Submitted:
11 September 2024
Posted:
13 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Freeze Dry Technique
Process of Freeze Drying Technique
3. Parameters of freeze-drying
3.1. Pretreatments
3.2. Size
3.3. Temperature
3.4. Samples
3.5. Time and Pressure
4. Impact on Bioactive Properties
5. Impact on Physical Properties and Flavor
6. Conversion of Waste and By-Products
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, H.; Zhang, M.; Mujumdar, A.S.; Xu, J.; Wang, W. Influence of Drying Methods on the Drying Kinetics, Bioactive Compounds and Flavor of Solid-State Fermented Okara. Drying Technology 2021, 39, 644–654. [Google Scholar] [CrossRef]
- Bolat, E.; Sarıtaş, S.; Duman, H.; Eker, F.; Akdaşçi, E.; Karav, S.; Witkowska, A.M. Polyphenols: Secondary Metabolites with a Biological Impression. Nutrients 2024, 16, 2550. [Google Scholar] [CrossRef] [PubMed]
- Sarıtaş, S.; Duman, H.; Pekdemir, B.; Rocha, J.M.; Oz, F.; Karav, S. Functional Chocolate: Exploring Advances in Production and Health Benefits. Int J Food Sci Technol 2024, 59, 5303–5325. [Google Scholar] [CrossRef]
- Boateng, I.D.; Soetanto, D.A.; Yang, X.; Zhou, C.; Saalia, F.K.; Li, F. Effect of Pulsed-vacuum, Hot-air, Infrared, and Freeze-drying on Drying Kinetics, Energy Efficiency, and Physicochemical Properties of <scp> Ginkgo Biloba </Scp> L. Seed. J Food Process Eng 2021, 44. [Google Scholar] [CrossRef]
- Buratto, A.P.; Carpes, S.T.; Pereira, E.A.; Driech, C.; Oldoni, T.; Dangui, L. Effect of Drying Method in the Maintenance of Bioactive Compounds and Antioxidant Activity of Feijoa Pulp (Acca Sellowiana). Orbital: The Electronic Journal of Chemistry 2019, 11. [Google Scholar] [CrossRef]
- Li, S.; Liu, F.; Wu, M.; Li, Y.; Song, X.; Yin, J. Effects of Drying Treatments on Nutritional Compositions, Volatile Flavor Compounds, and Bioactive Substances of Broad Beans. Foods 2023, 12, 2160. [Google Scholar] [CrossRef]
- Krzykowski, A.; Dziki, D.; Rudy, S.; Polak, R.; Biernacka, B.; Gawlik-Dziki, U.; Janiszewska-Turak, E. Effect of Air-Drying and Freeze-Drying Temperature on the Process Kinetics and Physicochemical Characteristics of White Mulberry Fruits (Morus Alba L.). Processes 2023, 11, 750. [Google Scholar] [CrossRef]
- Kittibunchakul, S.; Temviriyanukul, P.; Chaikham, P.; Kemsawasd, V. Effects of Freeze Drying and Convective Hot-Air Drying on Predominant Bioactive Compounds, Antioxidant Potential and Safe Consumption of Maoberry Fruits. LWT 2023, 184, 114992. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, B.; ElGasim, A. Yagoub, A.; Ma, H.; Sun, Y.; Xu, X.; Yu, X.; Zhou, C. Role of Drying Techniques on Physical, Rehydration, Flavor, Bioactive Compounds and Antioxidant Characteristics of Garlic. Food Chem 2021, 343, 128404. [Google Scholar] [CrossRef]
- Kręcisz, M.; Kolniak-Ostek, J.; Łyczko, J.; Stępień, B. Evaluation of Bioactive Compounds, Volatile Compounds, Drying Process Kinetics and Selected Physical Properties of Vacuum Impregnation Celery Dried by Different Methods. Food Chem 2023, 413, 135490. [Google Scholar] [CrossRef]
- Kayacan, S.; Sagdic, O.; Doymaz, I.; Karasu, S. The Effect of Different Drying Methods on Total Bioactive Properties, Individual Phenolic Compounds, Rehydration Ability, Color, and Microstructural Characteristics of Asian Pear. J Food Process Preserv 2022, 46. [Google Scholar] [CrossRef]
- López, J.; Vega-Gálvez, A.; Ah-Hen, K.S.; Rodríguez, A.; Quispe-Fuentes, I.; Delporte, C.; Valenzuela-Barra, G.; Arancibia, Y.; Zambrano, A. Evaluation of the Antioxidant, Anti-Inflammatory, and Anti-Tumoral Properties of Bioactive Compounds Extracted from Murta Berries (Ugni Molinae T.) Dried by Different Methods. Front Plant Sci 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.Q.; Vuong, Q. V.; Nguyen, M.H.; Roach, P.D. The Effects of Drying Conditions on Bioactive Compounds and Antioxidant Activity of the Australian Maroon Bush, Scaevola Spinescens. J Food Process Preserv 2018, 42, 13711. [Google Scholar] [CrossRef]
- OZAY-ARANCIOGLU, I.; BEKIROGLU, H.; KARADAG, A.; SAROGLU, O.; TEKIN-ÇAKMAK, Z.H.; KARASU, S. Effect of Different Drying Methods on the Bioactive, Microstructural, and in-Vitro Bioaccessibility of Bioactive Compounds of the Pomegranate Arils. Food Science and Technology 2022, 42. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Miao, Y.; Sun, X.; Huang, L. Effects of Different Drying Methods on Physico-Chemical Properties, Bioactive and Taste Substances of Cynomorium Songaricum. LWT 2023, 185, 115159. [Google Scholar] [CrossRef]
- Zhao, C.-C.; Ameer, K.; Eun, J.-B. Effects of Various Drying Conditions and Methods on Drying Kinetics and Retention of Bioactive Compounds in Sliced Persimmon. LWT 2021, 143, 111149. [Google Scholar] [CrossRef]
- Cuong, D.M.; Kim, H.Y.; Keshawa Ediriweera, M.; Cho, S.K. Evaluation of Phytochemical Content and the Antioxidant and Antiproliferative Potentials of Leaf Layers of Cabbage Subjected to Hot Air and Freeze-Drying. J Food Qual 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Silva, N.C.; Santana, R.C.; Duarte, C.R.; Barrozo, M.A.S. Impact of Freeze-drying on Bioactive Compounds of Yellow Passion Fruit Residues. J Food Process Eng 2017, 40. [Google Scholar] [CrossRef]
- Tientcheu, Y.M.T.; Dibacto, R.E.K.; Edoun, F.L.E.; Matueno, E.F.K.; Tchuenchieu, A.D.K.; Germaine, Y.; Medoua, G.N. Comparative Study of the Effect of Five Drying Methods on Bioactive Compounds, Antioxidant Potential and Organoleptic Properties of Zingiber Officinale (Ginger) Rhizome. European J Med Plants 2021, 22–33. [Google Scholar] [CrossRef]
- Luo, C.; Liu, Z.; Mi, S.; Li, L. Quantitative Investigation on the Effects of Ice Crystal Size on Freeze-Drying: The Primary Drying Step. Drying Technology 2022, 40, 446–458. [Google Scholar] [CrossRef]
- PIKAL, M.; SHAH, S.; ROY, M.; PUTMAN, R. The Secondary Drying Stage of Freeze Drying: Drying Kinetics as a Function of Temperature and Chamber Pressure☆. Int J Pharm 1990, 60, 203–207. [Google Scholar] [CrossRef]
- Ahmed, M.; Ali, A.; Sarfraz, A.; Hong, Q.; Boran, H. Effect of Freeze-Drying on Apple Pomace and Pomegranate Peel Powders Used as a Source of Bioactive Ingredients for the Development of Functional Yogurt. J Food Qual 2022, 2022, 1–9. [Google Scholar] [CrossRef]
- Dundar, A.N.; Sahin, O.I.; Parlak, M.E.; Saricaoglu, F.T. Drying Kinetics and Change in Bioactive Compounds of Edible Flowers: Prunus Domestica. J Food Process Eng 2023, 46. [Google Scholar] [CrossRef]
- Chouaibi, M.; Snoussi, A.; Attouchi, S.; Ferrari, G. Influence of Drying Processes on Bioactive Compounds Profiles, Hydroxymethylfurfural, Color Parameters, and Antioxidant Activities of Tunisian Eggplant ( Solanum Melongena L.). J Food Process Preserv 2021, 45. [Google Scholar] [CrossRef]
- Meena, L.; Neog, R.; Yashini, M.; Sunil, C.K. Pineapple Pomace Powder (Freeze-Dried): Effect on the Texture and Rheological Properties of Set-Type Yogurt. Food Chemistry Advances 2022, 1, 100101. [Google Scholar] [CrossRef]
- Siol, M.; Sadowska, A.; Król, K.; Najman, K. Bioactive and Physicochemical Properties of Exotic Fruit Seed Powders: Mango (Mangefiera Indica L.) and Rambutan (Nephelium Lappaceum L.) Obtained by Various Drying Methods. Applied Sciences 2022, 12, 4995. [Google Scholar] [CrossRef]
- Michalska-Ciechanowska, A.; Hendrysiak, A.; Brzezowska, J.; Wojdyło, A.; Gajewicz-Skretna, A. How Do the Different Types of Carrier and Drying Techniques Affect the Changes in Physico-Chemical Properties of Powders from Chokeberry Pomace Extracts? Foods 2021, 10, 1864. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Singh, B.; Gat, Y. Effect of Different Drying Techniques on Chemical Composition, Color and Antioxidant Properties of Kinnow (Citrus Reticulata) Peel. J Food Sci Technol 2019, 56, 2458–2466. [Google Scholar] [CrossRef]
- Eisinaitė, V.; Leskauskaitė, D.; Pukalskienė, M.; Venskutonis, P.R. Freeze-drying of Black Chokeberry Pomace Extract–Loaded Double Emulsions to Obtain Dispersible Powders. J Food Sci 2020, 85, 628–638. [Google Scholar] [CrossRef]
- Ross, K.A.; DeLury, N.; Fukumoto, L.; Diarra, M.S. Dried Berry Pomace as a Source of High Value-Added Bioproduct: Drying Kinetics and Bioactive Quality Indices. Int J Food Prop 2020, 23, 2123–2143. [Google Scholar] [CrossRef]
- Tumbas Šaponjac, V.; Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Pajin, B.; Petrović, J.; Stajčić, S.; Vulić, J. Encapsulation of Sour Cherry Pomace Extract by Freeze Drying: Characterization and Storage Stability. Acta Chim Slov 2017, 64, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, P.; Ray, A.; Jena, S.; Nayak, S.; Mohanty, S. Influence of Various Drying Methods on Physicochemical Characteristics, Antioxidant Activity, and Bioactive Compounds in Centella Asiatica L. Leaves: A Comparative Study. BioTechnologia 2022, 103, 235–247. [Google Scholar] [CrossRef]
- Yan, J.-K.; Wu, L.-X.; Qiao, Z.-R.; Cai, W.-D.; Ma, H. Effect of Different Drying Methods on the Product Quality and Bioactive Polysaccharides of Bitter Gourd (Momordica Charantia L.) Slices. Food Chem 2019, 271, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Goztepe, B.; Kayacan, S.; Bozkurt, F.; Tomas, M.; Sagdic, O.; Karasu, S. Drying Kinetics, Total Bioactive Compounds, Antioxidant Activity, Phenolic Profile, Lycopene and β-Carotene Content and Color Quality of Rosehip Dehydrated by Different Methods. LWT 2022, 153, 112476. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q. V. Effects of Drying Conditions on Physicochemical and Antioxidant Properties of Banana ( Musa Cavendish ) Peels. Drying Technology 2017, 35, 1141–1151. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Lech, K.; Łysiak, G.P.; Figiel, A. Effect of Different Drying Techniques on Physical Properties, Total Polyphenols and Antioxidant Capacity of Blackcurrant Pomace Powders. LWT 2017, 78, 114–121. [Google Scholar] [CrossRef]
- Nakagawa, K.; Horie, A.; Nakabayashi, M.; Nishimura, K.; Yasunobu, T. Influence of Processing Conditions of Atmospheric Freeze-Drying/Low-Temperature Drying on the Drying Kinetics of Sliced Fruits and Their Vitamin C Retention. J Agric Food Res 2021, 6, 100231. [Google Scholar] [CrossRef]
- Nowak, D.; Jakubczyk, E. The Freeze-Drying of Foods—The Characteristic of the Process Course and the Effect of Its Parameters on the Physical Properties of Food Materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef]
- Yildiz, G.; Izli, G. The Effect of Ultrasound Pretreatment on Quality Attributes of Freeze-dried Quince Slices: Physical Properties and Bioactive Compounds. J Food Process Eng 2019, 42. [Google Scholar] [CrossRef]
- Yuan, L.; Lao, F.; Shi, X.; Zhang, D.; Wu, J. Effects of Cold Plasma, High Hydrostatic Pressure, Ultrasound, and High-Pressure Carbon Dioxide Pretreatments on the Quality Characteristics of Vacuum Freeze-Dried Jujube Slices. Ultrason Sonochem 2022, 90, 106219. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, L.; Qiao, Y.; Wang, C.; Shi, D.; An, K.; Hu, J. Effects of Ultrahigh Pressure and Ultrasound Pretreatments on Properties of Strawberry Chips Prepared by Vacuum-Freeze Drying. Food Chem 2020, 303, 125386. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-H.; Liu, F.; Wen, X.; Xiao, H.-W.; Ni, Y.-Y. State Diagram for Freeze-Dried Mango: Freezing Curve, Glass Transition Line and Maximal-Freeze-Concentration Condition. J Food Eng 2015, 157, 49–56. [Google Scholar] [CrossRef]
- Mahdi Madelatparvar; Mahdi Salami Hosseini; Farhang Abbasi Numerical Study on Parameters Affecting the Structure of Scaffolds Prepared by Freeze-Drying Method. Iranian journal of chemistry and chemical engineering 2020, 39, 273–288. [CrossRef]
- Levin, P.; Meunier, V.; Kessler, U.; Heinrich, S. Influence of Freezing Parameters on the Formation of Internal Porous Structure and Its Impact on Freeze-Drying Kinetics. Processes 2021, 9, 1273. [Google Scholar] [CrossRef]
- Juckers, A.; Knerr, P.; Harms, F.; Strube, J. Effect of the Freezing Step on Primary Drying Experiments and Simulation of Lyophilization Processes. Processes 2023, 11, 1404. [Google Scholar] [CrossRef]
- Jin, J.; Yurkow, E.J.; Adler, D.; Lee, T.-C. Improved Freeze Drying Efficiency by Ice Nucleation Proteins with Ice Morphology Modification. Food Research International 2018, 106, 90–97. [Google Scholar] [CrossRef]
- Oddone, I.; Barresi, A.A.; Pisano, R. Influence of Controlled Ice Nucleation on the Freeze-Drying of Pharmaceutical Products: The Secondary Drying Step. Int J Pharm 2017, 524, 134–140. [Google Scholar] [CrossRef] [PubMed]
- A. M. Nandhu Lal; M.V. Prince; Anjineyulu Kothakota; R. Pandiselvam; Rohit Thirumdas; Naveen Kumar Mahanti; R. Sreeja Pulsed Electric Field Combined with Microwave-Assisted Extraction of Pectin Polysaccharide from Jackfruit Waste. Innovative Food Science & Emerging Technologies 2021, 74. [Google Scholar] [CrossRef]
- Li, R.; Huang, L.; Zhang, M.; Mujumdar, A.S.; Wang, Y.C. Freeze Drying of Apple Slices with and without Application of Microwaves. Drying Technology 2014, 32, 1769–1776. [Google Scholar] [CrossRef]
- Carrión, C.; Mulet, A.; García-Pérez, J. V.; Cárcel, J.A. Ultrasonically Assisted Atmospheric Freeze-Drying of Button Mushroom. Drying Kinetics and Product Quality. Drying Technology 2018, 36, 1814–1823. [Google Scholar] [CrossRef]
- GONZÁLEZ-TOXQUI, C.; GONZÁLEZ-ANGELES, A.; LÓPEZ-AVITIA, R.; MENDOZA-MUÑOZ, I. Time and Energy Reduction on Grape Dehydration by Applying Dipping Solution on Freeze Drying Process. An Acad Bras Cienc 2020, 92. [Google Scholar] [CrossRef] [PubMed]
- Salazar, N.A.; Alvarez, C.; Orrego, C.E. Optimization of Freezing Parameters for Freeze-Drying Mango ( Mangifera Indica L.) Slices. Drying Technology 2018, 36, 192–204. [Google Scholar] [CrossRef]
- Abbaspour-Gilandeh, Y.; Kaveh, M.; Fatemi, H.; Aziz, M. Combined Hot Air, Microwave, and Infrared Drying of Hawthorn Fruit: Effects of Ultrasonic Pretreatment on Drying Time, Energy, Qualitative, and Bioactive Compounds’ Properties. Foods 2021, 10, 1006. [Google Scholar] [CrossRef]
- Rybak, K.; Wiktor, A.; Witrowa-Rajchert, D.; Parniakov, O.; Nowacka, M. The Quality of Red Bell Pepper Subjected to Freeze-Drying Preceded by Traditional and Novel Pretreatment. Foods 2021, 10, 226. [Google Scholar] [CrossRef] [PubMed]
- Munzenmayer, P.; Ulloa, J.; Pinto, M.; Ramirez, C.; Valencia, P.; Simpson, R.; Almonacid, S. Freeze-Drying of Blueberries: Effects of Carbon Dioxide (CO2) Laser Perforation as Skin Pretreatment to Improve Mass Transfer, Primary Drying Time, and Quality. Foods 2020, 9, 211. [Google Scholar] [CrossRef]
- Ren, Z.; Bai, Y. Ultrasound Pretreatment of Apple Slice Prior to Vacuum Freeze Drying. In Proceedings of the Proceedings of the 2nd International Conference on Material Science, Energy and Environmental Engineering (MSEEE 2018); Atlantis Press: Paris, France; 2018. [Google Scholar]
- Santos, N.C.; Almeida, R.L.J.; Albuquerque, J.C.; de Andrade, E.W.V.; Gregório, M.G.; Santos, R.M.S.; Rodrigues, T.J.A.; Carvalho, R. de O.; Gomes, M.M. de A.; Moura, H.V.; et al. Optimization of Ultrasound Pre-Treatment and the Effect of Different Drying Techniques on Antioxidant Capacity, Bioaccessibility, Structural and Thermal Properties of Purple Cabbage. Chemical Engineering and Processing - Process Intensification 2024, 201, 109801. [Google Scholar] [CrossRef]
- Çetin, N.; Sağlam, C. Effects of Ultrasound Pretreatment Assisted Drying Methods on Drying Characteristics, Physical and Bioactive Properties of Windfall Apples. J Sci Food Agric 2023, 103, 534–547. [Google Scholar] [CrossRef]
- Ren, F.; Perussello, C.A.; Zhang, Z.; Kerry, J.P.; Tiwari, B.K. Impact of Ultrasound and Blanching on Functional Properties of Hot-Air Dried and Freeze Dried Onions. LWT 2018, 87, 102–111. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, Y.; Yao, X.; Zheng, Z.; Zheng, C.; Jiang, Z. Effect of High Hydrostatic Pressure Pretreatment on Flavour and Physicochemical Properties of Freeze-dried Carambola Slices. Int J Food Sci Technol 2022, 57, 4245–4253. [Google Scholar] [CrossRef]
- Dilucia, F.; Rutigliano, M.; Libutti, A.; Quinto, M.; Spadaccino, G.; Liberatore, M.T.; Lauriola, M.; di Luccia, A.; la Gatta, B. Effect of a Novel Pretreatment Before Freeze-Drying Process on the Antioxidant Activity and Polyphenol Content of Malva Sylvestris L., Calendula Officinalis L., and Asparagus Officinalis L. Infusions. Food Bioproc Tech 2023, 16, 2113–2125. [Google Scholar] [CrossRef]
- Wang, M.; Gao, Y.; Hu, B.; Wang, J.; Si, X.; Zhu, B.; Fan, J.; Zhang, B. Freeze-Thaw Pretreatment Improves the Vacuum Freeze-Drying Efficiency and Storage Stability of Goji Berry (Lycium Barbarum. L.). LWT 2023, 189, 115439. [Google Scholar] [CrossRef]
- Putri, R.M.; Jumeri; Falah, M. A.F. Effects of Osmotic Dehydration Pre-Treatment on Process and Quality of Freeze-Dried Strawberries (Fragaria x Ananassa Var. Mencir). IOP Conf Ser Earth Environ Sci 2023, 1200, 012030. [Google Scholar] [CrossRef]
- Ochmian, I.; Figiel-Kroczyńska, M.; Lachowicz, S. The Quality of Freeze-Dried and Rehydrated Blueberries Depending on Their Size and Preparation for Freeze-Drying. Acta Universitatis Cibiniensis. Series E: Food Technology 2020, 24, 61–78. [Google Scholar] [CrossRef]
- Ren, Z.; Yu, X.; Yagoub, A.E.A.; Fakayode, O.A.; Ma, H.; Sun, Y.; Zhou, C. Combinative Effect of Cutting Orientation and Drying Techniques (Hot Air, Vacuum, Freeze and Catalytic Infrared Drying) on the Physicochemical Properties of Ginger (Zingiber Officinale Roscoe). LWT 2021, 144, 111238. [Google Scholar] [CrossRef]
- Cristofel, C.J.; Catharina Weis, C.M.S.; Vaz Goncalves, G.C.; Treichel, H.; Bertan, L.C.; Tormen, L. Influence of Drying Parameters and Methods of Fractionation in the Chemical Composition of Dehydrated Ginger (<I>Zingiber Officinale</I> Roscoe). Food Science and Engineering 2024, 155–171. [Google Scholar] [CrossRef]
- Mello, R.E.; Fontana, A.; Mulet, A.; Correa, J.L.G.; Cárcel, J.A. Ultrasound-Assisted Drying of Orange Peel in Atmospheric Freeze-Dryer and Convective Dryer Operated at Moderate Temperature. Drying Technology 2020, 38, 259–267. [Google Scholar] [CrossRef]
- Liu, S.; Yu, J.; Zou, J.; Yang, Y.; Cui, L.; Chang, X. Effects of Different Drying and Milling Methods on the Physicochemical Properties and Phenolic Content of Hawthorn Fruit Powders. J Food Process Preserv 2020, 44. [Google Scholar] [CrossRef]
- Patel, P.; Sunkara, R.; Walker, L.T.; Verghese, M. Effect of Drying Techniques on Antioxidant Capacity of Guava Fruit. Food Nutr Sci 2016, 07, 544–554. [Google Scholar] [CrossRef]
- Jribi, S.; Gliguem, H.; Szalóki-Dorkó, L.; Naàr, Z.; Kheriji, O.; Debbabi, H. Impact of Drying Method on Bioactive Compounds, Functional and Thermal Properties of Durum Wheat (Triticum Durum) Sprouts. The Annals of the University Dunarea de Jos of Galati. Fascicle VI - Food Technology 2022, 46, 79–92. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al Juhaimi, F.; Özcan, M.M.; Uslu, N.; Babiker, E.E.; Mohamed Ahmed, I.A. Total Phenolics, Total Carotenoids, Individual Phenolics and Antioxidant Activity of Ginger (Zingiber Officinale) Rhizome as Affected by Drying Methods. LWT 2020, 126, 109354. [Google Scholar] [CrossRef]
- de Carvalho, J.V.D.; de Freitas, R.V.; Bezerra, C.V.; Teixeira-Costa, B.E.; dos Santos, O.V. Application of the Cryo-Drying Technique in Maintaining Bioactive and Antioxidant Properties in Basil Leaves (Ocimum Basilicum). Horticulturae 2024, 10, 457. [Google Scholar] [CrossRef]
- Macura, R.; Michalczyk, M.; Fiutak, G.; Maciejaszek, I. Effect of Freeze-Drying and Air-Drying on the Content of Carotenoids and Anthocyanins in Stored Purple Carrot [Pdf]. Acta Sci Pol Technol Aliment 2019, 18, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Cheng, H.; Li, X.; Zhang, G.; Zheng, J. Evaluating How Different Drying Techniques Change the Structure and Physicochemical and Flavor Properties of Gastrodia Elata. Foods 2024, 13, 1210. [Google Scholar] [CrossRef]
- Carrión, C.; Mulet, A.; García-Pérez, J. V.; Cárcel, J.A. Ultrasonically Assisted Atmospheric Freeze-Drying of Button Mushroom. Drying Kinetics and Product Quality. Drying Technology 2018, 36, 1814–1823. [Google Scholar] [CrossRef]
- Gong, H.; Wang, T.; Hua, Y.; Wang, W.-D.; Shi, C.; Xu, H.-X.; Li, L.-L.; Zhang, D.-P.; Sun, Y.-E.; Yu, N.-N. Garlic Varieties and Drying Methods Affected the Physical Properties, Bioactive Compounds and Antioxidant Capacity of Dried Garlic Powder. CyTA - Journal of Food 2022, 20, 111–119. [Google Scholar] [CrossRef]
- Castro-Mendoza, M.P.; Navarro-Cortez, R.O.; Hernández-Uribe, J.P.; Bello-Pérez, L.A.; Vargas-Torres, A. Sweet Potato Color Variety and Flour Production Drying Method Determine Bioactive Compound Content and Functional Properties of Flour. J Food Process Preserv 2022, 46. [Google Scholar] [CrossRef]
- Luo, N.; Shu, H. Analysis of Energy Saving during Food Freeze Drying. Procedia Eng 2017, 205, 3763–3768. [Google Scholar] [CrossRef]
- Suherman, S.; Hadiyanto, H.; Trianita, A.P.; Hargono, H.; Sumantri, I.; Jos, B.; Alhanif, M. Response Surface Optimization of Time and Pressure for Freeze-Drying Mango Slices. Food Res 2023, 7, 182–195. [Google Scholar] [CrossRef]
- Silva-Espinoza, M.A.; Ayed, C.; Foster, T.; Camacho, M. del M.; Martínez-Navarrete, N. The Impact of Freeze-Drying Conditions on the Physico-Chemical Properties and Bioactive Compounds of a Freeze-Dried Orange Puree. Foods 2019, 9, 32. [Google Scholar] [CrossRef]
- Pisano, R. Automatic Control of a Freeze-Drying Process: Detection of the End Point of Primary Drying. Drying Technology 2022, 40, 140–157. [Google Scholar] [CrossRef]
- Kabeer, S.; Nagamanniammai, G. Effect of Freeze and Vacuum Drying on the Retention of Nutrient Content of Brown Rice (Oryza Sativa) Porridge. Int J Nutr Pharmacol Neurol Dis 2023, 13, 234–239. [Google Scholar] [CrossRef]
- Boateng, I.D.; Yang, X. Effect of Different Drying Methods on Product Quality, Bioactive and Toxic Components of <scp> Ginkgo Biloba </Scp> L. Seed. J Sci Food Agric 2021, 101, 3290–3297. [Google Scholar] [CrossRef]
- Nguyen, Q.-V.; Doan, M.-D.; Bui Thi, B.-H.; Nguyen, M.-T.; Tran Minh, D.; Nguyen, A.-D.; Le, T.-M.; Nguyen, T.-H.; Nguyen, T.-D.; Tran, V.-C.; et al. The Effect of Drying Methods on Chlorophyll, Polyphenol, Flavonoids, Phenolic Compounds Contents, Color and Sensory Properties, and in Vitro Antioxidant and Anti-Diabetic Activities of Dried Wild Guava Leaves. Drying Technology 2023, 41, 1291–1302. [Google Scholar] [CrossRef]
- Guo, H.F.; Wang, M.H. Impact of Drying Method on Antioxidant, Anti-Diabetic, and Anti-Proliferation Activities of Cirsium Setidens in Vitro. Acta Aliment 2018, 47, 44–51. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Dziadek, M.; Sadowska, U.; Cholewa-Kowalska, K. The Changes in Bioactive Compounds and Antioxidant Activity of Chia (Salvia Hispanica L.) Herb under Storage and Different Drying Conditions: A Comparison with Other Species of Sage. Molecules 2022, 27, 1569. [Google Scholar] [CrossRef]
- Falodun, A.I.; Ayo-Omogie, H.N.; Awolu, O.O. Effect of Different Drying Techniques on the Resistant Starch, Bioactive Components, Physicochemical and Pasting Properties of Cardaba Banana Flour. Acta Universitatis Cibiniensis. Series E: Food Technology 2019, 23, 35–42. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Bhandari, B. Influence of Drying Methods on Some Physicochemical, Functional and Pasting Properties of Chinese Yam Flour. LWT 2019, 111, 182–189. [Google Scholar] [CrossRef]
- Saifullah, M.; McCullum, R.; McCluskey, A.; Vuong, Q. Effects of Different Drying Methods on Extractable Phenolic Compounds and Antioxidant Properties from Lemon Myrtle Dried Leaves. Heliyon 2019, 5, e03044. [Google Scholar] [CrossRef]
- Arslan, A.; Duman, H.; Kaplan, M.; Uzkuç, H.; Bayraktar, A.; Ertürk, M.; Alkan, M.; Frese, S.A.; Duar, R.M.; Henrick, B.M.; et al. Determining Total Protein and Bioactive Protein Concentrations in Bovine Colostrum. Journal of Visualized Experiments 2021. [Google Scholar] [CrossRef]
- Yalçıntaş, Y.M.; Duman, H.; López, J.M.M.; Portocarrero, A.C.M.; Lombardo, M.; Khallouki, F.; Koch, W.; Bordiga, M.; El-Seedi, H.; Raposo, A.; et al. Revealing the Potency of Growth Factors in Bovine Colostrum. Nutrients 2024, 16, 2359. [Google Scholar] [CrossRef]
- Kaplan, M.; Şahutoğlu, A.S.; Sarıtaş, S.; Duman, H.; Arslan, A.; Pekdemir, B.; Karav, S. Role of Milk Glycome in Prevention, Treatment, and Recovery of COVID-19. Front Nutr 2022, 9. [Google Scholar] [CrossRef] [PubMed]
- Eker, F.; Akdaşçi, E.; Duman, H.; Yalçıntaş, Y.M.; Canbolat, A.A.; Kalkan, A.E.; Karav, S.; Šamec, D. Antimicrobial Properties of Colostrum and Milk. Antibiotics 2024, 13, 251. [Google Scholar] [CrossRef] [PubMed]
- Eker, F.; Bolat, E.; Pekdemir, B.; Duman, H.; Karav, S. Lactoferrin: Neuroprotection against Parkinson’s Disease and Secondary Molecule for Potential Treatment. Front Aging Neurosci 2023, 15. [Google Scholar] [CrossRef] [PubMed]
- Karav, S.; German, J.; Rouquié, C.; Le Parc, A.; Barile, D. Studying Lactoferrin N-Glycosylation. Int J Mol Sci 2017, 18, 870. [Google Scholar] [CrossRef] [PubMed]
- Bolat, E.; Eker, F.; Yılmaz, S.; Karav, S.; Oz, E.; Brennan, C.; Proestos, C.; Zeng, M.; Oz, F. BCM-7: Opioid-like Peptide with Potential Role in Disease Mechanisms. Molecules 2024, 29, 2161. [Google Scholar] [CrossRef]
- Bolat, E.; Eker, F.; Kaplan, M.; Duman, H.; Arslan, A.; Saritaş, S.; Şahutoğlu, A.S.; Karav, S. Lactoferrin for COVID-19 Prevention, Treatment, and Recovery. Front Nutr 2022, 9. [Google Scholar] [CrossRef]
- Yalçıntaş, Y.M.; Duman, H.; Rocha, J.M.; Bartkiene, E.; Karav, S.; Ozogul, F. Role of Bovine Colostrum against Various Diseases. Food Biosci 2024, 61, 104818. [Google Scholar] [CrossRef]
- Kaplan, M.; Baydemir, B.; Günar, B.B.; Arslan, A.; Duman, H.; Karav, S. Benefits of A2 Milk for Sports Nutrition, Health and Performance. Front Nutr 2022, 9. [Google Scholar] [CrossRef]
- Arslan, A.; Kaplan, M.; Duman, H.; Bayraktar, A.; Ertürk, M.; Henrick, B.M.; Frese, S.A.; Karav, S. Bovine Colostrum and Its Potential for Human Health and Nutrition. Front Nutr 2021, 8. [Google Scholar] [CrossRef]
- Yalçıntaş, Y.M.; Baydemir, B.; Duman, H.; Eker, F.; Bayraktar Biçen, A.; Ertürk, M.; Karav, S. Exploring the Impact of Colostrum Supplementation on Athletes: A Comprehensive Analysis of Clinical Trials and Diverse Properties. Front Immunol 2024, 15. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, Z.; Liu, C.; Tan, C.; Xie, K.; Liu, Y. A Comparative Study between Freeze-Dried and Spray-Dried Goat Milk on Lipid Profiling and Digestibility. Food Chem 2022, 387, 132844. [Google Scholar] [CrossRef] [PubMed]
- Paul, T.; Adejumo, B.A.; Okosa, I.; Chidinma-Edeh, C.E. Microbiological Properties of Stored Freeze Dried Cow Milk Cheese and Soy Cheese. Journal of Applied Sciences and Environmental Management 2020, 24, 537–542. [Google Scholar] [CrossRef]
- Umar, M.; Ruktanonchai, U.R.; Makararpong, D.; Anal, A.K. Compositional and Functional Analysis of Freeze-Dried Bovine Skim Colostrum Powders. Journal of Food Measurement and Characterization 2023, 17, 4294–4304. [Google Scholar] [CrossRef]
- Duman, H.; Karav, S. Bovine Colostrum and Its Potential Contributions for Treatment and Prevention of COVID-19. Front Immunol 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, M.; Arslan, A.; Duman, H.; Karyelioğlu, M.; Baydemir, B.; Günar, B.B.; Alkan, M.; Bayraktar, A.; Tosun, H.İ.; Ertürk, M.; et al. Production of Bovine Colostrum for Human Consumption to Improve Health. Front Pharmacol 2022, 12. [Google Scholar] [CrossRef]
- Fatima, M.; Sajid, M.; Saima, H.; Nadeem, M.T.; Ahmad, R.S.; Mehmood, S.; Zubair Khalid, M.; Ali Alharbi, S.; Ansari, M.J.; Kasongo, E.L.M. In Vitro Evaluation of Spray and Freeze-Dried Bovine Colostrum Powder and Their Effects on the Nutritional and Functional Properties. Int J Food Prop 2024, 27, 985–1002. [Google Scholar] [CrossRef]
- Demirkol, M.; Tarakci, Z. Effect of Grape (Vitis Labrusca L.) Pomace Dried by Different Methods on Physicochemical, Microbiological and Bioactive Properties of Yoghurt. LWT 2018, 97, 770–777. [Google Scholar] [CrossRef]
- Gościnna, K.; Pobereżny, J.; Wszelaczyńska, E.; Szulc, W.; Rutkowska, B. Effects of Drying and Extraction Methods on Bioactive Properties of Plums. Food Control 2021, 122, 107771. [Google Scholar] [CrossRef]
- Kamanova, S.; Temirova, I.; Aldiyeva, A.; Yermekov, Y.; Toimbayeva, D.; Murat, L.; Muratkhan, M.; Khamitova, D.; Tultabayeva, T.; Bulashev, B.; et al. Effects of Freeze-Drying on Sensory Characteristics and Nutrient Composition in Black Currant and Sea Buckthorn Berries. Applied Sciences 2023, 13, 12709. [Google Scholar] [CrossRef]
- Wojdyło, A.; Lech, K.; Nowicka, P. Effects of Different Drying Methods on the Retention of Bioactive Compounds, On-Line Antioxidant Capacity and Color of the Novel Snack from Red-Fleshed Apples. Molecules 2020, 25, 5521. [Google Scholar] [CrossRef]
- Sadowska, A.; Świderski, F.; Hallmann, E. Bioactive, Physicochemical and Sensory Properties as Well as Microstructure of Organic Strawberry Powders Obtained by Various Drying Methods. Applied Sciences 2020, 10, 4706. [Google Scholar] [CrossRef]
- Mitra, P.; Meda, V.; Green, R. Effect of Drying Techniques on the Retention of Antioxidant Activities of Saskatoon Berries. International Journal of Food Studies 2013, 2. [Google Scholar] [CrossRef]
- Sarkar, T.; Salauddin, M.; Hazra, S.K.; Chakraborty, R. Effect of Cutting Edge Drying Technology on the Physicochemical and Bioactive Components of Mango (Langra Variety) Leather. J Agric Food Res 2020, 2, 100074. [Google Scholar] [CrossRef]
- Bayram, H.M.; Ozkan, K.; Ozturkcan, A.; Sagdic, O.; Gunes, E.; Karadag, A. Effect of Drying Methods on Free and Bound Phenolic Compounds, Antioxidant Capacities, and Bioaccessibility of Cornelian Cherry. European Food Research and Technology 2024, 250, 2461–2478. [Google Scholar] [CrossRef]
- Kowalska, J.; Kowalska, H.; Marzec, A.; Brzeziński, T.; Samborska, K.; Lenart, A. Dried Strawberries as a High Nutritional Value Fruit Snack. Food Sci Biotechnol 2018, 27, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Turan, B.; Tekin-Cakmak, Z.H.; Kayacan Çakmakoglu, S.; Karasu, S.; Kasapoglu, M.Z.; Avci, E. Effect of Different Drying Techniques on Total Bioactive Compounds and Individual Phenolic Composition in Goji Berries. Processes 2023, 11, 754. [Google Scholar] [CrossRef]
- Qingyang, L.; Shuting, W.; Ruohui, W.; Danyu, S.; Runhong, M.; Fubin, T.; Yihua, L. Comparative Investigation on the Phenolic Compounds and Antioxidant Capacity of Walnut Kernel from Different Drying Methods. Food Production, Processing and Nutrition 2024, 6, 41. [Google Scholar] [CrossRef]
- Kręcisz, M.; Stępień, B.; Pasławska, M.; Popłoński, J.; Dulak, K. Physicochemical and Quality Properties of Dried Courgette Slices: Impact of Vacuum Impregnation and Drying Methods. Molecules 2021, 26, 4597. [Google Scholar] [CrossRef]
- Kidoń, M.; Grabowska, J. Bioactive Compounds, Antioxidant Activity, and Sensory Qualities of Red-Fleshed Apples Dried by Different Methods. LWT 2021, 136, 110302. [Google Scholar] [CrossRef]
- An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of Different Drying Methods on Chinese Ginger (Zingiber Officinale Roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure. Food Chem 2016, 197, 1292–1300. [Google Scholar] [CrossRef]
- Mbondo, N.N.; Owino, W.O.; Ambuko, J.; Sila, D.N. Effect of Drying Methods on the Retention of Bioactive Compounds in African Eggplant. Food Sci Nutr 2018, 6, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tong, X.; Yuan, Y.; Peng, X.; Zhang, Q.; Zhang, S.; Xie, C.; Zhang, X.; Yan, S.; Xu, J.; et al. Effect of Spray-Drying and Freeze-Drying on the Properties of Soybean Hydrolysates. J Chem 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Mahn, A. Effect of Freeze-Drying Conditions on Antioxidant Compounds of Broccoli. J Food Process Technol 2014, 05. [Google Scholar] [CrossRef]
- Dadi, D.W.; Emire, S.A.; Hagos, A.D.; Eun, J.-B. Physical and Functional Properties, Digestibility, and Storage Stability of Spray- and Freeze-Dried Microencapsulated Bioactive Products from Moringa Stenopetala Leaves Extract. Ind Crops Prod 2020, 156, 112891. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Bhandari, B.; Wang, B. Effects of Infrared Freeze Drying on Volatile Profile, <scp>FTIR</Scp> Molecular Structure Profile and Nutritional Properties of Edible Rose Flower ( <scp> Rosa Rugosa </Scp> Flower). J Sci Food Agric 2020, 100, 4791–4800. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Qin, L.; Shen, J.; He, Z.; Shao, Q.; Lin, D. Drying Methods Affect Bioactive Compound Contents and Antioxidant Capacity of Bletilla Striata (Thunb.) Reichb.f. Flower. Ind Crops Prod 2021, 164, 113388. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Yu, X.; Li, H.; Ji, L.; Sun, Y.; Jiang, X.; Li, X.; Liu, H. Effects of Freeze-Drying and Spray-Drying on the Physical and Chemical Properties of Perinereis Aibuhitensis Hydrolysates: Sensory Characteristics and Antioxidant Activities. Food Chem 2022, 382, 132317. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, P.; Yang, K.; He, Q.; Wang, Y.; Sun, Y.; He, C.; Xiao, P. Impact of Drying Methods on Phenolic Components and Antioxidant Activity of Sea Buckthorn (Hippophae Rhamnoides L.) Berries from Different Varieties in China. Molecules 2021, 26, 7189. [Google Scholar] [CrossRef]
- Hassoun, A.; Siddiqui, S.A.; Smaoui, S.; Ucak, İ.; Arshad, R.N.; Garcia-Oliveira, P.; Prieto, M.A.; Aït-Kaddour, A.; Perestrelo, R.; Câmara, J.S.; et al. Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. Applied Sciences 2022, 12, 1703. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Duman, H.; Karav, S. Nutritional and Functional Aspects of Fermented Algae. Int J Food Sci Technol 2024, 59, 5270–5284. [Google Scholar] [CrossRef]
- Uribe, E.; Vega-Gálvez, A.; García, V.; Pastén, A.; Rodríguez, K.; López, J.; Scala, K. Di Evaluation of Physicochemical Composition and Bioactivity of a Red Seaweed ( Pyropia Orbicularis ) as Affected by Different Drying Technologies. Drying Technology 2020, 38, 1218–1230. [Google Scholar] [CrossRef]
- Uribe, E.; Pardo-Orellana, C.M.; Vega-Gálvez, A.; Ah-Hen, K.S.; Pastén, A.; García, V.; Aubourg, S.P. Effect of Drying Methods on Bioactive Compounds, Nutritional, Antioxidant, and Antidiabetic Potential of Brown Alga Durvillaea Antarctica. Drying Technology 2020, 38, 1915–1928. [Google Scholar] [CrossRef]
- Niu, J.; Zhao, B.; Guo, X.; Yin, T. Effects of Vacuum Freeze-Drying and Vacuum Spray-Drying on Biochemical Properties and Functionalities of Myofibrillar Proteins from Silver Carp. J Food Qual 2019, 2019, 1–8. [Google Scholar] [CrossRef]
- Xiao, M.; Wang, T.; Tang, C.; He, M.; Li, Y.; Li, X. Effects of Drying Methods on Morphological Characteristics, Metabolite Content, and Antioxidant Capacity of Cordyceps Sinensis. Foods 2024, 13, 1639. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, Y.; Kong, Y.; Zhao, J.; Sun, Y.; Huang, M. Comparative Analysis of Taste Compounds in Shiitake Mushrooms Processed by Hot-Air Drying and Freeze Drying. Int J Food Prop 2019, 22, 1100–1111. [Google Scholar] [CrossRef]
- Starovoitov, V.I.; Starovoitova, O.A.; Manokhina, A.А.; Balabanov, V.I. The Influence of Freeze Drying on the Quality Indicators of Potato Tubers. E3S Web of Conferences 2023, 392, 02031. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chuah, W.C.; Chye, F.Y. Effect of Drying on Physicochemical and Functional Properties of Stingless Bee Honey. J Food Process Preserv 2021, 45. [Google Scholar] [CrossRef]
- An, N.; Sun, W.; Li, B.; Wang, Y.; Shang, N.; Lv, W.; Li, D.; Wang, L. Effect of Different Drying Techniques on Drying Kinetics, Nutritional Components, Antioxidant Capacity, Physical Properties and Microstructure of Edamame. Food Chem 2022, 373, 131412. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Pandiselvam, R.; Su, D.; Xu, H. Comparative Analysis of Drying Methods on Pleurotus Eryngii: Impact on Drying Efficiency, Nutritional Quality, and Flavor Profile. Food Bioproc Tech 2024. [Google Scholar] [CrossRef]
- Setiawan, B.; Azra, J.M.; Nasution, Z.; Sulaeman, A.; Estuningsih, S. Development of Freeze-Dried Coconut Drink and Its Nutrient Content, Sensory Profile, and Shelf Life. Journal of Culinary Science & Technology 2024, 22, 787–803. [Google Scholar] [CrossRef]
- Al Hasani, S.; Al-Attabi, Z.; Waly, M.; Al-Habsi, N.; Al-Subhi, L.; Shafiur Rahman, M. Polyphenol and Flavonoid Stability of Wild Blueberry (Sideroxylon Mascatense) during Air- and Freeze-Drying and Storage Stability as a Function of Temperature. Foods 2023, 12, 871. [Google Scholar] [CrossRef] [PubMed]
- Sangalang, R.H.; Baylon, J.R.; Cajefe, A.J. V.; Valencia, J.M.S. The Effects of Drying Methods on the Physico-Chemical Properties and Antioxidant Activity of Bilimbi (Averrhoa Bilimbi). Res J Chem Environ 2022, 26, 1–9. [Google Scholar] [CrossRef]
- Piskov, S.; Timchenko, L.; Grimm, W.-D.; Rzhepakovsky, I.; Avanesyan, S.; Sizonenko, M.; Kurchenko, V. Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus). Foods 2020, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, M.; Zielinska, D. Effects of Freezing, Convective and Microwave-Vacuum Drying on the Content of Bioactive Compounds and Color of Cranberries. LWT 2019, 104, 202–209. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, M.; Mujumdar, A.S.; Wang, Z. Effect of Microwave Freeze-Drying on Microbial Inactivation, Antioxidant Substance and Flavor Quality of Ashitaba Leaves ( Angelica Keiskei Koidzumi). Drying Technology 2019, 37, 793–800. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Effects of Different Drying Methods on the Bioactive Compounds and Antioxidant Properties of Edible Centaurea (Centaurea Cyanus) Petals. Brazilian Journal of Food Technology 2018, 21. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdyło, A.; Lech, K. The Influence of Different the Drying Methods on Chemical Composition and Antioxidant Activity in Chokeberries. LWT - Food Science and Technology 2016, 66, 484–489. [Google Scholar] [CrossRef]
- Si, X.; Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Li, Z. Comparison of Different Drying Methods on the Physical Properties, Bioactive Compounds and Antioxidant Activity of Raspberry Powders. J Sci Food Agric 2016, 96, 2055–2062. [Google Scholar] [CrossRef]
- Karaman, S.; Toker, O.S.; Çam, M.; Hayta, M.; Doğan, M.; Kayacier, A. Bioactive and Physicochemical Properties of Persimmon as Affected by Drying Methods. Drying Technology 2014, 32, 258–267. [Google Scholar] [CrossRef]
- Reyes, A.; Evseev, A.; Mahn, A.; Bubnovich, V.; Bustos, R.; Scheuermann, E. Effect of Operating Conditions in Freeze-Drying on the Nutritional Properties of Blueberries. Int J Food Sci Nutr 2011, 62, 303–306. [Google Scholar] [CrossRef]
- Rajkumar, G.; Rajan, M.; Araujo, H.C.; Jesus, M.S.; Leite Neta, M.T.S.; Sandes, R.D.D.; Narain, N. Comparative Evaluation of Volatile Profile of Tomato Subjected to Hot Air, Freeze, and Spray Drying. Drying Technology 2021, 39, 383–391. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, H.; Du, Z. Effect of Drying Methods on Aroma, Taste and Antioxidant Activity of Dendrobium Officinale Flower Tea: A Sensomic and Metabolomic Study. Food Research International 2024, 187, 114455. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wu, C.; Zhang, H.; Yang, N.; Wang, C.; Jike, X.; Zhang, T.; Lei, H. Comparison of Different Drying Technologies for Kiwifruit Pomace: Changes in Physical Characteristics, Nutritional Properties and Antioxidant Capacities. Food Chem 2024, 451, 139497. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.-A.; Wang, S.-Y.; Wang, H.; Xiao, H.; Liu, Z.-L.; Pan, Y.-H.; Gao, L. Comparative Study on the Influence of Various Drying Techniques on Drying Characteristics and Physicochemical Quality of Garlic Slices. Foods 2023, 12, 1314. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Yang, G.; Liu, X.; Qin, Y.; Zhang, F.; Sun, Z.; Wang, X. Comparison of Different Drying Technologies for Coffee Pulp Tea: Changes in Color, Taste, Bioactive and Aroma Components. LWT 2024, 200, 116193. [Google Scholar] [CrossRef]
- Hannon, J.; Zaman, A.U. Exploring the Phenomenon of Zero Waste and Future Cities. Urban Science 2018, 2, 90. [Google Scholar] [CrossRef]
- Difonzo, G.; Aresta, A.; Cotugno, P.; Ragni, R.; Squeo, G.; Summo, C.; Massari, F.; Pasqualone, A.; Faccia, M.; Zambonin, C.; et al. Supercritical CO2 Extraction of Phytocompounds from Olive Pomace Subjected to Different Drying Methods. Molecules 2021, 26, 598. [Google Scholar] [CrossRef]
- de Ancos, B.; Sánchez-Moreno, C.; Zacarías, L.; Rodrigo, M.J.; Sáyago Ayerdí, S.; Blancas Benítez, F.J.; Domínguez Avila, J.A.; González-Aguilar, G.A. Effects of Two Different Drying Methods (Freeze-Drying and Hot Air-Drying) on the Phenolic and Carotenoid Profile of ‘Ataulfo’ Mango by-Products. Journal of Food Measurement and Characterization 2018, 12, 2145–2157. [Google Scholar] [CrossRef]
- Altınok, E.; Palabiyik, I.; Gunes, R.; Toker, O.S.; Konar, N.; Kurultay, S. Valorisation of Grape By-Products as a Bulking Agent in Soft Candies: Effect of Particle Size. LWT 2020, 118, 108776. [Google Scholar] [CrossRef]
- Szymanowska, U.; Karaś, M.; Bochnak-Niedźwiecka, J. Antioxidant and Anti-Inflammatory Potential and Consumer Acceptance of Wafers Enriched with Freeze-Dried Raspberry Pomace. Applied Sciences 2021, 11, 6807. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Aadil, R.M. Kinetic Modeling of Different Drying Techniques and Their Influence on Color, Bioactive Compounds, Antioxidant Indices and Phenolic Profile of Watermelon Rind. Journal of Food Measurement and Characterization 2023, 17, 1068–1081. [Google Scholar] [CrossRef]
- Sarıtaş, S.; Portocarrero, A.C.M.; Miranda López, J.M.; Lombardo, M.; Koch, W.; Raposo, A.; El-Seedi, H.R.; de Brito Alves, J.L.; Esatbeyoglu, T.; Karav, S.; et al. The Impact of Fermentation on the Antioxidant Activity of Food Products. Molecules 2024, 29, 3941. [Google Scholar] [CrossRef] [PubMed]
- Hamid, S.; Skinder, B.M.; Bhat, M.A. Zero Waste. In; 2020; pp. 134–155.
- López, J.; Shun Ah-Hen, K.; Vega-Gálvez, A.; Morales, A.; García-Segovia, P.; Uribe, E. Effects of Drying Methods on Quality Attributes of Murta ( Ugni Molinae Turcz) Berries: Bioactivity, Nutritional Aspects, Texture Profile, Microstructure and Functional Properties. J Food Process Eng 2017, 40. [Google Scholar] [CrossRef]
- Corte-Real, J.; Archaimbault, A.; Schleeh, T.; Cocco, E.; Herrmann, M.; Guignard, C.; Hausman, J.; Iken, M.; Legay, S. Handling Wine Pomace: The Importance of Drying to Preserve Phenolic Profile and Antioxidant Capacity for Product Valorization. J Food Sci 2021, 86, 892–900. [Google Scholar] [CrossRef] [PubMed]
- da Rocha, C.B.; Noreña, C.P.Z. Microencapsulation and Controlled Release of Bioactive Compounds from Grape Pomace. Drying Technology 2021, 39, 1018–1032. [Google Scholar] [CrossRef]
- Mohan, A.; Shanmugam, S.; Nithyalakshmi, V. Comparison of the Nutritional, Physico-Chemical and Anti-Nutrient Properties of Freeze and Hot Air Dried Watermelon (Citrullus Lanatus) Rind. Biosci Biotechnol Res Asia 2016, 13, 1113–1119. [Google Scholar] [CrossRef]
- Zaman, A. Zero-Waste: A New Sustainability Paradigm for Addressing the Global Waste Problem. In The Vision Zero Handbook; Springer International Publishing: Cham, 2023; pp. 1195–1218. [Google Scholar]
- Long, Y.; Zhang, M.; Mujumdar, A.S.; Chen, J. Valorization of Turmeric ( Curcuma Longa L.) Rhizome: Effect of Different Drying Methods on Antioxidant Capacity and Physical Properties. Drying Technology 2022, 40, 1609–1619. [Google Scholar] [CrossRef]
- Suescun–Ospina, S.T.; Ávila–Stagno, J.; Vera-Aguilera, N.; Astudillo-Neira, R.; Trujillo-Mayol, I.; Alarcón-Enos, J. Effects of Drying Method on Bioactive Compounds Contents, Rumen Fermentation Parameters and in Vitro Methane Output of Waste Dried País Grape (Vitis Vinifera L.) Marc. Food Biosci 2023, 51, 102154. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Sanz, M.T.; Blanco, B.; Beltrán, S.; Niknam, S.M. Freeze Dried Extract from Olive Leaves: Valorisation, Extraction Kinetics and Extract Characterization. Food and Bioproducts Processing 2020, 124, 196–207. [Google Scholar] [CrossRef]
- Toupal, S.; Coşansu, S. Antioxidant and Antimicrobial Properties of Freeze-Dried Banana and Watermelon Peel Powders. Food and Humanity 2023, 1, 607–613. [Google Scholar] [CrossRef]
- Gheonea (Dima), I.; Aprodu, I.; Cîrciumaru, A.; Râpeanu, G.; Bahrim, G.E.; Stănciuc, N. Microencapsulation of Lycopene from Tomatoes Peels by Complex Coacervation and Freeze-Drying: Evidences on Phytochemical Profile, Stability and Food Applications. J Food Eng 2021, 288, 110166. [Google Scholar] [CrossRef]
- Castro-Vazquez, L.; Alañón, M.E.; Rodríguez-Robledo, V.; Pérez-Coello, M.S.; Hermosín-Gutierrez, I.; Díaz-Maroto, M.C.; Jordán, J.; Galindo, M.F.; Arroyo-Jiménez, M. del M. Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels ( Citrus Paradisi Macf.). Oxid Med Cell Longev 2016, 2016, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, D.; Halahlah, A.; Adesanya, I.O.; Mikkonen, K.S.; Coda, R.; Ho, T.M. Protective Effects of Polysaccharides on Antifungal Activity of Bread Waste-Derived Bioactive Peptides During Freeze Drying. Food Bioproc Tech 2024. [Google Scholar] [CrossRef]
- Aldana-Heredia, J.F.; Hernández-Carrión, M.; Gómez-Franco, J.D.; Narváez-Cuenca, C.-E.; Sánchez-Camargo, A. del P. Microwave-Assisted Extraction, Encapsulation, and Bioaccessibility of Carotenoids from Organic Tomato Industry by-Product. Innovative Food Science & Emerging Technologies 2024, 95, 103706. [Google Scholar] [CrossRef]
- Valencia, A.; Elías-Peñafiel, C.; Encina-Zelada, C.R.; Anticona, M.; Ramos-Escudero, F. Circular Bioeconomy for Cocoa By-Product Industry: Development of Whey Protein-Cocoa Bean Shell Concentrate Particles Obtained by Spray-Drying and Freeze-Drying for Commercial Applications. Food and Bioproducts Processing 2024, 146, 38–48. [Google Scholar] [CrossRef]
- Šeregelj, V.; Ćetković, G.; Čanadanović-Brunet, J.; Šaponjac, V.T.; Vulić, J.; Lević, S.; Nedović, V.; Brandolini, A.; Hidalgo, A. Encapsulation of Carrot Waste Extract by Freeze and Spray Drying Techniques: An Optimization Study. LWT 2021, 138, 110696. [Google Scholar] [CrossRef]
- Vareltzis, P.; Stergiou, A.; Kalinderi, K.; Chamilaki, M. Antioxidant Potential of Spray- and Freeze-Dried Extract from Oregano Processing Wastes, Using an Optimized Ultrasound-Assisted Method. Foods 2023, 12, 2628. [Google Scholar] [CrossRef]
- Gomez Mattson, M.; Corfield, R.; Schebor, C.; Salvatori, D. Elderberry Pomace for Food/Nutraceutical Product Development: Impact of Drying Methods and Simulated in Vitro Gastrointestinal Digestion on Phenolic Profile and Bioaccessibility. Int J Food Sci Technol 2024, 59, 4921–4929. [Google Scholar] [CrossRef]
- Pecyna, A.; Krzywicka, M.; Blicharz-Kania, A.; Buczaj, A.; Kobus, Z.; Zdybel, B.; Domin, M.; Siłuch, D. Impact of Incorporating Two Types of Dried Raspberry Pomace into Gluten-Free Bread on Its Nutritional and Antioxidant Characteristics. Applied Sciences 2024, 14, 1561. [Google Scholar] [CrossRef]
- Zubia, C.S.; Babaran, G.M.O.; Duque, S.M.M.; Mopera, L.E.; Flandez, L.E.L.; Castillo-Israel, K.A.T.; Reginio, F.C. Impact of Drying on the Bioactive Compounds and Antioxidant Properties of Bignay [Antidesma Bunius (L.) Spreng.] Pomace. Food Production, Processing and Nutrition 2023, 5, 11. [Google Scholar] [CrossRef]
- Jofre, C.M.; Campderrós, M.E.; Rinaldoni, A.N. Integral Use of Grape: Clarified Juice Production by Microfiltration and Pomace Flour by Freeze-Drying. Development of Gluten-Free Filled Cookies. Food Chemistry Advances 2024, 4, 100583. [Google Scholar] [CrossRef]
- Cossignani, L.; Ianni, F.; Blasi, F.; Pollini, L.; Di Michele, A.; Pagano, C.; Ricci, M.; Perioli, L. Effect of Different Drying Treatments and Sieving on Royal Gala Apple Pomace, a Thickening Agent with Antioxidant Properties. Plants 2023, 12, 906. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.V. da; Machado, B.A.S.; Oliveira, W.P. de; Silva, C.F.G. da; Quadros, C.P. de; Druzian, J.I.; Ferreira, E. de S. ; Umsza-Guez, M.A. Effect of Drying Methods on Bioactive Compounds and Antioxidant Capacity in Grape Skin Residues from the New Hybrid Variety “BRS Magna.” Molecules 2020, 25, 3701. [Google Scholar] [CrossRef]
- Sinrod, A.J.G.; Avena-Bustillos, R.J.; Olson, D.A.; Crawford, L.M.; Wang, S.C.; McHugh, T.H. Phenolics and Antioxidant Capacity of Pitted Olive Pomace Affected by Three Drying Technologies. J Food Sci 2019, 84, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q. V. Effect of Vacuum-drying, Hot Air-drying and Freeze-drying on Polyphenols and Antioxidant Capacity of Lemon ( Citrus Limon ) Pomace Aqueous Extracts. Int J Food Sci Technol 2017, 52, 880–887. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Wei, Z.; Huang, W.; Yan, Z.; Luo, Z.; Beta, T.; Xu, X. Effects of Four Drying Methods on the Quality, Antioxidant Activity and Anthocyanin Components of Blueberry Pomace. Food Production, Processing and Nutrition 2023, 5, 35. [Google Scholar] [CrossRef]


| Samples | Percentage of Removed Water | Outcomes | References |
|---|---|---|---|
| Gastrodia Elata | * | -Exhibit the retention of active ingredients and original color. -Exhibit the retention of the internal structure and main components. -Exhibit the preservation of pungent odors as physical and sensory properties |
[74] |
| Basil leaves (Ocimum basilicum) |
Approximately 94.1% | -Exhibit the no net change in pH. -Exhibit the decrease in the chlorophyll content and vitamin C. -Exhibit the increase in total polyphenols, flavonoids, antioxidant activity, and total carotenoids. -Exhibit the darkening as color changes. |
[72] |
| Pleurotus eryngii | * | -Exhibit the preservation of the color and texture features. -Exhibit the decrease of the hardness. -Exhibit the high retention capacity of total phenolic contents. -Exhibit the decrease in the amount of polysaccharide content, ascorbic acid content, and antioxidant capacity for ABTS was high but low for DPPH total volatile constituents, eight-carbon volatiles, essential amino acids, and free amino acids. |
[140] |
| White mulberry fruits (Morus alba L.) | * | -Exhibit the high lightness and yellowness color. -Exhibit the high retention of the amount of L-ascorbic acid, total phenolics, and antioxidant activity as bioactive properties. |
[7] |
| Brown rice (Oryza sativa) porridge |
* | -Exhibit the high retention of the amounts of potassium, sodium, iron, zinc, and vitamin B6. | [82] |
| Potato tubers | -The moisture value changed with exposure time by freeze-drying. For example, absorbed moisture was 39.80 + 0.2 g for 5 minutes, while for 600 minutes, 47.2 + 0.2 g. | -Exhibit the increase in the total content of alcohol-soluble flavonoids in terms of quercetin, phenolic compounds, and low molecular weight antioxidants according to mg/g dry matter compared with a fresh sample. | [137] |
| Bovine skim colostrum | * | -Exhibit the retention of the bioactive proteins and immunoglobulins. -Exhibit the no net change on the secondary structure of proteins. |
[104] |
| Black Currant and Sea Buckthorn Berries | 83.73% for black currant berries and 82.8% for sea buckthorn berries. | -Exhibit the high retention of the vitamins, organic acids, and carbohydrates. | [110] |
| Wild guava leaves | 96–92% | -Exhibit the preservation of the total phenolic content, total flavonoid content, and antioxidant capacity as bioactive properties. -Exhibit the preservation of the taste and physical properties. |
[84] |
| Chilean murta (Ugni molinae Turcz) shrub | * | -Exhibit the retention of the antioxidant activity, anti-inflammatory activity, anti-tumoral activity, and total phenolic compounds, including catechin, pyrogallol, tyrosol, and gallic acid. | [12] |
| Maoberry fruits | Approximately 85% |
-Exhibit the reduction on the spoilage of ascorbic acid, total phenolics, total flavonoids, and total anthocyanins. | [8] |
| Vacuum impregnation celery | * | -Exhibit the protection on the amount of the volatile organic compounds, total phenolic content, and antioxidant properties. -Exhibit the not significant color change. |
[10] |
| Broad beans | * | -Exhibit the protection of total phenol content, antioxidants, and gallic acid. -Exhibit the preservation of starch and amino acids. -Exhibit the preservation of the physical properties, including color and shape. |
[6] |
| Cynomorium songaricum | * | -Exhibit the retention of the cellular structure, color, textural properties, antioxidant activities, and flavor. | [15] |
| Prunus domestica | 97.60% |
-Exhibit the decrease in the quercetin content. -Exhibit the increase in the cyanidin content. -Exhibit the alternation of the phytochemical and antioxidant properties. |
[23] |
| Coconut Drink | * | -Exhibit no net change in mineral content, amino acid profile, or fatty acid profile. -Exhibit the decrease of the fermentation aroma. -Maintain the flavor, except for a reduction in sweetness as a sensory property. |
[141] |
| Wild Blueberry (Sideroxylon mascatense) | Approximately 86.46% | -Exhibit the protection of the total polyphenol, fat, and flavonoid contents. | [142] |
| Cabbage (Brassica oleracea var. capitata f. alba) | * | -Exhibit the retention of the contents of catechin hydrate, chlorogenic acid, 4-hydroxybenzoic acid, and rutin hydrate. -Exhibit the decrease in the contents of isothiocyanates, gallic acid, epicatechin, p-coumaric acid, sinapic acid, and myricetin. |
[17] |
| Asian pear | 80% (kg of water/kg of dry matter) |
-Exhibit the high preservation of antioxidant and total phenolic contents, while no significant change in chlorogenic acid. -Exhibit the retention of the porous structure and high rehydration capacity. |
[11] |
| Bilimbi (Averrhoa bilimbi) | Approximately 83,3% | -Exhibit the protection of the ascorbic acid content. -Exhibit the increase in the oxalic acid content, total sugar content, and antioxidant activity. |
[143] |
| Pomegranate arils |
Approximately 80% | -Exhibit the high retention of the bioactive compounds, including antioxidants and total phenolic contents. -Exhibit the no net change in physical properties. |
[14] |
| Centella asiatica L. leaves | 97.6% | -Exhibit the alternatives in physical properties including color and also increased lightness. -Exhibit the high retention ability of the antioxidant activity, phenolic content, and triterpene saponins. |
[32] |
| Edamame | 97% |
-Exhibit the high protection on the total phenolic content, total chlorophyll content, ascorbic acid content, and antioxidant activity. -Exhibit some physical alterations in color and shape. |
[139] |
| Rosehip | * | -Exhibit the retention of the total bioactive compounds, including β-carotene, lycopene, phenolic composition, and antioxidant activty. -Exhibit the color alternation. |
[34] |
| Durum wheat ( Trıtıcum Durum ) sprouts |
90-85% |
-Exhibit the preservation of nutritional properties and color. -Exhibit the decrease in the water absorption capacity. |
[70] |
| White and purple garlic | More than 90% | -Exhibit the high whiteness. -Exhibit the retention of the allicin content, total phenolics, and antioxidant activity. |
[76] |
| Sweet potato | 92.58% for the purple sample and 94.49% for the yellow sample | -Exhibit the preservation effect on the antioxidant capacity, hydrolyzable polyphenols, and condensed tannins of the purple and yellow samples. | [77] |
| Chia (Salvia hispanica L.) Herb |
* | -Exhibit the preservation of bioactive properties, particularly total carotenoids, total polyphenols, and antioxidant activity. | [86] |
| Red-fleshed apples | * | -Exhibit the degradation of phenolics and anthocyanins. -Exhibit the alternation on physical properties, including color, and sensory properties, including hardness. |
[120] |
| Sea buckthorn (Hippophae rhamnoides L.) berries | * | Exhibit the high retention of the total phenolic content, total flavonoid content, and antioxidant capacity of the sample as bioactive properties. | [129] |
| Stingless bee (Heterotrigona itama) honey | 95% | Exhibit the preservation of the antioxidant activity, total phenolic content, and flavonoids. | [138] |
| Plums | * | -Exhibit the high retention of the anthocyanin pigment content, total polyphenol content, phenolic acid, and chlorogenic acid. | [109] |
| Ginger (Zingiber officinale Roscoe) | * | -Exhibit the protection on the total phenolic content, total flavonoid content, gingerol content, and volatile compounds. | [65] |
| Garlic | Approximately 91.57% | -Exhibit the minimal shrinkage, reduced hardness, and the low rehydration capacity. -Exhibit the superior protection of the bioactive properties. |
[9] |
| Persimmon | * | -Exhibit the reduction of the degradation of total phenolic content, total flavonoid content, soluble tannin, arbutin, proanthocyanidin, β-carotene contents, and antioxidant activity. | [16] |
| Hawthorn fruit | 99.8% | -Exhibit the decrease in the total phenolic content, antioxidant activity, and total flavonoid content. -Exhibit the preservation of the color and reduction in shrinkage. -Exhibit the rehydration capacity development. |
[53] |
| Okara | More than 96% | -Exhibit high retention ability on the bioactive properties, including total phenols, soybean isoflavones, and antioxidant activity. -Exhibit the protection on the physical and physicochemical properties, such as water retention capacity, swelling capacity, oil retention capacity, solubility, and color. |
[1] |
| Courgette slices | * | -Exhibit the changes in quercetin, lutein and zeaxanthin, carotenoids, and chlorophylls as bioactive properties, as well as color as a physical property. | [119] |
| Ginger (Zingiber officinale Rhizome) |
* | -Exhibit the change on the total phenolic contents, total flavonoid contents, and antioxidant activities. -Exhibit the alternation of the color, taste, odor, and turbidity. |
[19] |
| Bletilla striata (Thunb.) Reichb.f. flower | * | -Exhibit the minimal color change and browning. -Exhibit the preservation of the total phenols, total anthocyanins, and antioxidant activity. |
[127] |
|
Ginkgo biloba L. seed |
* | -Exhibit the preservation of the total sugar, reducing sugar, soluble solids, ascorbic acid, phenolics, and tannins. -Exhibit the change in physical property including shrinkage. |
[4] |
| Tunisian eggplant (Solanum melongena L.) | * | -Exhibit the decrease and increase in the anthocyanins, ascorbic acid, total phenols, flavonoids, and antioxidant activities as bioactive properties, also on color change and enzymatic browning index as physical properties. |
[24] |
| Ginkgo biloba L. seed | Approximately 94% | -Exhibit no net changes in the amount of the physicochemical properties, total phenolic content, phytochemical contents, and antioxidant activity. -Exhibit the preservation of the physical properties including rehydration capacity, and taste and enzymatic activity as bioactive properties. |
[83] |
| Orange puree | Approximately 95.8% | -Maintain a clear, yellowish, darker, and saturated color with high porosity. -Exhibit the reduction of vitamin C, carotenoids, and phenols. |
[80] |
| Organic strawberry powders | * | -Exhibit the stability of the values of vitamin C and polyphenols. -Exhibit the preservation of antioxidant activity. |
[112] |
| Moringa stenopetala leaf extract | Approximately 98% | -Exhibit the preservation of the total phenolic content, total flavonoid content, and antioxidant activity. | [125] |
| Oyster mushrooms (Pleurotus Ostreatus) |
Approximately 96.15% | Exhibit protection of the color and conformation. Exhibit the retention of the total phenolic content, total flavonoid content, and antioxidant activity. |
[144] |
| Brown alga (Durvillaea antarctica) | Approximately 92.65% |
-Exhibit the protection on the bioactive compounds except the fatty acid and amino acid profiles. -Exhibit the red tones. |
[133] |
| Red seaweed (Pyropia orbicularis) | Approximately 97.21% |
-Exhibit the protection of the product quality, including physical and bioactive properties (especially phycoerythrin, phycocyanin, and total phenolic contents). | [132] |
| Red-fleshed apples | 97.01% | -Exhibit the preservation of the phenolic content, antioxidant activity, and physical properties including color and shape. | [111] |
| Hawthorn fruit powders | Approximately 95% | -Exhibit the high preservation of the total phenolic content and natural color. | [68] |
| Edible rose flower (Rosa rugosa flower) | Approximately 95.80% | -Exhibit the stability of the amount of volatile compounds and the taste. -Exhibit the retention of flavonoids, anthocyanins, and vitamin C. |
[126] |
| Mango (Mangifera indica) leather |
83.69% | Exhibit the retention of the total phenolic, total flavonoid, and total carotenoid contents. -Exhibit the low change on the color and shape. |
[114] |
| Ginger (Zingiber officinale) rhizome | Approximately 91.66% | -Exhibit the high retention of the total phenolic content, antioxidant activity, total carotenoids and phenolic compounds. | [71] |
| Feijoa pulp (Acca sellowi ana) |
* | -Exhibit the preservation of the total phenolic content, total flavonoid content, and especially the ascorbic acid and antioxidant activity. | [5] |
| Purple carrot | -A small amount of the water content provides the moisture, however, there is no net information about the percentage of the water. | -Exhibit the no net change in anthocyanin content. -Exhibit the decrease of the total phenolic content. -Exhibit the increase of the carotenoid content. |
[73] |
| Fish | * | -Exhibit the increase of the free sulfhydryl content and surface hydrophobicity. -Exhibit the decrease of the solubility of fish myofibrillar proteins, water retention capacity, and biochemical properties, including Ca²⁺-ATPase activity. |
[134] |
| Cardaba banana flour | Higher than 90% | Exhibit the retention of the protein value, indigestible carbohydrate, total phenolic content, flavonoids, and antioxidant activity. | [87] |
| Chinese yam flour | * | Exhibit positively the affect the bioactive properties including total phenolic content. | [88] |
| Bitter gourd (Momordica charantia L.) slices | 94% | Exhibit the increase in the product quality by preserving the bioactive properties and structure. | [33] |
| Lemon myrtle (Backhousia citriodora) | Approximately 96.5% | -Exhibit the retention of the total phenolic content, total flavonoids, proanthocyanidins, gallic acid, hesperetin, and antioxidant activity | [89] |
| Cranberries | * | -Exhibit the preservation of the contents of total phenolics, total flavonoids, total monomeric anthocyanins, and antioxidant activity. -Exhibit the physical alterations. |
[145] |
| Strawberries | * | -Exhibit no changes in color. -Exhibit the degradation of vitamin C content, polyphenolic content, flavor, porosity, and texture values of the sample. |
[116] |
| African eggplant | ~90% | -Exhibit the reduction of beta-carotene and total phenolics. -Exhibit degradation of the antioxidant capacity. -Exhibit the increase in lycopene content. |
[122] |
| Ashitaba leaves (Angelica keiskei Koidzumi) | * | -Exhibit the high retention of the chlorophyll and flavonoids. -Exhibit the enhancement of the green color and flavor. |
[146] |
| Cirsium setidens | * | -Exhibit the retention of the flavonoid contents and antiproliferative activities. | [85] |
| Australian maroon bush (Scaevola Spinescens) | * | -Exhibit the prevention of the decomposition of antioxidant activity, total phenolic content, total flavonoid content, and saponins. | [13] |
| Edible Centaurea (Centaurea cyanus) petals | * | -Exhibit the increase in antioxidant activity and flavonoids. -Exhibit the decrease in the carotenoids and some physicochemical properties. -Exhibit the darker, smaller, and more shriveled shape. |
[147] |
| Button mushroom | 74.2% | -Exhibit the decrease of the degrees of luminosity. -Exhibit the higher red tones. -Exhibit the no change in rehydration rates of the sample. |
[75] |
| Chokeberries | * | -Exhibit the high preservation of total phenolics and anthocyanins as bioactive compounds, as well as color as a physical property. | [148] |
| Guava (Psidium guajava Linn.) | * | -Exhibit the decrease in the total polyphenols, flavonoids, and antioxidant activity. |
[69] |
| Yellow passion fruit residues (Passiflora edulis f. flavicarpa) | * | -Exhibit the increase in the total phenolics and total flavonoids. -Exhibit the decrease in the citric acid and ascorbic acid. |
[18] |
| Chinese ginger (Zingiber officinale Roscoe) | * | -Exhibit the high ability to preserve gingerols, total phenolic content, total flavonoid content, and antioxidant activity. | [121] |
| Raspberry | 86.6% (g /g dry basis * 100) | -Exhibit the high protection of the original color. -Exhibit the retention of the total polyphenol content, total flavonoid content, and antioxidant activity. |
[149] |
| Apple | 78.8% | -Exhibit easily shrank and turns to yellow, followed by browning. | [49] |
| Persimmon | Higher than 75% | -Exhibit the high lightness and yellowness. -Exhibit the high retention of total phenolics, total flavonoids, condensed tannin, total hydrolyzable tannin contents, antiradical activity, and antidiabetic activity. |
[150] |
| Saskatoon berries | Approximately 88% | -Exhibit the protection of the anthocyanin and antioxidant activity. | [113] |
| Blueberries | * | -Exhibit the reduction in ascorbic acid content. -Exhibit the increase in total phenolic content. -Exhibit the no net change in antioxidant efficiency of the sample. |
[151] |
| Waste sample | Obtained material result of drying | What content and bioactive properties are used to increase bioactivity? | Valorization areas or improved product by bioactive properties | References |
|---|---|---|---|---|
| Elderberry pomace | Freeze-dried elderberry pomace | - Phenolic content - Antioxidant capacity - Monomeric anthocyanin content |
Food/nutraceutical products | [181] |
| Raspberry pomace |
Freeze-dried raspberry pomace | - Fat and ash content - Carbohydrate content - Antioxidant properties |
Gluten-Free Bread | [182] |
| Bignay [Antidesma bunius (L.) spreng.] pomace | Freeze-dried bignay pomace | - Total phenolic and anthocyanin changed but were low. - Flavonoids and tannins were not affected. - High antioxidant properties. |
Dietary products | [183] |
| Blueberry pomace | Blueberry pomace powder | - Antioxidant activity - Anthocyanin - Total phenol - Total sugar |
Industrial products | [189] |
| Grape pomace | Grape pomace flour | - Carbohydrates - Vitamin C - Minerals - Phenolic compounds |
Gluten-free filled cookies. | [184] |
| Royal gala apple pomace | Freeze-dried royal gala apple pomace | - Total phenol content - Antioxidant properties - Phenol profile - Thickening capacity |
Food, cosmetics, and nutraceuticals. | [185] |
| Watermelon rind | Freeze-dried watermelon rind | - Phenolic compounds - Flavonoid compounds - Antioxidant capacity - Polyphenolic compound - Ascorbic acid |
Food supply, sustainability, health, and environmental studies | [162] |
| Banana and watermelon peel | Banana and watermelon peel powder | - Total phenolic content - Antioxidant activity - Antimicrobial activity |
* | [173] |
| País grape (Vitis vinifera L.) marc | Freeze-dried grape marc | - Phenolic compounds - Proanthocyanidins - Dietary fiber contents |
Animal feed production and dietary ingredient | [171] |
| Apple pomace and pomegranate peel | Apple pomace powder and pomegranate peel powder | - Total phenolic content - Total flavonoid content - Antioxidant activity |
Functional yogurt | [22] |
| Turmeric (Curcuma longa L.) rhizome | Freeze-dried turmeric rhizome | - Ascorbic acid - Curcumin - Total phenols - Total flavonoids |
* | [170] |
| Pineapple pomace |
Pineapple pomace powder |
- Carbohydrate contents - Fat content - Protein contents |
Set-type yogurt | [25] |
| Mango (Mangifera indica L.) and Rambutan (nephelium lappaceum L.) | Exotic Fruit Seed Powders | - Tannins - Total polyphenols - Antioxidant activity |
Dietary and functional food production | [26] |
| Chokeberry pomace extracts |
Chokeberry pomace powder | - Phenolic acids - Anthocyanins - Flavonoids - Content of hydroxymethyl-L-furfural |
Juice | [27] |
| Raspberry pomace | Freeze-dried raspberry pomace | - Total phenolic compounds - Phenolic acids - Flavonoids - Anthocyanins - Antioxidant properties |
Fruit and vegetable industry | [161] |
| Tomatoes peels | Tomato peel powder | - Lycopene - Carotenoids - Antioxidant activity |
Industrial applications | [174] |
| Olive leaves | Freeze dried olive leaves | - Total phenolic compounds - Antioxidant capacity |
Food, pharmaceutical or cosmetic industries | [172] |
| Olive pomace |
Phytocompounds | - α-tocopherol - Carotenoids - Chlorophylls - Polyphenols - β-sitosterol |
Pharmaceutical products | [158] |
| Wine pomace | Freeze-dried wine pomace | - Antioxidant capacity - Total phenolic content |
Food supplement industry | [166] |
| Grape pomace | Microencapsulation of powder with freeze-drying | - Phenolic compounds retention - Total monomeric anthocyanins - Antioxidant activity |
* | [167] |
| Black chokeberry pomace extracts | Dispersible powder of black chokeberry pomace | - Polyphenolic contents - Antioxidant activity |
Dairy products, food suitable for people with dysphagia, and yoghurt-based products | [29] |
| Berry pomace | Freeze-dried berry pomace | - Total phenolics - Flavonols - Anthocyanins - Antioxidant activity |
Food industry and other industries | [30] |
| “BRS magna” grape skin residues | Freeze-dried grape skin residues | - Antioxidant activity - Total phenolics - Total flavonoids - Anthocyanins - Procyanidins |
* | [186] |
| Pitted olive pomace | Freeze-dried pitted olive pomace | - Dietary fiber contents - Low antioxidant capacity - Phenolic contents. |
Healthful food ingredient | [187] |
| Kinnow (Citrus reticulata) peel |
Freeze-dried kinnow peel | - Total phenols - Flavonoids - Antioxidant activity -Beta-carotene -Ascorbic acid |
Food sector | [28] |
| ‘Ataulfo’ mango by-products | Freeze-dried mango peel and paste | - Carotenoids - Total phenolic concentration |
Functional foods or beverages | [159] |
| Grape (Vitis labrusca L.) pomace |
Freeze-dried grape pomace | - Total phenolics - Antioxidant activity |
Yoghurt production | [108] |
| Lemon (Citrus limon) pomace | Freeze-dried lemon pomace | - Polyphenols - Antioxidant activity - Neohesperidin content - Total flavonoid content - p-coumaric acid content - Gallic acid content - Rutin |
* | [188] |
| Blackcurrant pomace | Blackcurrant pomace powders | - Total polyphenolic content - Antioxidant capacity |
Colorization of instant foods | [36] |
| Banana (Musa cavendish) peels | Freeze-dried banana peel | - Antioxidant capacity - Total phenolic content - Total flavonoid content - Proanthocyanidin content |
Nutraceutical industry | [35] |
| Murta(ugni molinae turcz) berries | Freeze-dried murta berries | - Total flavonoids - Anthocyanin |
Functional foods | [165] |
| Watermelon (Citrullus lanatus) rind | Freeze-dried watermelon rind | - Ash content - Fat content - Carbohydrate content - Protein content - Alkaloid content - Tannin content - Vitamin C - Antioxidant activity |
Food processing industry | [168] |
| Grapefruit peels (Citrus paradisi macf.) | Freeze-dried grapefruit peels | - Flavonoids - Antioxidant activity - Phenolic compounds |
Biomedical usage | [175] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
