics, vol. 53, no. 17, p. 3687, Jun. 2014. [CrossRef]
- S. Pan and Z. Tang, “A highly reconfigurable photonic microwave frequency mixer,” SPIE Newsroom, Feb. 2015. [CrossRef]
- J. Zhang, E. H. W. Chan, X. Wang, X. Feng, and B. Guan, “High Conversion Efficiency Photonic Microwave Mixer With Image Rejection Capability,” IEEE Photonics Journal, vol. 8, no. 4, pp. 1–11, Aug. 2016. [CrossRef]
- T. Jiang, R. Wu, S. Yu, D. Wang, and W. Gu, “Microwave photonic phase-tunable mixer,” Optics Express, vol. 25, no. 4, p. 4519, Feb. 2017. [CrossRef]
- A. Kumar, A. Gautam, and V. Priye, “Microwave Photonic Mixer Using DP-DDMZM for Next Generation 5G Cellular Systems,” Fiber and Integrated Optics, vol. 39, no. 4, pp. 149–168, Jul. 2020. [CrossRef]
- T. Lin, Z. Zhang, J. Liu, S. Zhao, J. Li, C. Zou, J. Wang, K. Zhang, and W. Jiang, “Reconfigurable Photonic Microwave Mixer With Mixing Spurs Suppressed and Dispersion Immune for Radio-Over-Fiber System,” IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 12, pp. 5317–5327, Dec. 2020. [CrossRef]
- G. Shen and Y. Zhou, “Broadband Microwave Photonic Mixer With High Spurs Suppression and Image Rejection,” IEEE Photonics Journal, vol. 16, no. 1, pp. 1–8, Feb. 2024. [CrossRef]
- F. Liu, Z. Tang, R. Wu, L. Tang, D. Van Thourhout, and S. Pan, “Silicon Integrated Microwave Photonic Mixer Based on Cascaded Microring Resonator Modulators,” IEEE Photonics Technology Letters, vol. 36, no. 5, pp. 333–336, Mar. 2024. [CrossRef]
- J. Zhou, S. Fu, S. Aditya, P. Ping, C. Lin, V. Wong, and D. Lim, “Photonic Temporal Differentiator based on Polarization Modulation in a LiNbO3 Phase Modulator.”.
- Y. Park, M. H. Asghari, and J. Azana, “Reconfigurable higher-order photonic intensity temporal differentiator,” in 2009 IEEE LEOS Annual Meeting Conference Proceedings. Belek-Antalya: IEEE, Oct. 2009, pp. 731–732.
- Yichen Han, Ze Li, and Jianping Yao, “A Microwave Bandpass Differentiator Implemented Based on a Nonuniformly-Spaced Photonic Microwave Delay-Line Filter,” Journal of Lightwave Technology, vol. 29, no. 22, pp. 3470–3475, Nov. 2011. [CrossRef]
- X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” Apl Photonics, vol. 2, no. 9, 2017. [CrossRef]
- M. Tan, X. Xu, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “ RF and Microwave Fractional Differentiator Based on Photonics,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 11, pp. 2767–2771, Nov. 2020. [CrossRef]
- D. Woods and T. J. Naughton, “Photonic neural networks,” Nature Physics, vol. 8, no. 4, pp. 257–259, Apr. 2012. [CrossRef]
- J. Bueno, S. Maktoobi, L. Froehly, I. Fischer, M. Jacquot, L. Larger, and D. Brunner, “Reinforcement learning in a large-scale photonic recurrent neural network,” Optica, vol. 5, no. 6, p. 756, Jun. 2018. [CrossRef]
- T. W. Hughes, M. Minkov, Y. Shi, and S. Fan, “Training of photonic neural networks through in situ backpropagation and gradient measurement,” Optica, vol. 5, no. 7, p. 864, Jul. 2018. [CrossRef]
- M. A. Nahmias, T. F. De Lima, A. N. Tait, H.-T. Peng, B. J. Shastri, and P. R. Prucnal, “Photonic Multiply-Accumulate Operations for Neural Networks,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 1, pp. 1–18, Jan. 2020. [CrossRef]
- B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nature Communications, vol. 11, no. 1, p. 2568, May 2020. [CrossRef]
- X. Xu, M. Tan, B. Corcoran, J. Wu, T. G. Nguyen, A. Boes, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, D. G. Hicks, and D. J. Moss, “Photonic Perceptron Based on a Kerr Microcomb for High-Speed, Scalable, Optical Neural Networks,” Laser & Photonics Reviews, vol. 14, no. 10, p. 2000070, Oct. 2020. [CrossRef]
- S. Zarei, M.-r. Marzban, and A. Khavasi, “Integrated photonic neural network based on silicon metalines,” Optics Express, vol. 28, no. 24, p. 36668, Nov. 2020. [CrossRef]
- F. Ashtiani, A. J. Geers, and F. Aflatouni, “An on-chip photonic deep neural network for image classification,” Nature, vol. 606, no. 7914, pp. 501–506, Jun. 2022. [CrossRef]
- W. Liu, M. Li, R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Coldren, and J. Yao, “A Photonic Temporal Integrator With an Ultra-Long Integration Time Window Based on an InP-InGaAsP Integrated Ring Resonator,” Journal of Lightwave Technology, vol. 32, no. 20, pp. 3654–3659, Oct. 2014. [CrossRef]
- J. Zhang and J. Yao, “Microwave photonic integrator based on a multichannel fiber Bragg grating,” Optics Letters, vol. 41, no. 2, p. 273, Jan. 2016. [CrossRef]
- X. Xu, M. Tan, J. Wu, A. Boes, B. Corcoran, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Photonic RF and Microwave Integrator Based on a Transversal Filter With Soliton Crystal Microcombs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3582–3586, Dec. 2020. [CrossRef]
- D. Moss, “High bandwidth, versatile and highly reconfigurable, RF and microwave photonic Hilbert transformers using Kerr micro-combs.”.
- J. Shen, G. Wu, W. Zou, and J. Chen, “A Photonic RF Phase Shifter Based on a Dual-Parallel Mach–Zehnder Modulator and an Optical Filter,” Applied Physics Express, vol. 5, no. 7, p. 072502, Jul. 2012. [CrossRef]
- Y. Li, X. Liu, X. Shu, and L. Zhang, “Arbitrary-Order Photonic Hilbert Transformers Based on Phase-Modulated Fiber Bragg Gratings in Transmission,” Photonics, vol. 8, no. 2, p. 27, Jan. 2021. [CrossRef]
- T. G. Nguyen and et al., “Integrated frequency comb source based hilbert transformer for wideband microwave photonic phase analysis,” Optics Express, vol. 23, no. 17, pp. 22 087–22 097, 2015. [CrossRef]
- J. Li, S. Fu, X. Xie, M. Xiang, Y. Dai, F. Yin, and Y. Qin, “Low-Latency Short-Time Fourier Transform of Microwave Photonics Processing,” Journal of Lightwave Technology, vol. 41, no. 19, pp. 6149–6156, Oct. 2023. [CrossRef]
- W. Zhang, J. C. Lederman, T. Ferreira De Lima, J. Zhang, S. Bilodeau, L. Hudson, A. Tait, B. J. Shastri, and P. R. Prucnal, “A system-on-chip microwave photonic processor solves dynamic RF interference in real time with picosecond latency,” Light: Science & Applications, vol. 13, no. 1, p. 14, Jan. 2024. [CrossRef]
- C. Han and et al., “Proton radiation effects on high-speed silicon mach-zehnder modulators for space application,” Science China Information Sciences, vol. 65, no. 12, p. 222401, 2022. [CrossRef]
- M. Tan, “Microcomb-based ultra-fast signal processing,” 2021.
- C. T. Chang, J. A. Cassaboom, and H. F. Taylor, “Fibre-optic delay-line devices for rf signal processing,” Electronics Letters, vol. 22, no. 13, pp. 678–680, 1977. [CrossRef]
- G. Yu, W. Zhang, and J. A. R. Williams, “Highperformance microwave transversal filter using fiber bragg grating arrays,” IEEE Photonics Technology Letters, vol. 12, no. 9, pp. 1183–1185, 2000. [CrossRef]
- C. Sima and et al., “Phase controlled integrated interferometric single-sideband filter based on planar bragg gratings implementing photonic hilbert transform,” Optics Letters, vol. 38, no. 5, pp. 727–729, 2013. [CrossRef]
- M. Li and J. Yao, “All-fiber temporal photonic fractional hilbert transformer based on a directly designed fiber bragg grating,” Optics Letters, vol. 35, no. 2, pp. 223–225, 2010. [CrossRef]
- M. Li and Y. Jianping, “Experimental demonstration of a wideband photonic temporal hilbert transformer based on a single fiber bragg grating,” IEEE Photonics Technology Letters, vol. 22, no. 21, pp. 1559–1561, 2010. [CrossRef]
- X. Xu, J. Wu, M. Shoeiby, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source,” APL Photonics, vol. 2, no. 9, p. 096104, Sep. 2017. [CrossRef]
- B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell et al., “Ultra-dense optical data transmission over standard fibre with a single chip source,” Nature communications, vol. 11, no. 1, p. 2568, 2020. [CrossRef]
- M. Tan and et al., “Photonic signal processor based on a kerr microcomb for real-time video image processing,” Communications Engineering, vol. 2, no. 1, p. 94, 2023. [CrossRef]
- T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature, vol. 416, no. 6877, pp. 233–237, 2002. [CrossRef]
- K. J. Vahala, “Optical microcavities,” Nature, vol. 424, pp. 839–846, 2003. [Online]. Available: https://api.semanticscholar.org/CorpusID:4349700. [CrossRef]
- T. J. Kippenberg, D. K. Armani, S. M. Spillane, and K. J. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature, vol. 421, pp. 925–928, 2003. [Online]. Available: https://api.semanticscholar.org/CorpusID:4420078. [CrossRef]
- T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity.” Physical review letters, vol. 93 8, p. 083904, 2004. [Online]. Available: https://api.semanticscholar.org/CorpusID:11378974. [CrossRef]
- A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki, “Low threshold optical oscillations in a whispering gallery mode caf2 resonator,” Phys. Rev. Lett., vol. 93, p. 243905, Dec 2004. [CrossRef]
- J. Ranka, R. Windeler, and A. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics letters, vol. 25, pp. 25–7, 02 2000. [CrossRef]
- L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. T. Chu, B. E. Little, and D. J. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nature Photonics, vol. 4, pp. 41–45, 2010. [Online]. Available: https://api.semanticscholar.org/CorpusID:120307174. [CrossRef]
- T. Herr, V. Brasch, J. Jost, C. Wang, N. Kondratiev, M. Gorodetsky, and T. Kippenberg, “Temporal solitons in optical microresonators,” Nature Photonics, vol. 8, 11 2012. [CrossRef]
- H. Bao, A. Cooper, M. Rowley, L. D. Lauro, J. S. T. Gongora, S. T. Chu, B. E. Little, G.-L. Oppo,R. Morandotti, D. J. Moss, B. Wetzel, M. Peccianti, and A. Pasquazi, “Laser cavity-soliton microcombs,” Nature Photonics, vol. 13, pp. 384–389, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:85502173. [CrossRef]
- D. Cole, E. Lamb, P. Del’Haye, S. Diddams, and S. Papp, “Soliton crystals in kerr resonators,” Nature Photonics, vol. 11, 10 2017. [CrossRef]
- Y. Sun, J. Wu, M. Tan, X. Xu, Y. Li, R. Morandotti, A. Mitchell, and D. J. Moss, “Applications of optical micro-combs”, Advances in Optics and Photonics Vol. 15 (1) 86-175 (2023). [CrossRef]
- X. Xue, Y. Xuan, H.-J. Kim, J. Wang, D. Leaird, M. Qi, and A. Weiner, “Programmable single-bandpass photonic rf filter based on kerr comb from a microring,” Lightwave Technology, Journal of, vol. 32, pp. 3557–3565, 10 2014. [CrossRef]
- X. Xu, M. Tan, J. Wu, R. Morandotti, A. D. Mitchell, and D. J. Moss, “Microcomb-based photonic rf signal processing,” IEEE Photonics Technology Letters, vol. 31, pp. 1854–1857, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:203075392. [CrossRef]
- P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, “Microresonatorbased solitons for massively parallel coherent optical communications,” Nature, vol. 546, pp. 274–279, 2016. [Online]. Available: https://api.semanticscholar.org/ CorpusID:15027009. [CrossRef]
- A. Fülöp, M. Mazur, A. Lorences-Riesgo, P.-H. Wang, Y. Xuan, D. Leaird, M. Qi, P. Andrekson, A. Weiner, and V. Torres Company, “High-order coherent communications using mode-locked dark-pulse kerr combs from microresonators,” Nature Communications, vol. 9, 04 2018. [CrossRef]
- M.-G. Suh and K. J. Vahala, “Soliton microcomb range measurement,” Science, vol. 359, pp. 884 – 887, 2017. https://api.semanticscholar.org/ CorpusID:3447410. [CrossRef]
- P. Trocha, D. Ganin, M. Karpov, M. H. P. Pfeiffer, A. Kordts, J. Krockenberger, S. Wolf, P. MarinPalomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, “Ultrafast optical ranging using microresonator soliton frequency combs,” Science, vol. 359, pp. 887 – 891, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:262504772. [CrossRef]
- M.-G. Suh, Q. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science, vol. 354, pp. 600 – 603, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:11249028. [CrossRef]
- A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye et al., “Micro-combs: A novel generation of optical sources,” Physics Reports, vol. 729, pp. 1–81, 2018. [CrossRef]
- S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 thz femtosecond laser comb,” Physical review letters, vol. 84, no. 22, p. 5102, 2000. [CrossRef]
- X. Xu, M. Tan, J. Wu, R. Morandotti, A. Mitchell, and D. J. Moss, “Microcomb-based photonic rf signal processing,” IEEE Photonics Technology Letters, vol. 31, no. 23, pp. 1854–1857, 2019. [CrossRef]
- D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science, vol. 288, no. 5466, pp. 635–639, 2000. [CrossRef]
- L. Jia-ming, Photonic Devices. Cambridge University Press, 2005.
- D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked ti:sapphire laser.” Optics letters, vol. 16 1, pp. 42–4, 1991. [Online]. Available: https://api.semanticscholar.org/CorpusID:32748074. [CrossRef]
- K. R. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretchedpulse mode-locked all-fiber ring laser.” Optics letters, vol. 18 13, p. 1080, 1993. [Online]. Available: https://api.semanticscholar.org/CorpusID:19639214. [CrossRef]
- H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1325–1331, 2000. [CrossRef]
- A. Parriaux, K. Hammani, and G. Millot, “Electro-optic frequency combs,” Adv. Opt. Photon., vol. 12, no. 1, pp. 223–287, Mar 2020. [Online]. Available: https://opg.optica.org/aop/abstract.cfm?URI=aop-12-1-223. [CrossRef]
- T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-q toroid microcavity.” Physical review letters, vol. 93 8, p. 083904, 2004. [Online]. Available: https://api.semanticscholar.org/CorpusID:11378974. [CrossRef]
- M. Haelterman, S. Trillo, and S. Wabnitz, “Dissipative modulation instability in a nonlinear dispersive ring cavity,” Optics Communications, vol. 91, pp. 401–407, 1992. [Online]. Available: https://api.semanticscholar.org/ CorpusID:122501011. [CrossRef]
- X. Xu, M. Tan, B. Corcoran, J. Wu, T. Nguyen, A. Boes, S. Chu, B. Little, R. Morandotti, A. Mitchell, D. Hicks, and D. Moss, “Photonic perceptron based on a kerr microcomb for high-speed, scalable, optical neural networks,” Laser & Photonics Reviews, vol. 14, 08 2020. [CrossRef]
- X. Xu, M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti et al., “11 tops photonic convolutional accelerator for optical neural networks,” Nature, vol. 589, no. 7840, pp. 44–51, 2021. [CrossRef]
- X. Xu, J. Wu, T. G. Nguyen, M. Shoeiby, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced rf and microwave functions based on an integrated optical frequency comb source,” Optics Express, vol. 26, no. 3, pp. 2569–2583, 2018. [CrossRef]
- X. Xu, M. Tan, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Advanced adaptive photonic rf filters with 80 taps based on an integrated optical micro-comb source,” Journal of Lightwave Technology, vol. 37, no. 4, pp. 1288–1295, 2019. [CrossRef]
- M. Tan, X. Xu, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell et al., “Microwave and rf photonic fractional hilbert transformer based on a 50 ghz kerr micro-comb,” Journal of Lightwave Technology, vol. 37, no. 24, pp. 6097–6104, 2019. [CrossRef]
- X. Xu, J. Wu, M. Tan, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Broadband microwave frequency conversion based on an integrated optical micro-comb source,” Journal of Lightwave Technology, vol. 38, no. 2, pp. 332–338, 2020. [CrossRef]
- X. Xu, M. Tan, B. Corcoran, J. Wu, T. G. Nguyen, A. Boes, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell et al., “Photonic perceptron based on a kerr microcomb for highspeed, scalable, optical neural networks,” Laser & Photonics Reviews, vol. 14, no. 10, p. 2000070, 2020. [CrossRef]
- M. Tan, X. Xu, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell et al., “Rf and microwave fractional differentiator based on photonics,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 11, pp. 2767–2771, 2020. [CrossRef]
- X. Xu, M. Tan, J. Wu, A. Boes, B. Corcoran, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell et al., “Photonic rf and microwave integrator based on a transversal filter with soliton crystal microcombs,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3582–3586, 2020. [CrossRef]
- J. Hu, J. He, J. Liu, A. S. Raja, M. Karpov, A. Lukashchuk, T. J. Kippenberg, and C.-S. Brès, “Reconfigurable radiofrequency filters based on versatile soliton microcombs,” Nature communications, vol. 11, no. 1, p. 4377, 2020. [CrossRef]
- J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja et al., “Parallel convolutional processing using an integrated photonic tensor core,” Nature, vol. 589, no. 7840, pp. 52–58, 2021. [CrossRef]
- M. Tan, X. Xu, J. Wu, B. Corcoran, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell et al., “Integral order photonic rf signal processors based on a soliton crystal micro-comb source,” Journal of Optics, vol. 23, no. 12, p. 125701, 2021. [CrossRef]
- M. Tan, X. Xu, A. Boes, B. Corcoran, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, A. J. Lowery, R. Morandotti et al., “Highly versatile broadband rf photonic fractional hilbert transformer based on a kerr soliton crystal microcomb,” Journal of Lightwave Technology, vol. 39, no. 24, pp. 7581–7587, 2021. [CrossRef]
- M. Tan, X. Xu, A. Boes, B. Corcoran, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, J. Wu, A. Mitchell et al., “Photonic signal processor based on a kerr microcomb for real-time video image processing,” Communications Engineering, vol. 2, no. 1, p. 94, 2023. [CrossRef]
- Y. Liu, J. Hotten, A. Choudhary, B. J. Eggleton, and D. Marpaung, “All-optimized integrated rf photonic notch filter,” Optics letters, vol. 42, no. 22, pp. 4631–4634, 2017. [CrossRef]
- Y. Liu, D. Marpaung, A. Choudhary, J. Hotten, and B. J. Eggleton, “Link performance optimization of chip-based si 3 n 4 microwave photonic filters,” Journal of lightwave technology, vol. 36, no. 19, pp. 4361–4370, 2018. [CrossRef]
- Y. Liu, Y. Yu, S. Yuan, X. Xu, and X. Zhang, “Tunable megahertz bandwidth microwave photonic notch filter based on a silica microsphere cavity,” Optics Letters, vol. 41, no. 21, pp. 5078–5081, 2016. [CrossRef]
- D. Marpaung, B. Morrison, M. Pagani, R. Pant, D.-Y. Choi, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “Low-power, chip-based stimulated brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica, vol. 2, no. 2, pp. 76–83, 2015. [CrossRef]
- A. Choudhary, B. Morrison, I. Aryanfar, S. Shahnia, M. Pagani, Y. Liu, K. Vu, S. Madden, D. Marpaung, and B. J. Eggleton, “Advanced integrated microwave signal processing with giant on-chip brillouin gain,” Journal of lightwave technology, vol. 35, no. 4, pp. 846–854, 2016. [CrossRef]
- D. Marpaung, B. Morrison, R. Pant, and B. J. Eggleton, “Frequency agile microwave photonic notch filter with anomalously high stopband rejection,” Optics letters, vol. 38, no. 21, pp. 4300–4303, 2013. [CrossRef]
- S. Mansoori and A. Mitchell, “Rf transversal filter using an aotf,” IEEE Photonics Technology Letters, vol. 16, no. 3, pp. 879–881, 2004. [CrossRef]
- J. Leng, W. Zhang, and J. A. Williams, “Optimization of superstructured fiber bragg gratings for microwave photonic filters response,” IEEE Photonics technology letters, vol. 16, no. 7, pp. 1736–1738, 2004. [CrossRef]
- M. Delgado-Pinar, J. Mora, A. Diez, M. Andres, B. Ortega, and J. Capmany, “Tunable and reconfigurable microwave filter by use of a bragg-grating-based acousto-optic super-lattice modulator,” Optics letters, vol. 30, no. 1, pp. 8–10, 2005. [CrossRef]
- G. Yu, W. Zhang, and J. Williams, “High-performance microwave transversal filter using fiber bragg grating arrays,” IEEE Photonics Technology Letters, vol. 12, no. 9, pp.1183–1185, 2000. [CrossRef]
- D. Hunter, R. Minasian, and P. Krug, “Tunable optical transversal filter based on chirped gratings,” Electronics Letters, vol. 31, no. 25, pp. 2205–2207, 1995. [CrossRef]
- A. Ortigosa-Blanch, J. Mora, J. Capmany, B. Ortega, and D. Pastor, “Tunable radio-frequency photonic filter based on an actively mode-locked fiber laser,” Optics letters, vol. 31, no. 6, pp. 709–711, 2006. [CrossRef]
- B. Toby, “Microresonator-based optical frequency combs,” DOC 2022 Abstract Book, p. 11, 2011.
- M. A. Foster, J. S. Levy, O. Kuzucu, K. Saha, M. Lipson, and A. L. Gaeta, “Silicon-based monolithic optical frequency comb source,” Optics Express, vol. 19, no. 15, pp. 14 233–14 239, 2011. [CrossRef]
- M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nature communications, vol. 3, no. 1, p. 765, 2012. [CrossRef]
- A. Pasquazi, L. Caspani, M. Peccianti, M. Clerici, M. Ferrera, L. Razzari, D. Duchesne, B. E. Little, S. T. Chu, D. J. Moss et al., “Self-locked optical parametric oscillation in a cmos compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Optics express, vol. 21, no. 11, pp. 13 333–13 341, 2013. [CrossRef]
- D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson,“New cmos-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nature photonics, vol. 7, no. 8, pp. 597–607, 2013. [CrossRef]
- L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Cmos-compatible integrated optical hyper-parametric oscillator,” Nature Photonics, vol. 4, no. 1, pp. 41–45, 2010. [CrossRef]
- Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund et al., “Deep learning with coherent nanophotonic circuits,” Nature photonics, vol. 11, no. 7, pp. 441–446, 2017. [CrossRef]
- X. Lin, Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, “All-optical machine learning using diffractive deep neural networks,” Science, vol. 361, no. 6406, pp. 1004–1008, 2018. [CrossRef]
- S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha, “Backpropagation for energy-efficient neuromorphic computing,” Advances in neural information processing systems, vol. 28, 2015.
- A. Graves, G. Wayne, M. Reynolds et al., “Hybrid computing using a neural network with dynamic external memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016. [CrossRef]
- D. A. Miller, “Attojoule optoelectronics for low-energy information processing and communications,” Journal of Lightwave Technology, vol. 35, no. 3, pp. 346–396, 2017. [CrossRef]
- P. Antonik, N. Marsal, D. Brunner, and D. Rontani, “Human action recognition with a large-scale brain-inspired photonic computer,” Nature Machine Intelligence, vol. 1, no. 11, pp. 530–537, 2019. [CrossRef]
- L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, and I. Fischer, “Information processing using a single dynamical node as complex system,” Nature communications, vol. 2, no. 1, p. 468, 2011. [CrossRef]
- H.-T. Peng, M. A. Nahmias, T. F. De Lima, A. N. Tait, and B. J. Shastri, “Neuromorphic photonic integrated circuits,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 6, pp. 1–15, 2018. [CrossRef]
- A. N. Tait, M. A. Nahmias, B. J. Shastri, and P. R. Prucnal, “Broadcast and weight: an integrated network for scalable photonic spike processing,” Journal of Lightwave Technology, vol. 32, no. 21, pp. 3427–3439, 2014. [CrossRef]
- N. Tait, J. Chang, B. J. Shastri, M. A. Nahmias, and P. R. Prucnal, “Demonstration of wdm weighted addition for principal component analysis,” Optics Express, vol. 23, no. 10, pp. 12 758–12 765, 2015. [CrossRef]
- J. Feldmann, N. Youngblood, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “All-optical spiking neurosynaptic networks with self-learning capabilities,” Nature, vol. 569, no. 7755, pp. 208–214, 2019. [CrossRef]
- V. J. Urick, “Considerations and application opportunities for integrated microwave photonics,” in Optical Fiber Communication Conference. Optica Publishing Group, 2016, pp. M2B–1.
- Stern, X. Ji, Y. Okawachi, A. L. Gaeta, and M. Lipson, “Battery-operated integrated frequency comb generator,” Nature, vol. 562, no. 7727, pp. 401–405, 2018. [CrossRef]
- Shen, L. Chang, J. Liu, H. Wang, Q.-F. Yang, C. Xiang, R. N. Wang, J. He, T. Liu, W. Xie et al., “Integrated turnkey soliton microcombs,” Nature, vol. 582, no. 7812, pp. 365–369, 2020. [CrossRef]
- A. J. Metcalf, H.-J. Kim, D. E. Leaird, J. A. Jaramillo-Villegas, K. A. McKinzie, V. Lal, A. Hosseini, G. E. Hoefler, F. Kish, and A. M. Weiner, “Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable rffiltering,” Optics Express, vol. 24, no. 21, pp. 23 925–23 940, 2016. [CrossRef]
- Sahin, K. Ooi, C. Png, and D. Tan, “Large, scalable dispersion engineering using cladding-modulated bragg gratings on a silicon chip,” Applied Physics Letters, vol. 110, no. 16, 2017. [CrossRef]
- C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at cmoscompatible voltages,” Nature, vol. 562, no. 7725, pp. 101–104, 2018. [CrossRef]
- Pasquazi, et al., “Sub-picosecond phase-sensitive optical pulse characterization on a chip”, Nature Photonics, vol. 5, no. 10, pp. 618-623 (2011). [CrossRef]
- M Ferrera et al., “On-Chip ultra-fast 1st and 2nd order CMOS compatible all-optical integration”, Optics Express vol. 19 (23), 23153-23161 (2011). [CrossRef]
- Bao, C., et al., Direct soliton generation in microresonators, Opt. Lett, 42, 2519 (2017). [CrossRef]
- M.Ferrera et al., “CMOS compatible integrated all-optical RF spectrum analyzer”, Optics Express, vol. 22, no. 18, 21488 21498 (2014). [CrossRef]
- M. Kues, et al., “Passively modelocked laser with an ultra-narrow spectral width”, Nature Photonics, vol. 11, no. 3, pp. 159, 2017. [CrossRef]
- M. Ferrera, et al., “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nature Photonics, vol. 2, no. 12, pp. 737-740, 2008. [CrossRef]
- M.Ferrera et al.“On-Chip ultra-fast 1st and 2nd order CMOS compatible all-optical integration”, Opt. Express, vol. 19, (23)pp. 23153-23161 (2011). [CrossRef]
- Duchesne, M. Peccianti, M. R. E. Lamont, et al., “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Optics Express, vol. 18, no, 2, pp. 923-930, 2010. [CrossRef]
- H Bao, L Olivieri, M Rowley, ST Chu, BE Little, R Morandotti, DJ Moss, ... “Turing patterns in a fiber laser with a nested microresonator: Robust and controllable microcomb generation”, Physical Review Research vol. 2 (2), 023395 (2020). [CrossRef]
- M. Ferrera, et al., “On-chip CMOS-compatible all-optical integrator”, Nature Communications, vol. 1, Article 29, 2010. [CrossRef]
- A. Pasquazi, et al., “All-optical wavelength conversion in an integrated ring resonator,” Optics Express, vol. 18, no. 4, pp. 3858-3863, 2010. [CrossRef]
- Pasquazi, Y. Park, J. Azana, et al., “Efficient wavelength conversion and net parametric gain via Four Wave Mixing in a high index doped silica waveguide,” Optics Express, vol. 18, no. 8, pp. 7634-7641, 2010. [CrossRef]
- Peccianti, M. Ferrera, L. Razzari, et al., “Subpicosecond optical pulse compression via an integrated nonlinear chirper,” Optics Express, vol. 18, no. 8, pp. 7625-7633, 2010. [CrossRef]
- M Ferrera, Y Park, L Razzari, BE Little, ST Chu, R Morandotti, DJ Moss, ... et al., “All-optical 1st and 2nd order integration on a chip”, Optics Express vol. 19 (23), 23153-23161 (2011). [CrossRef]
- M. Ferrera et al., “Low Power CW Parametric Mixing in a Low Dispersion High Index Doped Silica Glass Micro-Ring Resonator with Q-factor > 1 Million”, Optics Express, vol.17, no. 16, pp. 14098–14103 (2009). [CrossRef]
- M. Peccianti, et al., “Demonstration of an ultrafast nonlinear microcavity modelocked laser”, Nature Communications, vol. 3, pp. 765, 2012. [CrossRef]
- A.Pasquazi, et al., “Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip,” Optics Express, vol. 21, no. 11, pp. 13333-13341, 2013. [CrossRef]
- Pasquazi, et al., “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Optics Express, vol. 20, no. 24, pp. 27355-27362, 2012. [CrossRef]
- H. Bao, et al., Laser cavity-soliton microcombs, Nature Photonics, vol. 13, no. 6, pp. 384-389, Jun. 2019. [CrossRef]
- Antonio Cutrona, Maxwell Rowley, Debayan Das, Luana Olivieri, Luke Peters, Sai T. Chu, Brent L. Little, Roberto Morandotti, David J. Moss, Juan Sebastian Totero Gongora, Marco Peccianti, Alessia Pasquazi, “High Conversion Efficiency in Laser Cavity-Soliton Microcombs”, Optics Express Vol. 30, Issue 22, pp. 39816-39825 (2022). [CrossRef]
- M.Rowley, P.Hanzard, A.Cutrona, H.Bao, S.Chu, B.Little, R.Morandotti, D. J. Moss, G. Oppo, J. Gongora, M. Peccianti and A. Pasquazi, “Self-emergence of robust solitons in a micro-cavity”, Nature vol. 608 (7922) 303–309 (2022). [CrossRef]
- A. Cutrona, M. Rowley, A. Bendahmane, V. Cecconi,L. Peters, L. Olivieri, B. E. Little, S. T. Chu, S. Stivala, R. Morandotti, D. J. Moss, J. S. Totero-Gongora, M. Peccianti, A. Pasquazi, “Nonlocal bonding of a soliton and a blue-detuned state in a microcomb laser”, Nature Communications Physics 6 Article 259 (2023). [CrossRef]
- Aadhi A. Rahim, Imtiaz Alamgir, Luigi Di Lauro, Bennet Fischer, Nicolas Perron, Pavel Dmitriev, Celine Mazoukh, Piotr Roztocki, Cristina Rimoldi, Mario Chemnitz, Armaghan Eshaghi, Evgeny A. Viktorov, Anton V. Kovalev, Brent E. Little, Sai T. Chu, David J. Moss, and Roberto Morandotti, “Mode-locked laser with multiple timescales in a microresonator-based nested cavity”, APL Photonics 9 031302 (2024). [CrossRef]
- A. Cutrona, M. Rowley, A. Bendahmane, V. Cecconi,L. Peters, L. Olivieri, B. E. Little, S. T. Chu, S. Stivala, R. Morandotti, D. J. Moss, J. S. Totero-Gongora, M. Peccianti, A. Pasquazi, “Stability Properties of Laser Cavity-Solitons for Metrological Applications”, Applied Physics Letters vol. 122 (12) 121104 (2023). [CrossRef]
- Wu, J. et al. “2D layered graphene oxide films integrated with micro-ring resonators for enhanced nonlinear optics”, Small Vol. 16, 1906563 (2020). [CrossRef]
- Wu, J. et al., “Graphene oxide waveguide and micro-ring resonator polarizers”, Laser and Photonics Reviews Vol. 13, 1900056 (2019). [CrossRef]
- Zhang, Y. et al., “Enhanced Kerr nonlinearity and nonlinear figure of merit in silicon nanowires integrated with 2d graphene oxide films”, ACS Applied Material Interfaces Vol. 12, 33094-33103 (2020). [CrossRef]
- Qu, Y. et al., “Enhanced four-wave mixing in silicon nitride waveguides integrated with 2d layered graphene oxide films”, Advanced Optical Materials Vol. 8, 2001048 (2020). [CrossRef]
- Yuning Zhang, Jiayang Wu, Yunyi Yang, Yang Qu, Linnan Jia, Houssein El Dirani, Sébastien Kerdiles, Corrado Sciancalepore, Pierre Demongodin, Christian Grillet, Christelle Monat, Baohua Jia, and David J. Moss, “Enhanced supercontinuum generated in SiN waveguides coated with GO films”, Advanced Materials Technologies 8 (1) 2201796 (2023). [CrossRef]
- Yuning Zhang, Jiayang Wu, Linnan Jia, Yang Qu, Baohua Jia, and David J. Moss, “Graphene oxide for nonlinear integrated photonics”, Laser and Photonics Reviews 17 2200512 (2023). [CrossRef]
- Jiayang Wu, H.Lin, David J. Moss, T.K. Loh, Baohua Jia, “Graphene oxide for electronics, photonics, and optoelectronics”, Nature Reviews Chemistry 7 (3) 162–183 (2023). [CrossRef]
- Yang Qu, Jiayang Wu, Yuning Zhang, Yunyi Yang, Linnan Jia, Baohua Jia, and David J. Moss, “Photo thermal tuning in GO-coated integrated waveguides”, Micromachines Vol. 13 1194 (2022). [CrossRef]
- Yuning Zhang, Jiayang Wu, Yunyi Yang, Yang Qu, Houssein El Dirani, Romain Crochemore, Corrado Sciancalepore, Pierre Demongodin, Christian Grillet, Christelle Monat, Baohua Jia, and David J. Moss, “Enhanced self-phase modulation in silicon nitride waveguides integrated with 2D graphene oxide films”, IEEE Journal of Selected Topics in Quantum Electronics Vol. 29 (1) 5100413 (2023). [CrossRef]
- Yuning Zhang, Jiayang Wu, Yunyi Yang, Yang Qu, Linnan Jia, Baohua Jia, and David J. Moss, “Enhanced spectral broadening of femtosecond optical pulses in silicon nanowires integrated with 2D graphene oxide films”, Micromachines Vol. 13 756 (2022). [CrossRef]
- Jiayang Wu, Yuning Zhang, Junkai Hu, Yunyi Yang, Di Jin, Wenbo Liu, Duan Huang, Baohua Jia, David J. Moss, “Novel functionality with 2D graphene oxide films integrated on silicon photonic chips”, Advanced Materials Vol. 36 2403659 (2024). [CrossRef]
- Di Jin, Jiayang Wu, Junkai Hu, Wenbo Liu1, Yuning Zhang, Yunyi Yang, Linnan Jia, Duan Huang, Baohua Jia, and David J. Moss, “Silicon photonic waveguide and microring resonator polarizers incorporating 2D graphene oxide films”, Applied Physics Letters vol. 125, 000000 (2024). [CrossRef]
- Yuning Zhang, Jiayang Wu, Linnan Jia, Di Jin, Baohua Jia, Xiaoyong Hu, David Moss, Qihuang Gong, “Advanced optical polarizers based on 2D materials”, npj Nanophotonics Vol. 1, (2024). [CrossRef]
- Junkai Hu, Jiayang Wu, Wenbo Liu, Di Jin, Houssein El Dirani, Sébastien Kerdiles, Corrado Sciancalepore, Pierre Demongodin, Christian Grillet, Christelle Monat, Duan Huang, Baohua Jia, and David J. Moss, “2D graphene oxide: a versatile thermo-optic material”, Advanced Functional Materials 34 2406799 (2024). [CrossRef]
- Yang Qu, Jiayang Wu, Yuning Zhang, Yunyi Yang, Linnan Jia, Houssein El Dirani, Sébastien Kerdiles, Corrado Sciancalepore, Pierre Demongodin, Christian Grillet, Christelle Monat, Baohua Jia, and David J. Moss, “Integrated optical parametric amplifiers in silicon nitride waveguides incorporated with 2D graphene oxide films”, Light: Advanced Manufacturing 4 39 (2023). [CrossRef]
- Di Jin, Wenbo Liu, Linnan Jia, Junkai Hu, Duan Huang, Jiayang Wu, Baohua Jia, and David J. Moss, “Thickness and Wavelength Dependent Nonlinear Optical Absorption in 2D Layered MXene Films”, Small Science 4 2400179 (2024). [CrossRef]
- Linnan Jia, Jiayang Wu, Yuning Zhang, Yang Qu, Baohua Jia, Zhigang Chen, and David J. Moss, “Fabrication Technologies for the On-Chip Integration of 2D Materials”, Small: Methods Vol. 6, 2101435 (2022). [CrossRef]
- Yuning Zhang, Jiayang Wu, Yang Qu, Linnan Jia, Baohua Jia, and David J. Moss, “Design and optimization of four-wave mixing in microring resonators integrated with 2D graphene oxide films”, Journal of Lightwave Technology Vol. 39 (20) 6553-6562 (2021). [CrossRef]
- Yuning Zhang, Jiayang Wu, Yang Qu, Linnan Jia, Baohua Jia, and David J. Moss, “Optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D graphene oxide films”, Journal of Lightwave Technology Vol. 39 (14) 4671-4683 (2021). [CrossRef]
- Yang Qu, Jiayang Wu, Yuning Zhang, Yao Liang, Baohua Jia, and David J. Moss, “Analysis of four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films”, Journal of Lightwave Technology Vol. 39 (9) 2902-2910 (2021). [CrossRef]
- Jiayang Wu, Linnan Jia, Yuning Zhang, Yang Qu, Baohua Jia, and David J. Moss, “Graphene oxide: versatile films for flat optics to nonlinear photonic chips”, Advanced Materials Vol. 33 (3) 2006415, pp.1-29 (2021). [CrossRef]
- Y. Qu, J. Wu, Y. Zhang, L. Jia, Y. Yang, X. Xu, S. T. Chu, B. E. Little, R. Morandotti, B. Jia, and D. J. Moss, “Graphene oxide for enhanced optical nonlinear performance in CMOS compatible integrated devices”, Paper No. 11688-30, PW21O-OE109-36, 2D Photonic Materials and Devices IV, SPIE Photonics West, San Francisco CA March 6-11 (2021). [CrossRef]
- Yang Qu, Jiayang Wu, Yunyi Yang, Yuning Zhang, Yao Liang, Houssein El Dirani, Romain Crochemore, Pierre Demongodin, Corrado Sciancalepore, Christian Grillet, Christelle Monat, Baohua Jia, and David J. Moss, “Enhanced nonlinear four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films”, Advanced Optical Materials vol. 8 (21) 2001048 (2020). arXiv:2006.14944. [CrossRef]
- Yuning Zhang, Yang Qu, Jiayang Wu, Linnan Jia, Yunyi Yang, Xingyuan Xu, Baohua Jia, and David J. Moss, “Enhanced Kerr nonlinearity and nonlinear figure of merit in silicon nanowires integrated with 2D graphene oxide films”, ACS Applied Materials and Interfaces vol. 12 (29) 33094−33103 June 29 (2020). [CrossRef]
- Jiayang Wu, Yunyi Yang, Yang Qu, Yuning Zhang, Linnan Jia, Xingyuan Xu, Sai T. Chu, Brent E. Little, Roberto Morandotti, Baohua Jia, and David J. Moss, “Enhanced nonlinear four-wave mixing in microring resonators integrated with layered graphene oxide films”, Small vol. 16 (16) 1906563 (2020). [CrossRef]
- Jiayang Wu, Yunyi Yang, Yang Qu, Xingyuan Xu, Yao Liang, Sai T. Chu, Brent E. Little, Roberto Morandotti, Baohua Jia, and David J. Moss, “Graphene oxide waveguide polarizers and polarization selective micro-ring resonators”, Paper 11282-29, SPIE Photonics West, San Francisco, CA, 4 7 February (2020). [CrossRef]
- Jiayang Wu, Yunyi Yang, Yang Qu, Xingyuan Xu, Yao Liang, Sai T. Chu, Brent E. Little, Roberto Morandotti, Baohua Jia, and David J. Moss, “Graphene oxide waveguide polarizers and polarization selective micro-ring resonators”, Laser and Photonics Reviews vol. 13 (9) 1900056 (2019). [CrossRef]
- Yunyi Yang, Jiayang Wu, Xingyuan Xu, Sai T. Chu, Brent E. Little, Roberto Morandotti, Baohua Jia, and David J. Moss, “Enhanced four-wave mixing in graphene oxide coated waveguides”, Applied Physics Letters Photonics vol. 3 120803 (2018). [CrossRef]
- Linnan Jia, Yang Qu, Jiayang Wu, Yuning Zhang, Yunyi Yang, Baohua Jia, and David J. Moss, “Third-order optical nonlinearities of 2D materials at telecommunications wavelengths”, Micromachines (MDPI), 14, 307 (2023). [CrossRef]
- Linnan Jia, Dandan Cui, Jiayang Wu, Haifeng Feng, Tieshan Yang, Yunyi Yang, Yi Du, Weichang Hao, Baohua Jia, David J. Moss, “BiOBr nanoflakes with strong nonlinear optical properties towards hybrid integrated photonic devices”, Applied Physics Letters Photonics vol. 4 090802 vol. (2019). [CrossRef]
- Linnan Jia, Jiayang Wu, Yunyi Yang, Yi Du, Baohua Jia, David J. Moss, “Large Third-Order Optical Kerr Nonlinearity in Nanometer-Thick PdSe2 2D Dichalcogenide Films: Implications for Nonlinear Photonic Devices”, ACS Applied Nano Materials vol. 3 (7) 6876–6883 (2020). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).