Submitted:
20 September 2024
Posted:
23 September 2024
You are already at the latest version
Abstract
Keywords:
1. Skin Cancer - Overview of Pathophysiology and Epidemiology
1.1. Melanoma
1.2. Cutaneous Basal Cell Carcinoma (cBCC)
1.3. Cutaneous Squamous Cell Carcinoma (cSCC)
2. Cell Cycle Deregulation in Skin Cancer
2.1. CDKs and p16INK4
3. Skin Cancer Stem Cells (sCSCs) and Therapy Resistance
3.1. CSC and sCSCs
3.2. Molecular Mechanisms of Stemness in sCSC
3.2.1. Melanoma Cancer Stem Cells
3.2.2. Basal Cell Carcinoma Stem Cells
3.2.3. Cutaneous Squamous Cell Carcinoma Stem Cells
3.3. Mechanisms of Therapy Resistance in sCSCs
4. Cell Cycle Targeting Approaches
4.1. Concept of Cell Cycle Targeting in Skin Cancer
4.2. Synthetic CKIs
4.3. Other Cell Cycle Targeting Drugs
5. Active Clinical Trials and Potential of Cell Cycle Trageting
6. Summary
References
- Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. doi:10.3322/caac.21763. [CrossRef]
- Melanoma of the Skin - Cancer Stat Facts. SEER. Accessed August 4, 2024. https://seer-cancer-gov.proxy.bib.uottawa.ca/statfacts/html/melan.html.
- Saginala K, Barsouk A, Aluru JS, Rawla P, Barsouk A. Epidemiology of Melanoma. Med Sci Basel Switz. 2021;9(4):63. doi:10.3390/medsci9040063. [CrossRef]
- El Sharouni MA, van Diest PJ, Witkamp AJ, Sigurdsson V, van Gils CH. Subtyping Cutaneous Melanoma Matters. JNCI Cancer Spectr. 2020;4(6):pkaa097. doi:10.1093/jncics/pkaa097. [CrossRef]
- Rabbie R, Ferguson P, Molina-Aguilar C, Adams DJ, Robles-Espinoza CD. Melanoma subtypes: genomic profiles, prognostic molecular markers and therapeutic possibilities. J Pathol. 2019;247(5):539-551. doi:10.1002/path.5213. [CrossRef]
- Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20(11):1366-1379. doi:10.1080/15384047.2019.1640032. [CrossRef]
- Wunderlich K, Suppa M, Gandini S, Lipski J, White JM, Del Marmol V. Risk Factors and Innovations in Risk Assessment for Melanoma, Basal Cell Carcinoma, and Squamous Cell Carcinoma. Cancers. 2024;16(5):1016. doi:10.3390/cancers16051016. [CrossRef]
- Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007;445(7130):843-850. doi:10.1038/nature05660. [CrossRef]
- Hu DN, Savage HE, Roberts JE. Uveal melanocytes, ocular pigment epithelium, and Müller cells in culture: in vitro toxicology. Int J Toxicol. 2002;21(6):465-472. doi:10.1080/10915810290169891. [CrossRef]
- Goel VK, Lazar AJF, Warneke CL, Redston MS, Haluska FG. Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol. 2006;126(1):154-160. doi:10.1038/sj.jid.5700026. [CrossRef]
- Cancer Genome Atlas Network. Genomic Classification of Cutaneous Melanoma. Cell. 2015;161(7):1681-1696. doi:10.1016/j.cell.2015.05.044. [CrossRef]
- Bedikian AY, Millward M, Pehamberger H, et al. Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(29):4738-4745. doi:10.1200/JCO.2006.06.0483. [CrossRef]
- Knight A, Karapetyan L, Kirkwood JM. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers. 2023;15(4):1106. doi:10.3390/cancers15041106. [CrossRef]
- Proietti I, Skroza N, Michelini S, et al. BRAF Inhibitors: Molecular Targeting and Immunomodulatory Actions. Cancers. 2020;12(7):1823. doi:10.3390/cancers12071823. [CrossRef]
- Patel M, Eckburg A, Gantiwala S, et al. Resistance to Molecularly Targeted Therapies in Melanoma. Cancers. 2021;13(5):1115. doi:10.3390/cancers13051115. [CrossRef]
- Cameron MC, Lee E, Hibler BP, et al. Basal cell carcinoma: Epidemiology; pathophysiology; clinical and histological subtypes; and disease associations. J Am Acad Dermatol. 2019;80(2):303-317. doi:10.1016/j.jaad.2018.03.060. [CrossRef]
- Riew TR, Kim YS. Mutational Landscapes of Normal Skin and Their Potential Implications in the Development of Skin Cancer: A Comprehensive Narrative Review. J Clin Med. 2024;13(16):4815. doi:10.3390/jcm13164815. [CrossRef]
- Martincorena I, Roshan A, Gerstung M, et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348(6237):880-886. doi:10.1126/science.aaa6806. [CrossRef]
- Scrivener Y, Grosshans E, Cribier B. Variations of basal cell carcinomas according to gender, age, location and histopathological subtype. Br J Dermatol. 2002;147(1):41-47. doi:10.1046/j.1365-2133.2002.04804.x. [CrossRef]
- Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012. JAMA Dermatol. 2015;151(10):1081-1086. doi:10.1001/jamadermatol.2015.1187. [CrossRef]
- Muzic JG, Schmitt AR, Wright AC, et al. Incidence and Trends of Basal Cell Carcinoma and Cutaneous Squamous Cell Carcinoma: A Population-Based Study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin Proc. 2017;92(6):890-898. doi:10.1016/j.mayocp.2017.02.015. [CrossRef]
- Epidemiology of basal cell carcinoma: scholarly review | British Journal of Dermatology | Oxford Academic. Accessed August 1, 2024. https://academic.oup.com/bjd/article-abstract/177/2/359/6668659?redirectedFrom=fulltext&login=false.
- Eisemann N, Waldmann A, Geller AC, et al. Non-melanoma skin cancer incidence and impact of skin cancer screening on incidence. J Invest Dermatol. 2014;134(1):43-50. doi:10.1038/jid.2013.304. [CrossRef]
- Johnson RL, Rothman AL, Xie J, et al. Human Homolog of patched, a Candidate Gene for the Basal Cell Nevus Syndrome. Science. 1996;272(5268):1668-1671. doi:10.1126/science.272.5268.1668. [CrossRef]
- Youssef KK, Van Keymeulen A, Lapouge G, et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol. 2010;12(3):299-305. doi:10.1038/ncb2031. [CrossRef]
- Dika E, Scarfì F, Ferracin M, et al. Basal Cell Carcinoma: A Comprehensive Review. Int J Mol Sci. 2020;21(15):5572. doi:10.3390/ijms21155572. [CrossRef]
- Athar M, Tang X, Lee JL, Kopelovich L, Kim AL. Hedgehog signalling in skin development and cancer. Exp Dermatol. 2006;15(9):667-677. doi:10.1111/j.1600-0625.2006.00473.x. [CrossRef]
- Epstein EH. Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer. 2008;8(10):743-754. doi:10.1038/nrc2503. [CrossRef]
- Bonilla X, Parmentier L, King B, et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016;48(4):398-406. doi:10.1038/ng.3525. [CrossRef]
- Di Nardo L, Pellegrini C, Di Stefani A, et al. Molecular alterations in basal cell carcinoma subtypes. Sci Rep. 2021;11(1):13206. doi:10.1038/s41598-021-92592-3. [CrossRef]
- McDaniel B, Badri T, Steele RB. Basal Cell Carcinoma. In: StatPearls. StatPearls Publishing; 2024. Accessed September 14, 2024. http://www.ncbi.nlm.nih.gov/books/NBK482439/.
- LoRusso PM, Rudin CM, Reddy JC, et al. Phase I Trial of Hedgehog Pathway Inhibitor Vismodegib (GDC-0449) in Patients with Refractory, Locally Advanced or Metastatic Solid Tumors. Clin Cancer Res. 2011;17(8):2502-2511. doi:10.1158/1078-0432.CCR-10-2745. [CrossRef]
- Chang ALS, Oro AE. Initial Assessment of Tumor Regrowth After Vismodegib in Advanced Basal Cell Carcinoma. Arch Dermatol. 2012;148(11):1324-1325. doi:10.1001/archdermatol.2012.2354. [CrossRef]
- Cassarino DS, Derienzo DP, Barr RJ. Cutaneous squamous cell carcinoma: a comprehensive clinicopathologic classification. Part one. J Cutan Pathol. 2006;33(3):191-206. doi:10.1111/j.0303-6987.2006.00516_1.x. [CrossRef]
- Clinicopathologic variants of cutaneous squamous cell carcinoma - PubMed. Accessed August 4, 2024. https://pubmed-ncbi-nlm-nih-gov.proxy.bib.uottawa.ca/11152092/.
- Winge MCG, Kellman LN, Guo K, et al. Advances in cutaneous squamous cell carcinoma. Nat Rev Cancer. 2023;23(7):430-449. doi:10.1038/s41568-023-00583-5. [CrossRef]
- Lober BA, Lober CW, Accola J. Actinic keratosis is squamous cell carcinoma. J Am Acad Dermatol. 2000;43(5):881. doi:10.1067/mjd.2000.108373. [CrossRef]
- From actinic keratosis to squamous cell carcinoma | British Journal of Dermatology | Oxford Academic. Accessed August 2, 2024. https://academic.oup.com/bjd/article-abstract/146/s61/20/6634287?login=false.
- Schmults CD, Karia PS, Carter JB, Han J, Qureshi AA. Factors Predictive of Recurrence and Death From Cutaneous Squamous Cell Carcinoma: A 10-Year, Single-Institution Cohort Study. JAMA Dermatol. 2013;149(5):541-547. doi:10.1001/jamadermatol.2013.2139. [CrossRef]
- Chow RY, Jeon US, Levee TM, et al. PI3K Promotes Basal Cell Carcinoma Growth Through Kinase-Induced p21 Degradation. Front Oncol. 2021;11:668247. doi:10.3389/fonc.2021.668247. [CrossRef]
- Rünger TM, Kappes UP. Mechanisms of mutation formation with long-wave ultraviolet light (UVA). Photodermatol Photoimmunol Photomed. 2008;24(1):2-10. doi:10.1111/j.1600-0781.2008.00319.x. [CrossRef]
- Gold KA, Kies MS, William WN, Johnson FM, Lee JJ, Glisson BS. Erlotinib in the Treatment of Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma: A Single Arm Phase II Clinical Trial. Cancer. 2018;124(10):2169-2173. doi:10.1002/cncr.31346. [CrossRef]
- Guidelines of care for the management of cutaneous squamous cell carcinoma - PMC. Accessed August 2, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6652228/.
- Walker GJ, Flores JF, Glendening JM, Lin A (Hsui T, Markl IDC, Fountain JW. Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosomes Cancer. 1998;22(2):157-163. doi:10.1002/(SICI)1098-2264(199806)22:2<157::AID-GCC11>3.0.CO;2-N. [CrossRef]
- Sanki A, Li W, Colman M, Karim RZ, Thompson JF, Scolyer RA. Reduced expression of p16 and p27 is correlated with tumour progression in cutaneous melanoma. Pathology (Phila). 2007;39(6):551-557. doi:10.1080/00313020701684409. [CrossRef]
- Somatic p16INK4a loss accelerates melanomagenesis - PMC. Accessed August 4, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3007178/.
- Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P, Dowdy SF. Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. eLife. 2014;3:e02872. doi:10.7554/eLife.02872. [CrossRef]
- Kong Y, Sheng X, Wu X, et al. Frequent Genetic Aberrations in the CDK4 Pathway in Acral Melanoma Indicate the Potential for CDK4/6 Inhibitors in Targeted Therapy. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23(22):6946-6957. doi:10.1158/1078-0432.CCR-17-0070. [CrossRef]
- Rane SG, Cosenza SC, Mettus RV, Reddy EP. Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol. 2002;22(2):644-656. doi:10.1128/MCB.22.2.644-656.2002. [CrossRef]
- Zou X, Ray D, Aziyu A, et al. Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence. Genes Dev. 2002;16(22):2923-2934. doi:10.1101/gad.1033002. [CrossRef]
- Sauter ER, Yeo UC, von Stemm A, et al. Cyclin D1 is a candidate oncogene in cutaneous melanoma. Cancer Res. 2002;62(11):3200-3206.
- Sauter ER, Nesbit M, Litwin S, Klein-Szanto AJP, Cheffetz S, Herlyn M. Antisense Cyclin D1 Induces Apoptosis and Tumor Shrinkage in Human Squamous Carcinomas1. Cancer Res. 1999;59(19):4876-4881.
- Sheppard KE, McArthur GA. The Cell-Cycle Regulator CDK4: An Emerging Therapeutic Target in Melanoma. Clin Cancer Res. 2013;19(19):5320-5328. doi:10.1158/1078-0432.CCR-13-0259. [CrossRef]
- Smalley KSM, Lioni M, Palma MD, et al. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E–mutated melanomas. Mol Cancer Ther. 2008;7(9):2876-2883. doi:10.1158/1535-7163.MCT-08-0431. [CrossRef]
- Young RJ, Waldeck K, Martin C, et al. Loss of CDKN2A expression is a frequent event in primary invasive melanoma and correlates with sensitivity to the CDK4/6 inhibitor PD0332991 in melanoma cell lines. Pigment Cell Melanoma Res. 2014;27(4):590-600. doi:10.1111/pcmr.12228. [CrossRef]
- Deregulation of the tumour suppressor genes p14ARF, p15INK4b, p16INK4a and p53 in basal cell carcinoma - Kanellou - 2009 - British Journal of Dermatology - Wiley Online Library. Accessed July 4, 2024. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2133.2009.09079.x.
- Eshkoor SA, Ismail P, Rahman SA, Oshkour SA. p16 Gene Expression in Basal Cell Carcinoma. Arch Med Res. 2008;39(7):668-673. doi:10.1016/j.arcmed.2008.06.003. [CrossRef]
- Paolini F, Carbone A, Benevolo M, et al. Human Papillomaviruses, p16INK4a and Akt expression in basal cell carcinoma. J Exp Clin Cancer Res. 2011;30(1):108. doi:10.1186/1756-9966-30-108. [CrossRef]
- Eshkoor S, Rahman S. Gene Expression of CDK 6 and CCND 1 Genes in Basal Cell Carcinoma. In: ; 2008. Accessed August 4, 2024. https://www.semanticscholar.org/paper/Gene-Expression-of-CDK-6-and-CCND-1-Genes-in-Basal-Eshkoor-Rahman/099697740b7d77f89b0053441ee527bda6b0adcf.
- Svensson S, Nilsson K, Ringberg A, Landberg G. Invade or proliferate? Two contrasting events in malignant behavior governed by p16(INK4a) and an intact Rb pathway illustrated by a model system of basal cell carcinoma. Cancer Res. 2003;63(8):1737-1742.
- Teng Y, Yu Y, Li S, et al. Ultraviolet Radiation and Basal Cell Carcinoma: An Environmental Perspective. Front Public Health. 2021;9. doi:10.3389/fpubh.2021.666528. [CrossRef]
- Hasan A, Kandil AM, Al-Ghamdi HS, et al. Sun-Exposed versus Sun-Protected Cutaneous Basal Cell Carcinoma: Clinico-Pathological Profile and p16 Immunostaining. Diagn Basel Switz. 2023;13(7):1271. doi:10.3390/diagnostics13071271. [CrossRef]
- Nindl I, Meyer T, Schmook T, et al. Human papillomavirus and overexpression of P16INK4a in nonmelanoma skin cancer. Dermatol Surg Off Publ Am Soc Dermatol Surg Al. 2004;30(3):409-414. doi:10.1111/j.1524-4725.2004.30111.x. [CrossRef]
- Park HW, Song SY, Lee TJ, Jeong D, Lee TY. Abrogation of the p16-retinoblastoma-cyclin D1 pathway in head and neck squamous cell carcinomas. Oncol Rep. 2007;18(1):267-272.
- Quinn AG, Campbell C, Healy E, Rees JL. Chromosome 9 Allele Loss Occurs in both Basal and Squamous Cell Carcinomas of the Skin. J Invest Dermatol. 1994;102(3):300-303. doi:10.1111/1523-1747.ep12371786. [CrossRef]
- Zheng Z, Kye Y, Zhang X, Kim A, Kim I. Expression of p63, bcl-2, bcl-6 and p16 in Basal Cell Carcinoma and Squamous Cell Carcinoma of the Skin.
- Brady CA, Attardi LD. p53 at a glance. J Cell Sci. 2010;123(15):2527-2532. doi:10.1242/jcs.064501. [CrossRef]
- Shen L, Kondo Y, Hamilton SR, Rashid A, Issa JJ. p14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53. Gastroenterology. 2003;124(3):626-633. doi:10.1053/gast.2003.50102. [CrossRef]
- Bates S, Phillips AC, Clark PA, et al. p14ARF links the tumour suppressors RB and p53. Nature. 1998;395(6698):124-125. doi:10.1038/25867. [CrossRef]
- Stott FJ, Bates S, James MC, et al. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 1998;17(17):5001-5014. doi:10.1093/emboj/17.17.5001. [CrossRef]
- Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022;29(5):946-960. doi:10.1038/s41418-022-00988-z. [CrossRef]
- Fargnoli MC, Chimenti S, Peris K, et al. CDKN2a/p16INK4a Mutations and Lack of p19ARF Involvement in Familial Melanoma Kindreds. J Invest Dermatol. 1998;111(6):1202-1206. doi:10.1046/j.1523-1747.1998.00412.x. [CrossRef]
- Bachmann IM, Straume O, Akslen LA. Altered expression of cell cycle regulators Cyclin D1, p14, p16, CDK4 and Rb in nodular melanomas. Int J Oncol. 2004;25(6):1559-1565. doi:10.3892/ijo.25.6.1559. [CrossRef]
- Freedberg DE, Rigas SH, Russak J, et al. Frequent p16-Independent Inactivation of p14ARF in Human Melanoma. JNCI J Natl Cancer Inst. 2008;100(11):784-795. doi:10.1093/jnci/djn157. [CrossRef]
- Rizos H, Darmanian AP, Holland EA, Mann GJ, Kefford RF. Mutations in the INK4a/ARF Melanoma Susceptibility Locus Functionally Impair p14ARF*. J Biol Chem. 2001;276(44):41424-41434. doi:10.1074/jbc.M105299200. [CrossRef]
- Dobrowolski R, Hein R, Buettner R, Bosserhoff A. Loss of p14ARF expression in melanoma. Arch Dermatol Res. 2002;293(11):545-551. doi:10.1007/s00403-001-0274-y. [CrossRef]
- Kanellou P, Zaravinos A, Zioga M, et al. Genomic instability, mutations and expression analysis of the tumour suppressor genes p14ARF, p15INK4b, p16INK4a and p53 in actinic keratosis. Cancer Lett. 2008;264(1):145-161. doi:10.1016/j.canlet.2008.01.042. [CrossRef]
- Brown VL, Harwood CA, Crook T, Cronin JG, Kelsell DP, Proby CM. p16INK4a and p14ARF Tumor Suppressor Genes Are Commonly Inactivated in Cutaneous Squamous Cell Carcinoma. J Invest Dermatol. 2004;122(5):1284-1292. doi:10.1111/j.0022-202X.2004.22501.x. [CrossRef]
- Pacifico A, Goldberg LH, Peris K, Chimenti S, Leone G, Ananthaswamy HN. Loss of CDKN2A and p14ARF expression occurs frequently in human nonmelanoma skin cancers. Br J Dermatol. 2008;158(2):291-297. doi:10.1111/j.1365-2133.2007.08360.x. [CrossRef]
- Sharpless NE. INK4a/ARF: A multifunctional tumor suppressor locus. Mutat Res Mol Mech Mutagen. 2005;576(1):22-38. doi:10.1016/j.mrfmmm.2004.08.021. [CrossRef]
- Kamijo T, Zindy F, Roussel MF, et al. Tumor Suppression at the Mouse INK4a Locus Mediated by the Alternative Reading Frame Product p19 ARF. Cell. 1997;91(5):649-659. doi:10.1016/S0092-8674(00)80452-3. [CrossRef]
- Russell JL, Weaks RL, Berton TR, Johnson DG. E2F1 suppresses skin carcinogenesis via the ARF-p53 pathway. Oncogene. 2006;25(6):867-876. doi:10.1038/sj.onc.1209120. [CrossRef]
- Zhang T, Dutton-Regester K, Brown KM, Hayward NK. The genomic landscape of cutaneous melanoma. Pigment Cell Melanoma Res. 2016;29(3):266-283. doi:10.1111/pcmr.12459. [CrossRef]
- Hodis E, Watson IR, Kryukov GV, et al. A Landscape of Driver Mutations in Melanoma. Cell. 2012;150(2):251-263. doi:10.1016/j.cell.2012.06.024. [CrossRef]
- Shain AH, Yeh I, Kovalyshyn I, et al. The Genetic Evolution of Melanoma from Precursor Lesions. N Engl J Med. 2015;373(20):1926-1936. doi:10.1056/NEJMoa1502583. [CrossRef]
- Webster MR, Fane ME, Alicea GM, et al. Paradoxical Role for Wild-Type p53 in Driving Therapy Resistance in Melanoma. Mol Cell. 2020;77(3):633-644.e5. doi:10.1016/j.molcel.2019.11.009. [CrossRef]
- Terzian T, Torchia EC, Dai D, et al. p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation. Pigment Cell Melanoma Res. 2010;23(6):781-794. doi:10.1111/j.1755-148X.2010.00773.x. [CrossRef]
- Houben R, Hesbacher S, Schmid CP, et al. High-Level Expression of Wild-Type p53 in Melanoma Cells is Frequently Associated with Inactivity in p53 Reporter Gene Assays. PLOS ONE. 2011;6(7):e22096. doi:10.1371/journal.pone.0022096. [CrossRef]
- Li W, Sanki A, Karim RZ, et al. The role of cell cycle regulatory proteins in the pathogenesis of melanoma. Pathology (Phila). 2006;38(4):287-301. doi:10.1080/00313020600817951. [CrossRef]
- Avery-Kiejda KA, Bowden NA, Croft AJ, et al. P53 in human melanoma fails to regulate target genes associated with apoptosis and the cell cycle and may contribute to proliferation. BMC Cancer. 2011;11(1):203. doi:10.1186/1471-2407-11-203. [CrossRef]
- Loureiro JB, Abrantes M, Oliveira PA, Saraiva L. P53 in skin cancer: From a master player to a privileged target for prevention and therapy. Biochim Biophys Acta BBA - Rev Cancer. 2020;1874(2):188438. doi:10.1016/j.bbcan.2020.188438. [CrossRef]
- JCI - An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. Accessed July 22, 2024. https://www.jci.org/articles/view/31721.
- Bolshakov S, Walker CM, Strom SS, et al. p53 Mutations in Human Aggressive and Nonaggressive Basal and Squamous Cell Carcinomas1. Clin Cancer Res. 2003;9(1):228-234.
- Rigby CM, Roy S, Deep G, et al. Role of p53 in silibinin-mediated inhibition of ultraviolet B radiation-induced DNA damage, inflammation and skin carcinogenesis. Carcinogenesis. 2017;38(1):40-50. doi:10.1093/carcin/bgw106. [CrossRef]
- Ananthaswamy HN, Loughlin SM, Ullrich SE, Kripke ML. Inhibition of UV-induced p53 mutations by sunscreens: implications for skin cancer prevention. J Investig Dermatol Symp Proc. 1998;3(1):52-56.
- Campbell C, Quinn AG, Ro YS, Angus B, Rees JL. p53 mutations are common and early events that precede tumor invasion in squamous cell neoplasia of the skin. J Invest Dermatol. 1993;100(6):746-748. doi:10.1111/1523-1747.ep12475717. [CrossRef]
- Yilmaz AS, Ozer HG, Gillespie JL, et al. Differential mutation frequencies in metastatic cutaneous squamous cell carcinomas versus primary tumors. Cancer. 2017;123(7):1184-1193. doi:10.1002/cncr.30459. [CrossRef]
- Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal | Science Signaling. Accessed July 22, 2024. https://www.science.org/doi/abs/10.1126/scisignal.2004088.
- Boeckmann L, Martens MC, Emmert S. Molecular Biology of Basal and Squamous Cell Carcinomas. In: Reichrath J, ed. Sunlight, Vitamin D and Skin Cancer. Springer International Publishing; 2020:171-191. doi:10.1007/978-3-030-46227-7_9. [CrossRef]
- Jin Y, Li S, Yu Q, Chen T, Liu D. Application of stem cells in regeneration medicine. MedComm. 2023;4(4):e291. doi:10.1002/mco2.291. [CrossRef]
- Mannino G, Russo C, Maugeri G, et al. Adult stem cell niches for tissue homeostasis. J Cell Physiol. 2022;237(1):239-257. doi:10.1002/jcp.30562. [CrossRef]
- Perez-Losada J, Balmain A. Stem-cell hierarchy in skin cancer. Nat Rev Cancer. 2003;3(6):434-443. doi:10.1038/nrc1095. [CrossRef]
- Till JE, McCULLOCH EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213-222.
- Fuchs E. Skin stem cells: rising to the surface. J Cell Biol. 2008;180:273-284. doi:10.1083/jcb.200708185. [CrossRef]
- Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1):68. doi:10.1186/s13287-019-1165-5. [CrossRef]
- Burns EM, Ahmed H, Isedeh PN, et al. Ultraviolet radiation, both UVA and UVB, influences the composition of the skin microbiome. Exp Dermatol. 2019;28(2):136-141. doi:10.1111/exd.13854. [CrossRef]
- Liu Y, Chen YG. Intestinal epithelial plasticity and regeneration via cell dedifferentiation. Cell Regen. 2020;9:14. doi:10.1186/s13619-020-00053-5. [CrossRef]
- Banjac I, Maimets M, Jensen KB. Maintenance of high-turnover tissues during and beyond homeostasis. Cell Stem Cell. 2023;30(4):348-361. doi:10.1016/j.stem.2023.03.008. [CrossRef]
- Distinct mechanisms for sebaceous gland self-renewal and regeneration provide durability in response to injury - PubMed. Accessed September 14, 2024. https://pubmed-ncbi-nlm-nih-gov.proxy.bib.uottawa.ca/37205445/.
- Donati G, Watt FM. Stem Cell Heterogeneity and Plasticity in Epithelia. Cell Stem Cell. 2015;16(5):465-476. doi:10.1016/j.stem.2015.04.014. [CrossRef]
- Blanpain C, Fuchs E. Plasticity of epithelial stem cells in tissue regeneration. Science. 2014;344(6189):1242281. doi:10.1126/science.1242281. [CrossRef]
- Jaks V, Barker N, Kasper M, et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet. 2008;40(11):1291-1299. doi:10.1038/ng.239. [CrossRef]
- Nowak JA, Polak L, Pasolli HA, Fuchs E. Hair Follicle Stem Cells Are Specified and Function in Early Skin Morphogenesis. Cell Stem Cell. 2008;3(1):33-43. doi:10.1016/j.stem.2008.05.009. [CrossRef]
- Ito M, Liu Y, Yang Z, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med. 2005;11(12):1351-1354. doi:10.1038/nm1328. [CrossRef]
- Zhang YV, Cheong J, Ciapurin N, McDermitt DJ, Tumbar T. Distinct Self-renewal and Differentiation Phases in the Niche of Infrequently Dividing Hair Follicle Stem Cells. Cell Stem Cell. 2009;5(3):267-278. doi:10.1016/j.stem.2009.06.004. [CrossRef]
- Morris RJ, Liu Y, Marles L, et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol. 2004;22(4):411-417. doi:10.1038/nbt950. [CrossRef]
- Kotton DN, Morrisey EE. Lung regeneration: mechanisms, applications and emerging stem cell populations. Nat Med. 2014;20(8):822-832. doi:10.1038/nm.3642. [CrossRef]
- Belote RL, Le D, Maynard A, et al. Human melanocyte development and melanoma dedifferentiation at single-cell resolution. Nat Cell Biol. 2021;23(9):1035-1047. doi:10.1038/s41556-021-00740-8. [CrossRef]
- Wong SY, Reiter JF. Wounding mobilizes hair follicle stem cells to form tumors. Proc Natl Acad Sci. 2011;108(10):4093-4098. doi:10.1073/pnas.1013098108. [CrossRef]
- Yuan S, Stewart KS, Yang Y, et al. Ras drives malignancy through stem cell crosstalk with the microenvironment. Nature. 2022;612(7940):555-563. doi:10.1038/s41586-022-05475-6. [CrossRef]
- Fang D, Nguyen TK, Leishear K, et al. A Tumorigenic Subpopulation with Stem Cell Properties in Melanomas. Cancer Res. 2005;65(20):9328-9337. doi:10.1158/0008-5472.CAN-05-1343. [CrossRef]
- Prevodnik VK, Lavrenčak J, Horvat M, Novakovič BJ. The predictive significance of CD20 expression in B-cell lymphomas. Diagn Pathol. 2011;6:33. doi:10.1186/1746-1596-6-33. [CrossRef]
- Pinc A, Somasundaram R, Wagner C, et al. Targeting CD20 in melanoma patients at high risk of disease recurrence. Mol Ther J Am Soc Gene Ther. 2012;20(5):1056-1062. doi:10.1038/mt.2012.27. [CrossRef]
- Maurer M, Somasundaram R, Herlyn M, Wagner SN. Immunotargeting of tumor subpopulations in melanoma patients. Oncoimmunology. 2012;1(8):1454-1456. doi:10.4161/onci.21357. [CrossRef]
- Zeng Y bin, Yu Z chong, He Y ni, et al. Salinomycin-loaded lipid-polymer nanoparticles with anti-CD20 aptamers selectively suppress human CD20+ melanoma stem cells. Acta Pharmacol Sin. 2018;39(2):261-274. doi:10.1038/aps.2017.166. [CrossRef]
- Mukhtar AB, Morgan HJ, Gibbs A, Davies GE, Lovatt C, Patel GK. Targeting CD20-expressing malignant melanoma cells augments BRAF inhibitor killing. Br J Dermatol. 2024;190(5):729-739. doi:10.1093/bjd/ljad502. [CrossRef]
- Kang JH, Lee SH, Hong D, et al. Aldehyde dehydrogenase is used by cancer cells for energy metabolism. Exp Mol Med. 2016;48(11):e272. doi:10.1038/emm.2016.103. [CrossRef]
- Yang L, Ren Y, Yu X, et al. ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod Pathol. 2014;27(5):775-783. doi:10.1038/modpathol.2013.189. [CrossRef]
- Panigoro SS, Kurnia D, Kurnia A, Haryono SJ, Albar ZA. ALDH1 Cancer Stem Cell Marker as a Prognostic Factor in Triple-Negative Breast Cancer. Int J Surg Oncol. 2020;2020:7863243. doi:10.1155/2020/7863243. [CrossRef]
- Liu H, Qiu W, Sun T, et al. Therapeutic strategies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharm Sin B. 2022;12(4):1781-1804. doi:10.1016/j.apsb.2021.12.019. [CrossRef]
- Püschel J, Dubrovska A, Gorodetska I. The Multifaceted Role of Aldehyde Dehydrogenases in Prostate Cancer Stem Cells. Cancers. 2021;13(18):4703. doi:10.3390/cancers13184703. [CrossRef]
- Piskounova E, Agathocleous M, Murphy MM, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527(7577):186-191. doi:10.1038/nature15726. [CrossRef]
- Lu Y, Travnickova J, Badonyi M, et al. ALDH1A3-acetaldehyde metabolism potentiates transcriptional heterogeneity in melanoma. Cell Rep. 2024;43(7). doi:10.1016/j.celrep.2024.114406. [CrossRef]
- Guo Q, Grimmig T, Gonzalez G, et al. ATP-binding cassette member B5 (ABCB5) promotes tumor cell invasiveness in human colorectal cancer. J Biol Chem. 2018;293(28):11166-11178. doi:10.1074/jbc.RA118.003187. [CrossRef]
- Wilson BJ, Saab KR, Ma J, et al. ABCB5 maintains melanoma-initiating cells through a pro-inflammatory cytokine signaling circuit. Cancer Res. 2014;74(15):4196-4207. doi:10.1158/0008-5472.CAN-14-0582. [CrossRef]
- Niebergall-Roth E, Frank NY, Ganss C, Frank MH, Kluth MA. Skin-Derived ABCB5+ Mesenchymal Stem Cells for High-Medical-Need Inflammatory Diseases: From Discovery to Entering Clinical Routine. Int J Mol Sci. 2023;24(1):66. doi:10.3390/ijms24010066. [CrossRef]
- Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas. Nature. 2008;451(7176):345-349. doi:10.1038/nature06489. [CrossRef]
- Waugh DJJ, Wilson C. The Interleukin-8 Pathway in Cancer. Clin Cancer Res. 2008;14(21):6735-6741. doi:10.1158/1078-0432.CCR-07-4843. [CrossRef]
- Li A, Dubey S, Varney ML, Dave BJ, Singh RK. IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis1. J Immunol. 2003;170(6):3369-3376. doi:10.4049/jimmunol.170.6.3369. [CrossRef]
- Tan ST, Ghaznawie M, Heenan PJ, Dosan R. Basal Cell Carcinoma Arises from Interfollicular Layer of Epidermis. J Oncol. 2018;2018:3098940. doi:10.1155/2018/3098940. [CrossRef]
- Nilsson M, Undèn AB, Krause D, et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci. 2000;97(7):3438-3443. doi:10.1073/pnas.97.7.3438. [CrossRef]
- Barresi G, Inferrera C, Gemelli M, De Luca F. Morphological aspects of the endocrine pancreas in a prednisolone-treated infant. Histopathology. 1977;1(3):201-208. doi:10.1111/j.1365-2559.1977.tb01659.x. [CrossRef]
- Kasper M, Jaks V, Hohl D, Toftgård R. Basal cell carcinoma — molecular biology and potential new therapies. J Clin Invest. 2012;122(2):455-463. doi:10.1172/JCI58779. [CrossRef]
- Blanpain C, Fuchs E. Plasticity of epithelial stem cells in tissue regeneration. Science. 2014;344(6189):1242281. doi:10.1126/science.1242281. [CrossRef]
- Zhang B, Chen T. Local and systemic mechanisms that control the hair follicle stem cell niche. Nat Rev Mol Cell Biol. 2024;25(2):87-100. doi:10.1038/s41580-023-00662-3. [CrossRef]
- Dahmane N, Lee J, Robins P, Heller P, Altaba AR i. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature. 1997;389(6653):876-881. doi:10.1038/39918. [CrossRef]
- Lapouge G, Youssef KK, Vokaer B, et al. Identifying the cellular origin of squamous skin tumors. Proc Natl Acad Sci U S A. 2011;108(18):7431-7436. doi:10.1073/pnas.1012720108. [CrossRef]
- Mulero MC, Ferres-Marco D, Islam A, et al. Chromatin-Bound IκBα Regulates a Subset of Polycomb Target Genes in Differentiation and Cancer. Cancer Cell. 2013;24(2):151-166. doi:10.1016/j.ccr.2013.06.003. [CrossRef]
- Malanchi I, Peinado H, Kassen D, et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature. 2008;452(7187):650-653. doi:10.1038/nature06835. [CrossRef]
- Celso CL, Prowse D, Watt F. Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours. Published online 2004. doi:10.1242/dev.01052. [CrossRef]
- Danek P, Kardosova M, Janeckova L, et al. β-Catenin–TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation. Blood. 2020;136(22):2574-2587. doi:10.1182/blood.2019004664. [CrossRef]
- Jamal SME, Alamodi A, Wahl RU, et al. Melanoma stem cell maintenance and chemo-resistance are mediated by CD133 signal to PI3K-dependent pathways. Oncogene. 2020;39(32):5468-5478. doi:10.1038/s41388-020-1373-6. [CrossRef]
- Ahmed SI, Javed G, Laghari AA, et al. CD133 Expression in Glioblastoma Multiforme: A Literature Review. Cureus. 10(10):e3439. doi:10.7759/cureus.3439. [CrossRef]
- Tume L, Paco K, Ubidia-Incio R, Moya J. CD133 in breast cancer cells and in breast cancer stem cells as another target for immunotherapy. Gac Mex Oncol. 2015;15(1):22-30. doi:10.1016/j.gamo.2016.01.003. [CrossRef]
- Sharma BK, Manglik V, O’Connell M, et al. Clonal dominance of CD133+ subset population as risk factor in tumor progression and disease recurrence of human cutaneous melanoma. Int J Oncol. 2012;41(5):1570-1576. doi:10.3892/ijo.2012.1590. [CrossRef]
- Geng S, Guo Y, Wang Q, Li L, Wang J. Cancer stem-like cells enriched with CD29 and CD44 markers exhibit molecular characteristics with epithelial-mesenchymal transition in squamous cell carcinoma. Arch Dermatol Res. 2013;305(1):35-47. doi:10.1007/s00403-012-1260-2. [CrossRef]
- Liang L, Kaufmann AM. The Significance of Cancer Stem Cells and Epithelial–Mesenchymal Transition in Metastasis and Anti-Cancer Therapy. Int J Mol Sci. 2023;24(3):2555. doi:10.3390/ijms24032555. [CrossRef]
- Sireesha K, Samundeshwari EL, Surekha K, Chandrasekhar C, Sarma PVGK. In vitro generation of epidermal keratinocytes from human CD34-positive hematopoietic stem cells. Vitro Cell Dev Biol - Anim. 2024;60(3):236-248. doi:10.1007/s11626-024-00862-x. [CrossRef]
- Siegle JM, Basin A, Sastre-Perona A, et al. SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma. Nat Commun. 2014;5:4511. doi:10.1038/ncomms5511. [CrossRef]
- Boumahdi S, Driessens G, Lapouge G, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511(7508):246-250. doi:10.1038/nature13305. [CrossRef]
- Shi C, Ju H, Wu Y, Ma X, Zhang Z, Ren G. Potential role of cyclin-dependent kinase 4/6 inhibitors in the treatment of mucosal melanoma. Holist Integr Oncol. 2024;3(1):24. doi:10.1007/s44178-024-00090-z. [CrossRef]
- Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of Mutated, Activated BRAF in Metastatic Melanoma. N Engl J Med. 2010;363(9):809-819. doi:10.1056/NEJMoa1002011. [CrossRef]
- Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600–Mutant Advanced Melanoma Treated with Vemurafenib. N Engl J Med. 2012;366(8):707-714. doi:10.1056/NEJMoa1112302. [CrossRef]
- Delmas A, Cherier J, Pohorecka M, et al. The c-Jun/RHOB/AKT pathway confers resistance of BRAF-mutant melanoma cells to MAPK inhibitors. Oncotarget. 2015;6(17):15250-15264.
- Sekulic A, Migden MR, Oro AE, et al. Efficacy and Safety of Vismodegib in Advanced Basal-Cell Carcinoma. N Engl J Med. 2012;366(23):2171-2179. doi:10.1056/NEJMoa1113713. [CrossRef]
- Yao CD, Haensel D, Gaddam S, et al. AP-1 and TGFß cooperativity drives non-canonical Hedgehog signaling in resistant basal cell carcinoma. Nat Commun. 2020;11(1):5079. doi:10.1038/s41467-020-18762-5. [CrossRef]
- Cammareri P, Rose AM, Vincent DF, et al. Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma. Nat Commun. 2016;7(1):12493. doi:10.1038/ncomms12493. [CrossRef]
- Brown JA, Yonekubo Y, Hanson N, et al. TGF-β-Induced Quiescence Mediates Chemoresistance of Tumor-Propagating Cells in Squamous Cell Carcinoma. Cell Stem Cell. 2017;21(5):650-664.e8. doi:10.1016/j.stem.2017.10.001. [CrossRef]
- Quan XX, Hawk NV, Chen W, et al. Targeting Notch1 and IKKα Enhanced NF-κB Activation in CD133+ Skin Cancer Stem Cells. Mol Cancer Ther. 2018;17(9):2034-2048. doi:10.1158/1535-7163.MCT-17-0421. [CrossRef]
- Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20(31):4188-4197. doi:10.1038/sj.onc.1204535. [CrossRef]
- Lee B, Sandhu S, McArthur G. Cell cycle control as a promising target in melanoma. Curr Opin Oncol. 2015;27(2):141-150. doi:10.1097/CCO.0000000000000159. [CrossRef]
- Xu W, McArthur G. Cell Cycle Regulation and Melanoma. Curr Oncol Rep. 2016;18(6):34. doi:10.1007/s11912-016-0524-y. [CrossRef]
- Julve M, Clark JJ, Lythgoe MP. Advances in cyclin-dependent kinase inhibitors for the treatment of melanoma. Expert Opin Pharmacother. 2021;22(3):351-361. doi:10.1080/14656566.2020.1828348. [CrossRef]
- Desai BM, Villanueva J, Nguyen TTK, et al. The Anti-Melanoma Activity of Dinaciclib, a Cyclin-Dependent Kinase Inhibitor, Is Dependent on p53 Signaling. PLOS ONE. 2013;8(3):e59588. doi:10.1371/journal.pone.0059588. [CrossRef]
- Hwang BJ, Adhikary G, Eckert RL, Lu AL. Chk1 inhibition as a novel therapeutic strategy in melanoma. Oncotarget. 2018;9(54):30450-30464. doi:10.18632/oncotarget.25765. [CrossRef]
- Lowery CD, Dowless M, Renschler M, et al. Broad spectrum activity of the checkpoint kinase 1 inhibitor prexasertib as a single agent or chemopotentiator across a range of preclinical pediatric tumor models. Clin Cancer Res Off J Am Assoc Cancer Res. 2019;25(7):2278-2289. doi:10.1158/1078-0432.CCR-18-2728. [CrossRef]
- Ditano JP, Eastman A. Comparative Activity and Off-Target Effects in Cells of the CHK1 Inhibitors MK-8776, SRA737, and LY2606368. ACS Pharmacol Transl Sci. 2021;4(2):730-743. doi:10.1021/acsptsci.0c00201. [CrossRef]
- Zabludoff SD, Deng C, Grondine MR, et al. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther. 2008;7(9):2955-2966. doi:10.1158/1535-7163.MCT-08-0492. [CrossRef]
- Gupta A, Shah K, Oza MJ, Behl T. Reactivation of p53 gene by MDM2 inhibitors: A novel therapy for cancer treatment. Biomed Pharmacother. 2019;109:484-492. doi:10.1016/j.biopha.2018.10.155. [CrossRef]
- Discovery of RG7388, a Potent and Selective p53–MDM2 Inhibitor in Clinical Development | Journal of Medicinal Chemistry. Accessed August 2, 2024. https://pubs.acs.org/doi/10.1021/jm400487c.
- Shapiro GI. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(11):1770-1783. doi:10.1200/JCO.2005.03.7689. [CrossRef]
- Garutti M, Targato G, Buriolla S, Palmero L, Minisini AM, Puglisi F. CDK4/6 Inhibitors in Melanoma: A Comprehensive Review. Cells. 2021;10(6):1334. doi:10.3390/cells10061334. [CrossRef]
- Sanchez-Martinez C, Raub T, Dios A, et al. Abemaciclib (LY2835219) is an Oral Inhibitor of the Cyclin-Dependent Kinases 4/6 that Crosses the Blood-Brain Barrier and Demonstrates In Vivo Activity Against Intracranial Human Brain Tumor Xenografts. Drug Metab Dispos. 2015;43. doi:10.1124/dmd.114.062745. [CrossRef]
- Zhang YX, Sicinska E, Czaplinski JT, et al. Antiproliferative effects of CDK4/6 inhibition in CDK4-amplified human liposarcoma in vitro and in vivo. Mol Cancer Ther. 2014;13(9):2184-2193. doi:10.1158/1535-7163.MCT-14-0387. [CrossRef]
- Kim S, Loo A, Chopra R, et al. Abstract PR02: LEE011: An orally bioavailable, selective small molecule inhibitor of CDK4/6– Reactivating Rb in cancer. Mol Cancer Ther. 2013;12(11_Supplement):PR02. doi:10.1158/1535-7163.TARG-13-PR02. [CrossRef]
- Brose MS, Volpe P, Feldman M, et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 2002;62(23):6997-7000.
- Kim G, McKee AE, Ning YM, et al. FDA approval summary: vemurafenib for treatment of unresectable or metastatic melanoma with the BRAFV600E mutation. Clin Cancer Res Off J Am Assoc Cancer Res. 2014;20(19):4994-5000. doi:10.1158/1078-0432.CCR-14-0776. [CrossRef]
- Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507-2516. doi:10.1056/NEJMoa1103782. [CrossRef]
- Yoshida A, Lee EK, Diehl JA. Induction of Therapeutic Senescence in Vemurafenib-Resistant Melanoma by Extended Inhibition of CDK4/6. Cancer Res. 2016;76(10):2990-3002. doi:10.1158/0008-5472.CAN-15-2931. [CrossRef]
- The CDK4/6 Inhibitor LY2835219 Overcomes Vemurafenib Resistance Resulting from MAPK Reactivation and Cyclin D1 Upregulation | Molecular Cancer Therapeutics | American Association for Cancer Research. Accessed July 3, 2024. https://aacrjournals.org/mct/article/13/10/2253/129494/The-CDK4-6-Inhibitor-LY2835219-Overcomes.
- Muñoz-Couselo E, Adelantado EZ, Ortiz C, García JS, Perez-Garcia J. NRAS-mutant melanoma: current challenges and future prospect. OncoTargets Ther. 2017;10:3941-3947. doi:10.2147/OTT.S117121. [CrossRef]
- Kwong LN, Costello JC, Liu H, et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med. 2012;18(10):1503-1510. doi:10.1038/nm.2941. [CrossRef]
- Sosman JA, Kittaneh M, Lolkema MPJK, et al. A phase 1b/2 study of LEE011 in combination with binimetinib (MEK162) in patients with NRAS-mutant melanoma: Early encouraging clinical activity. J Clin Oncol. 2014;32(15_suppl):9009-9009. doi:10.1200/jco.2014.32.15_suppl.9009. [CrossRef]
- Schuler MH, Ascierto PA, De Vos FYFL, et al. Phase 1b/2 trial of ribociclib+binimetinib in metastatic NRAS-mutant melanoma: Safety, efficacy, and recommended phase 2 dose (RP2D). J Clin Oncol. 2017;35(15_suppl):9519-9519. doi:10.1200/JCO.2017.35.15_suppl.9519. [CrossRef]
- Ascierto PA, Bechter O, Wolter P, et al. A phase Ib/II dose-escalation study evaluating triple combination therapy with a BRAF (encorafenib), MEK (binimetinib), and CDK 4/6 (ribociclib) inhibitor in patients (Pts) with BRAF V600-mutant solid tumors and melanoma. J Clin Oncol. 2017;35(15_suppl):9518-9518. doi:10.1200/JCO.2017.35.15_suppl.9518. [CrossRef]
- Mohammed ER, Elmasry GF. Development of newly synthesised quinazolinone-based CDK2 inhibitors with potent efficacy against melanoma. J Enzyme Inhib Med Chem. 2022;37(1):686-700. doi:10.1080/14756366.2022.2036985. [CrossRef]
- Porter LA, Dellinger RW, Tynan JA, et al. Human Speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2. J Cell Biol. 2002;157(3):357-366. doi:10.1083/jcb.200109045. [CrossRef]
- Lenormand JL, Dellinger RW, Knudsen KE, Subramani S, Donoghue DJ. Speedy: a novel cell cycle regulator of the G2/M transition. EMBO J. 1999;18(7):1869-1877. doi:10.1093/emboj/18.7.1869. [CrossRef]
- Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins | The EMBO Journal. Accessed September 19, 2024. https://www.embopress.org/doi/full/10.15252/embj.201796905.
- Biochemical characterization of Cdk2-Speedy/Ringo A2 - PMC. Accessed September 19, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1262692/.
- Lubanska D, Market-Velker BA, deCarvalho AC, Mikkelsen T, Fidalgo da Silva E, Porter LA. The Cyclin-like Protein Spy1 Regulates Growth and Division Characteristics of the CD133+ Population in Human Glioma. Cancer Cell. 2014;25(1):64-76. doi:10.1016/j.ccr.2013.12.006. [CrossRef]
- Lubanska D, Porter LA. The atypical cell cycle regulator Spy1 suppresses differentiation of the neuroblastoma stem cell population. Oncoscience. 2014;1(5):336-348. doi:10.18632/oncoscience.36. [CrossRef]
- Fecher LA, Amaravadi RK, Flaherty KT. The MAPK pathway in melanoma. Curr Opin Oncol. 2008;20(2):183. doi:10.1097/CCO.0b013e3282f5271c. [CrossRef]
- Al Mahi A, Ablain J. RAS pathway regulation in melanoma. Dis Model Mech. 2022;15(2):dmm049229. doi:10.1242/dmm.049229. [CrossRef]
- Amaravadi R, Schuchter LM, McDermott DF, et al. Updated results of a randomized phase II study comparing two schedules of temozolomide in combination with sorafenib in patients with advanced melanoma. J Clin Oncol. 2007;25(18_suppl):8527-8527. doi:10.1200/jco.2007.25.18_suppl.8527. [CrossRef]
- Grimaldi AM, Simeone E, Festino L, Vanella V, Strudel M, Ascierto PA. MEK Inhibitors in the Treatment of Metastatic Melanoma and Solid Tumors. Am J Clin Dermatol. 2017;18(6):745-754. doi:10.1007/s40257-017-0292-y. [CrossRef]
- Haass NK, Gabrielli B. Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities. Exp Dermatol. 2017;26(7):649-655. doi:10.1111/exd.13303. [CrossRef]
- Barnaba N, LaRocque JR. Targeting cell cycle regulation via the G2-M checkpoint for synthetic lethality in melanoma. Cell Cycle. 2021;20(11):1041-1051. doi:10.1080/15384101.2021.1922806. [CrossRef]
- Dummer R, Ascierto P a., Basset-Seguin N, et al. Sonidegib and vismodegib in the treatment of patients with locally advanced basal cell carcinoma: a joint expert opinion. J Eur Acad Dermatol Venereol. 2020;34(9):1944-1956. doi:10.1111/jdv.16230. [CrossRef]
- Dreier J, Dummer R, Felderer L, Nägeli M, Gobbi S, Kunstfeld R. Emerging drugs and combination strategies for basal cell carcinoma. Expert Opin Emerg Drugs. 2014;19(3):353-365. doi:10.1517/14728214.2014.914171. [CrossRef]
- Piérard-Franchimont C, Hermanns-Lê T, Paquet P, Herfs M, Delvenne P, Piérard GE. Hedgehog- and mTOR-Targeted Therapies for Advanced Basal Cell Carcinomas. Future Oncol. 2015;11(22):2997-3002. doi:10.2217/fon.15.181. [CrossRef]
- Darido C, Georgy SR, Cullinane C, et al. Stage-dependent therapeutic efficacy in PI3K/mTOR-driven squamous cell carcinoma of the skin. Cell Death Differ. 2018;25(6):1146-1159. doi:10.1038/s41418-017-0032-0. [CrossRef]
- Zou Y, Ge M, Wang X. Targeting PI3K-AKT-mTOR by LY3023414 inhibits human skin squamous cell carcinoma cell growth in vitro and in vivo. Biochem Biophys Res Commun. 2017;490(2):385-392. doi:10.1016/j.bbrc.2017.06.052. [CrossRef]
- Short-term Fasting prior to Standard of Care PD-1/PD-L1 Inhibitor Therapy for the Treatment of Advanced or Metastatic Skin Malignancy - NCI. June 23, 2016. Accessed September 14, 2024. https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCI-2020-01590.
- Salvadori G, Zanardi F, Iannelli F, Lobefaro R, Vernieri C, Longo VD. Fasting-mimicking diet blocks triple-negative breast cancer and cancer stem cell escape. Cell Metab. 2021;33(11):2247. doi:10.1016/j.cmet.2021.10.008. [CrossRef]
- Zhu L, Yang Q, Hu R, et al. Novel therapeutic strategy for melanoma based on albendazole and the CDK4/6 inhibitor palbociclib. Sci Rep. 2022;12(1):5706. doi:10.1038/s41598-022-09592-0. [CrossRef]
- Gene-Modified Immune Cells (FH-MCVA2TCR) in Treating Patients with Metastatic or Unresectable Merkel Cell Cancer - NCI. June 23, 2016. Accessed September 18, 2024. https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCI-2018-02483.
- Deng J, Wang ES, Jenkins RW, et al. CDK4/6 Inhibition Augments Anti-Tumor Immunity by Enhancing T Cell Activation. Cancer Discov. 2018;8(2):216-233. doi:10.1158/2159-8290.CD-17-0915. [CrossRef]
- Study Details | Avelumab With or Without Cetuximab in Treating Patients With Advanced Skin Squamous Cell Cancer | ClinicalTrials.gov. Accessed September 18, 2024. https://clinicaltrials.gov/study/NCT03944941?intr=NCT03944941&rank=1.
- Zhou J, Wu Z, Wong G, et al. CDK4/6 or MAPK blockade enhances efficacy of EGFR inhibition in oesophageal squamous cell carcinoma. Nat Commun. 2017;8(1):13897. doi:10.1038/ncomms13897. [CrossRef]
- Hara N, Ichihara E, Kano H, et al. CDK4/6 signaling attenuates the effect of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer. Transl Lung Cancer Res. 2023;12(10):2098-2112. doi:10.21037/tlcr-23-99. [CrossRef]
- Study Details | Using Nivolumab Alone or With Cabozantinib to Prevent Mucosal Melanoma Return After Surgery | ClinicalTrials.gov. Accessed September 18, 2024. https://clinicaltrials.gov/study/NCT05111574.
- Masuda J, Sakai H, Tsurutani J, et al. Efficacy, safety, and biomarker analysis of nivolumab in combination with abemaciclib plus endocrine therapy in patients with HR-positive HER2-negative metastatic breast cancer: a phase II study (WJOG11418B NEWFLAME trial). J Immunother Cancer. 2023;11(9):e007126. doi:10.1136/jitc-2023-007126. [CrossRef]
- Williams ESCP, Szaniawski MA, Martins LJ, et al. Dasatinib: effects on the macrophage phospho proteome with a focus on SAMHD1 and HIV-1 infection. Clin Res HIVAIDS. 2022;8(1):1053.
- Cabozantinib and dasatinib synergize to induce tumor regression in non-clear cell renal cell carcinoma - PMC. Accessed September 18, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8149375/.
- Study Details | Fecal Microbial Transplantation in Combination With Immunotherapy in Melanoma Patients (MIMic) | ClinicalTrials.gov. Accessed September 18, 2024. https://clinicaltrials.gov/study/NCT03772899.
- Schettini F, Fontana A, Gattazzo F, et al. Faecal microbiota composition is related to response to CDK4/6-inhibitors in metastatic breast cancer: A prospective cross-sectional exploratory study. Eur J Cancer. 2023;191:112948. doi:10.1016/j.ejca.2023.112948. [CrossRef]
- CDK Inhibition Primes for Anti-PD-L1 Treatment in Triple-Negative Breast Cancer Models - PMC. Accessed September 18, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322647/.
- Study Details | A PD-1 Checkpoint Inhibitor (Cemiplimab) for High-Risk Localized, Locally Recurrent, or Regionally Advanced Skin Cancer | ClinicalTrials.gov. Accessed September 18, 2024. https://clinicaltrials.gov/study/NCT04315701?cond=NCT04315701&rank=1.
- Testing the Addition of Cemiplimab to Palbociclib for the Treatment of Advanced Dedifferentiated Liposarcoma - NCI. June 23, 2016. Accessed September 18, 2024. https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCI-2022-08568.
- Study Details | A Study of Neoadjuvant Therapy With BCD-217 (Nurulimab + Prolgolimab) in Patients With Resectable Stage III Skin Melanoma | ClinicalTrials.gov. Accessed September 19, 2024. https://clinicaltrials.gov/study/NCT05751928?intr=NCT05751928&rank=1.
- Rugo HS, Kabos P, Beck JT, et al. Abemaciclib in combination with pembrolizumab for HR+, HER2− metastatic breast cancer: Phase 1b study. Npj Breast Cancer. 2022;8(1):1-8. doi:10.1038/s41523-022-00482-2. [CrossRef]
- Heistein JB, Acharya U, Mukkamalla SKR. Malignant Melanoma. In: StatPearls. StatPearls Publishing; 2024. Accessed September 17, 2024. http://www.ncbi.nlm.nih.gov/books/NBK470409/.
- Conway JR, Dietlein F, Taylor-Weiner A, et al. Integrated molecular drivers coordinate biological and clinical states in melanoma. Nat Genet. 2020;52(12):1373-1383. doi:10.1038/s41588-020-00739-1. [CrossRef]
- Tímár J, Ladányi A. Molecular Pathology of Skin Melanoma: Epidemiology, Differential Diagnostics, Prognosis and Therapy Prediction. Int J Mol Sci. 2022;23(10):5384. doi:10.3390/ijms23105384. [CrossRef]
- Cs W, Rc S, Jt L. Basal cell carcinoma. BMJ. 2003;327(7418). doi:10.1136/bmj.327.7418.794. [CrossRef]
- McDaniel B, Badri T, Steele RB. Basal Cell Carcinoma. In: StatPearls. StatPearls Publishing; 2024. Accessed September 17, 2024. http://www.ncbi.nlm.nih.gov/books/NBK482439/.
- Agbai ON, Buster K, Sanchez M, et al. Skin cancer and photoprotection in people of color: a review and recommendations for physicians and the public. J Am Acad Dermatol. 2014;70(4):748-762. doi:10.1016/j.jaad.2013.11.038. [CrossRef]
- Kailas A, Solomon JA, Mostow EN, Rigel DS, Kittles R, Taylor SC. Gaps in the understanding and treatment of skin cancer in people of color. J Am Acad Dermatol. 2016;74(5):1020-1021. doi:10.1016/j.jaad.2015.11.028. [CrossRef]
- Incidence ratio of basal cell carcinoma to squamous cell carcinoma equalizes with age - Journal of the American Academy of Dermatology. Accessed September 17, 2024. https://www.jaad.org/article/S0190-9622(16)30638-7/fulltext.
- cancer CCS/ S canadienne du. Types of non-melanoma skin cancer. Canadian Cancer Society. Accessed September 17, 2024. https://cancer.ca/en/cancer-information/cancer-types/skin-non-melanoma/what-is-non-melanoma-skin-cancer/types-of-non-melanoma.
- Dalal AJ, Ingham J, Collard B, Merrick G. Review of outcomes of 500 consecutive cases of non-melanoma skin cancer of the head and neck managed in an oral and maxillofacial surgical unit in a District General Hospital. Br J Oral Maxillofac Surg. 2018;56(9):805-809. doi:10.1016/j.bjoms.2018.08.015. [CrossRef]
- Higgins S, Nazemi A, Chow M, Wysong A. Review of Nonmelanoma Skin Cancer in African Americans, Hispanics, and Asians. Dermatol Surg Off Publ Am Soc Dermatol Surg Al. 2018;44(7):903-910. doi:10.1097/DSS.0000000000001547. [CrossRef]
- Skin cancer in African Americans - Halder - 1995 - Cancer - Wiley Online Library. Accessed September 17, 2024. https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/1097-0142(19950115)75:2+%3C667::AID-CNCR2820751409%3E3.0.CO;2-I.
- Dhir A, Orengo I, Bruce S, Kolbusz RV, Alford E, Goldberg L. Basal Cell Carcinoma on the Scalp of an Indian Patient. Dermatol Surg. 1995;21(3):247-250. doi:10.1111/j.1524-4725.1995.tb00165.x. [CrossRef]
- Sotillo R, García JF, Ortega S, et al. Invasive melanoma in Cdk4-targeted mice. Proc Natl Acad Sci U S A. 2001;98(23):13312-13317. doi:10.1073/pnas.241338598. [CrossRef]
- Puntervoll HE, Yang XR, Vetti HH, et al. Melanoma prone families with CDK4 germline mutation: phenotypic profile and associations with MC1R variants. J Med Genet. 2013;50(4):264-270. doi:10.1136/jmedgenet-2012-101455. [CrossRef]
- Sheppard KE, McArthur GA. The cell-cycle regulator CDK4: an emerging therapeutic target in melanoma. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(19):5320-5328. doi:10.1158/1078-0432.CCR-13-0259. [CrossRef]
- Burnworth B, Popp S, Stark HJ, et al. Gain of 11q/cyclin D1 overexpression is an essential early step in skin cancer development and causes abnormal tissue organization and differentiation. Oncogene. 2006;25(32):4399-4412. doi:10.1038/sj.onc.1209474. [CrossRef]
- Krimpenfort P, Quon KC, Mooi WJ, Loonstra A, Berns A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature. 2001;413(6851):83-86. doi:10.1038/35092584. [CrossRef]
- Kreuger IZM, Slieker RC, van Groningen T, van Doorn R. Therapeutic Strategies for Targeting CDKN2A Loss in Melanoma. J Invest Dermatol. 2023;143(1):18-25.e1. doi:10.1016/j.jid.2022.07.016. [CrossRef]
- Goel VK, Ibrahim N, Jiang G, et al. Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene. 2009;28(23):2289-2298. doi:10.1038/onc.2009.95. [CrossRef]
- Recio JA, Noonan FP, Takayama H, et al. Ink4a/arf deficiency promotes ultraviolet radiation-induced melanomagenesis. Cancer Res. 2002;62(22):6724-6730.
- You MJ, Castrillon DH, Bastian BC, et al. Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice. Proc Natl Acad Sci U S A. 2002;99(3):1455-1460. doi:10.1073/pnas.022632099. [CrossRef]
- Rizos H, Darmanian AP, Holland EA, Mann GJ, Kefford RF. Mutations in the INK4a/ARF Melanoma Susceptibility Locus Functionally Impair p14ARF*. J Biol Chem. 2001;276(44):41424-41434. doi:10.1074/jbc.M105299200. [CrossRef]
- Ming Z, Lim SY, Rizos H. Genetic Alterations in the INK4a/ARF Locus: Effects on Melanoma Development and Progression. Biomolecules. 2020;10(10):1447. doi:10.3390/biom10101447. [CrossRef]
- Kreuger IZM, Slieker RC, van Groningen T, van Doorn R. Therapeutic Strategies for Targeting CDKN2A Loss in Melanoma. J Invest Dermatol. 2023;143(1):18-25.e1. doi:10.1016/j.jid.2022.07.016. [CrossRef]
- Kannan K, Sharpless NE, Xu J, O’Hagan RC, Bosenberg M, Chin L. Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proc Natl Acad Sci U S A. 2003;100(3):1221-1225. doi:10.1073/pnas.0336397100. [CrossRef]
- Bardeesy N, Bastian BC, Hezel A, Pinkel D, DePinho RA, Chin L. Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Mol Cell Biol. 2001;21(6):2144-2153. doi:10.1128/MCB.21.6.2144-2153.2001. [CrossRef]
- Giglia-Mari G, Sarasin A. TP53 mutations in human skin cancers. Hum Mutat. 2003;21(3):217-228. doi:10.1002/humu.10179. [CrossRef]
- Soto JL, Cabrera CM, Serrano S, López-Nevot MÁ. Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B. BMC Cancer. 2005;5(1):36. doi:10.1186/1471-2407-5-36. [CrossRef]
- Luo C, Sheng J, Hu MG, et al. Loss of ARF sensitizes transgenic BRAFV600E mice to UV-induced melanoma via suppression of XPC. Cancer Res. 2013;73(14):4337-4348. doi:10.1158/0008-5472.CAN-12-4454. [CrossRef]
- Fröhlich LM, Makino E, Sinnberg T, Schittek B. Enhanced expression of p21 promotes sensitivity of melanoma cells towards targeted therapies. Exp Dermatol. 2022;31(8):1243-1252. doi:10.1111/exd.14585. [CrossRef]
- Tubita A, Lombardi Z, Tusa I, et al. Inhibition of ERK5 Elicits Cellular Senescence in Melanoma via the Cyclin-Dependent Kinase Inhibitor p21. Cancer Res. 2022;82(3):447-457. doi:10.1158/0008-5472.CAN-21-0993. [CrossRef]
- Stoyanova T, Roy N, Bhattacharjee S, et al. p21 Cooperates with DDB2 Protein in Suppression of Ultraviolet Ray-induced Skin Malignancies*. J Biol Chem. 2012;287(5):3019-3028. doi:10.1074/jbc.M111.295816. [CrossRef]
- Wang X, Gorospe M, Huang Y, Holbrook NJ. p27Kip1 overexpression causes apoptotic death of mammalian cells. Oncogene. 1997;15(24):2991-2997. doi:10.1038/sj.onc.1201450. [CrossRef]
- Chen G, Cheng Y, Zhang Z, Martinka M, Li G. Prognostic Significance of Cytoplasmic p27 Expression in Human Melanoma. Cancer Epidemiol Biomarkers Prev. 2011;20(10):2212-2221. doi:10.1158/1055-9965.EPI-11-0472. [CrossRef]
- Al Hmada Y, Brodell RT, Kharouf N, et al. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers. 2024;16(2):470. doi:10.3390/cancers16020470. [CrossRef]
- Lionetti MC, Fumagalli MR, La Porta CAM. Cancer stem cells, plasticity, and drug resistance. Cancer Drug Resist. 2020;3(2):140-148. doi:10.20517/cdr.2019.112. [CrossRef]
- Whitson RJ, Lee A, Urman NM, et al. Noncanonical hedgehog pathway activation through SRF-MKL1 promotes drug resistance in basal cell carcinomas. Nat Med. 2018;24(3):271-281. doi:10.1038/nm.4476. [CrossRef]
- Atwood SX, Sarin KY, Whitson RJ, et al. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell. 2015;27(3):342-353. doi:10.1016/j.ccell.2015.02.002. [CrossRef]
- Lorenzo-Sanz L, Lopez-Cerda M, da Silva-Diz V, et al. Cancer cell plasticity defines response to immunotherapy in cutaneous squamous cell carcinoma. Nat Commun. 2024;15(1):5352. doi:10.1038/s41467-024-49718-8. [CrossRef]
- Overcoming Resistance to Immunotherapy in Advanced Cutaneous Squamous Cell Carcinoma - PMC. Accessed September 18, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8533861/.
- Hadian Y, Howell JY, Ramsey ML. Cutaneous Squamous Cell Carcinoma. In: StatPearls. StatPearls Publishing; 2024. Accessed September 18, 2024. http://www.ncbi.nlm.nih.gov/books/NBK441939/.
- Jost T, Heinzerling L, Fietkau R, Hecht M, Distel LV. Palbociclib Induces Senescence in Melanoma and Breast Cancer Cells and Leads to Additive Growth Arrest in Combination With Irradiation. Front Oncol. 2021;11:740002. doi:10.3389/fonc.2021.740002. [CrossRef]
- Kwong LN, Costello JC, Liu H, et al. Oncogenic NRAS Signaling Differentially Regulates Survival and Proliferation in Melanoma. Nat Med. 2012;18(10):1503-1510. doi:10.1038/nm.2941. [CrossRef]
- Aldawsari MF, Kamal MA, Balaha MF, et al. Optimized Ribociclib nanostructured lipid carrier for the amelioration of skin cancer: Inferences from ex-vivo skin permeation and dermatokinetic studies. Saudi Pharm J SPJ. 2024;32(3):101984. doi:10.1016/j.jsps.2024.101984. [CrossRef]
- The CDK4/6 inhibitor LY2835219 overcomes vemurafenib resistance resulting from MAPK reactivation and cyclin D1 upregulation - PubMed. Accessed September 19, 2024. https://pubmed.ncbi.nlm.nih.gov/25122067/.
- Desai BM, Villanueva J, Nguyen TTK, et al. The anti-melanoma activity of dinaciclib, a cyclin-dependent kinase inhibitor, is dependent on p53 signaling. PloS One. 2013;8(3):e59588. doi:10.1371/journal.pone.0059588. [CrossRef]
- Short-term Fasting prior to Standard of Care PD-1/PD-L1 Inhibitor Therapy for the Treatment of Advanced or Metastatic Skin Malignancy - NCI. June 23, 2016. Accessed September 18, 2024. https://www.cancer.gov/about-cancer/treatment/clinical-trials/search/v?id=NCI-2020-01590.
- Abemaciclib in Combination With Pembrolizumab for Stage IV KRAS-Mutant or Squamous NSCLC: A Phase 1b Study - PMC. Accessed September 19, 2024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551846/.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
