Submitted:
08 September 2024
Posted:
11 September 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. A Scalable Ziconotide-CaV2.2 Binding Affinity Landscape Based on Computational Structural Biophysics
- the ziconotide-CaV2.2 binding affinity landscape (Figure 3) includes only site-specific mutants of ziconotide, but not site-specific mutants of the receptor, i.e., CaV2.2, highlighting the use of this in silico workflow [14] in high-throughput generation of synthetic structural and biophysical data for other drug targets (GPCRs [26], ion channels [27], etc.) to train AI models for the discovery and design [28] of not just peptides, but also of small molecule compounds [29,30].
- method-wise, in addition to the structural modeling [19] and physics-based Kd calculations [20,21] employed here, this Modigy (Figure 1) workflow [14] is also able to integrate molecular dynamics simulations [19,31,32,33,34] to further enhance the accuracy of the structural biophysics-based Kd calculations [13,28,35] in drug discovery and design [10,11,12,36,37,38].
3.2. Designing Ziconotide Analogues with Over Two Orders of Magnitude Enhanced CaV2.2 Affinity
4. Conclusion and Discussion
4.1. Implications for Peptide Design and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
Conflicts of Interest
References
- Deer, T.R.; Pope, J.E.; Hanes, M.C.; McDowell, G.C. Intrathecal Therapy for Chronic Pain: A Review of Morphine and Ziconotide as Firstline Options. Pain Medicine 2018, 20, 784–798. [Google Scholar] [CrossRef] [PubMed]
- Rubiu, E.; Restelli, F.; Nazzi, V.; Mazzapicchi, E.; Bonomo, G.; Veiceschi, P.; Alfiero, T.; Agresta, G.; Locatelli, D.; Dario, A. A Benefit/Risk Assessment of Intrathecal Ziconotide in Chronic Pain: A Narrative Review. Journal of Clinical Medicine 2024, 13, 1644. [Google Scholar] [CrossRef] [PubMed]
- Gomez, K.; Santiago, U.; Nelson, T.S.; Allen, H.N.; Calderon-Rivera, A.; Hestehave, S.; Rodríguez Palma, E.J.; Zhou, Y.; Duran, P.; Loya-Lopez, S.; Zhu, E.; Kumar, U.; Shields, R.; Koseli, E.; McKiver, B.; Giuvelis, D.; Zuo, W.; Inyang, K.E.; Dorame, A.; Chefdeville, A.; Ran, D.; Perez-Miller, S.; Lu, Y.; Liu, X.; Handoko; Arora, P.S.; Patek, M.; Moutal, A.; Khanna, M.; Hu, H.; Laumet, G.; King, T.; Wang, J.; Damaj, M.I.; Korczeniewska, O.A.; Camacho, C.J.; Khanna, R. A peptidomimetic modulator of the CaV2.2 N-type calcium channel for chronic pain. Proceedings of the National Academy of Sciences 2023, 120. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Chen, S.; Butt, U.D.; Yan, M.; Wu, B. A comprehensive review on ziconotide. Heliyon 2024, 10, e31105. [Google Scholar] [CrossRef] [PubMed]
- Wermeling, D.P. Ziconotide, an Intrathecally Administered N-Type Calcium Channel Antagonist for the Treatment of Chronic Pain. Pharmacotherapy 2005, 25, 1084–1094. [Google Scholar] [CrossRef]
- Gao, S.; Yao, X.; Yan, N. Structure of human Cav2.2 channel blocked by the painkiller ziconotide. Nature 2021, 596, 143–147. [Google Scholar] [CrossRef]
- Yan, N.; Gao, S.; Yao, X. Human N-type voltage-gated calcium channel Cav2.2 in the presence of ziconotide at 3.0 Angstrom resolution, 2021. [CrossRef]
- Dong, Y.; Gao, Y.; Wang, Y.; Zhao, Y. Human N-type voltage gated calcium channel CaV2.2-alpha2/delta1-beta1 complex, bound to ziconotide, 2021. [CrossRef]
- Dong, Y.; Gao, Y.; Xu, S.; Wang, Y.; Yu, Z.; Li, Y.; Li, B.; Yuan, T.; Yang, B.; Zhang, X.C.; Jiang, D.; Huang, Z.; Zhao, Y. Closed-state inactivation and pore-blocker modulation mechanisms of human CaV2.2. Cell Reports 2021, 37, 109931. [Google Scholar] [CrossRef]
- van de Waterbeemd, H.; Smith, D.A.; Beaumont, K.; Walker, D.K. Property-Based Design: Optimization of Drug Absorption and Pharmacokinetics. Journal of Medicinal Chemistry 2001, 44, 1313–1333. [Google Scholar] [CrossRef]
- Pennington, L.D.; Hesse, M.J.; Koester, D.C.; McAtee, R.C.; Qunies, A.M.; Hu, D.X. Property-Based Drug Design Merits a Nobel Prize. Journal of Medicinal Chemistry 2024. [Google Scholar] [CrossRef]
- Li, W. Inter-molecular Binding Affinity Synthetic Data Augmentation Transforms the Landscape of Computational Biomolecule Design and Discovery 2024. [CrossRef]
- Towards a purely physics-based computational binding affinity estimation. Nature Computational Science 2023, 3, 10–11. [CrossRef]
- Li, W. In Silico Generation of Structural and Intermolecular Binding Affinity Data with Reasonable Accuracy: Expanding Horizons in Drug Discovery and Design 2024. [CrossRef]
- Li, W. Scalable Antigen-Antibody Binding Affinity Landscape: A Case Study with ENHERTU 2024. [CrossRef]
- Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide Protein Data Bank. Nature Structural & Molecular Biology 2003, 10, 980–980. [Google Scholar]
- Subramaniam, S.; Kleywegt, G.J. A paradigm shift in structural biology. Nature Methods 2022, 19, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Ruedas, R.; Vuillemot, R.; Tubiana, T.; Winter, J.M.; Pieri, L.; Arteni, A.A.; Samson, C.; Jonic, S.; Mathieu, M.; Bressanelli, S. Structure and conformational variability of the HER2-trastuzumab-pertuzumab complex. Journal of Structural Biology 2024, 216, 108095. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Sali, A. Protein Structure Modeling with MODELLER. In Methods in Molecular Biology; Springer US, 2020; pp. 239–255.
- Vangone, A.; Bonvin, A.M. Contacts-based prediction of binding affinity in protein-protein complexes. eLife 2015, 4. [Google Scholar] [CrossRef]
- Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 2016, btw514. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Tong, A.B.; Burch, J.D.; McKay, D.; Bustamante, C.; Crackower, M.A.; Wu, H. Could AlphaFold revolutionize chemical therapeutics? Nature Structural & Molecular Biology 2021, 28, 771–772. [Google Scholar]
- Ruff, K.M.; Pappu, R.V. AlphaFold and Implications for Intrinsically Disordered Proteins. Journal of Molecular Biology 2021, 167208. [Google Scholar] [CrossRef]
- Higgins, M.K. Can We AlphaFold Our Way Out of the Next Pandemic? Journal of Molecular Biology 2021, 7093. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, T.; Lu, X.; Lan, X.; Chen, Z.; Lu, S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduction and Targeted Therapy 2024, 9. [Google Scholar] [CrossRef]
- Tsien, R.W.; Hess, P.; McCleskey, E.W.; Rosenberg, R.L. Calcium channels: Mechanisms of Selectivity, Permeation, and Block. Annual Review of Biophysics and Biophysical Chemistry 1987, 16, 265–290. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Vottevor, G. Towards a Truly General Intermolecular Binding Affinity Calculator for Drug Discovery & Design 2023.
- Li, W.; Shi, G. How CaV1.2-bound verapamil blocks Ca2+ influx into cardiomyocyte: Atomic level views. Pharmacological Research 2019, 139, 153–157. [Google Scholar] [CrossRef]
- Li, W. Calcium Channel Trafficking Blocker Gabapentin Bound to the α-2-δ-1 Subunit of Voltage-Gated Calcium Channel: A Computational Structural Investigation 2020.
- Li, W. Characterising the interaction between caenopore-5 and model membranes by NMR spectroscopy and molecular dynamics simulations. PhD thesis, University of Auckland, 2016.
- Du, X.; Li, Y.; Xia, Y.; Ai, J.; Wu, Y. Molecular dynamics simulations and free energy calculations of protein–ligand interactions: recent advances and future perspectives. Current pharmaceutical design 2017, 23, 4436–4450. [Google Scholar]
- Jalily Hasani, H.; Barakat, K. Homology Modeling: an Overview of Fundamentals and Tools. International Review on Modelling and Simulations (IREMOS) 2017, 10, 129. [Google Scholar] [CrossRef]
- Muhammed, M.T.; Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chemical Biology & Drug Design 2018, 93, 12–20. [Google Scholar] [CrossRef]
- Wan, S.; Bhati, A.P.; Zasada, S.J.; Coveney, P.V. Rapid, accurate, precise and reproducible ligand–protein binding free energy prediction. Interface Focus 2020, 10, 20200007. [Google Scholar] [CrossRef]
- Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular Diversity 2021, 25, 1315–1360. [Google Scholar] [CrossRef]
- Trosset, J.Y.; Cavé, C. In Silico Drug-Target Profiling. In Target Identification and Validation in Drug Discovery; Springer New York, 2019; pp. 89–103.
- Tinberg, C.E.; Khare, S.D.; Dou, J.; Doyle, L.; Nelson, J.W.; Schena, A.; Jankowski, W.; Kalodimos, C.G.; Johnsson, K.; Stoddard, B.L.; Baker, D. Computational design of ligand-binding proteins with high affinity and selectivity. Nature 2013, 501, 212–216. [Google Scholar] [CrossRef]
- Pierce, B.G.; Hellman, L.M.; Hossain, M.; Singh, N.K.; Vander Kooi, C.W.; Weng, Z.; Baker, B.M. Computational Design of the Affinity and Specificity of a Therapeutic T Cell Receptor. PLoS Computational Biology 2014, 10, e1003478. [Google Scholar] [CrossRef]
- Kilar, C.R.; Sekharan, S.; Sautina, L.; Diao, Y.; Keinan, S.; Shen, Y.; Bungert, J.; Mohandas, R.; Segal, M.S. Computational design and experimental characterization of a novel β-common receptor inhibitory peptide. Peptides 2018, 104, 1–6. [Google Scholar] [CrossRef]
- Bolon, D.N.; Grant, R.A.; Baker, T.A.; Sauer, R.T. Specificity versus stability in computational protein design. Proceedings of the National Academy of Sciences 2005, 102, 12724–12729. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J. 2011, 101, 2525–2534. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Schladetsch, M.A.; Huang, X.; Balunas, M.J.; Wiemer, A.J. Stepping forward in antibody-drug conjugate development. Pharmacology & Therapeutics 2022, 229, 107917. [Google Scholar]
- Kang, J.C.; Sun, W.; Khare, P.; Karimi, M.; Wang, X.; Shen, Y.; Ober, R.J.; Ward, E.S. Engineering a HER2-specific antibody–drug conjugate to increase lysosomal delivery and therapeutic efficacy. Nature Biotechnology 2019, 37, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Research 2007, 35, D198–D201. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Fang, X.; Lu, Y.; Yang, C.Y.; Wang, S. The PDBbind Database: Methodologies and Updates. Journal of Medicinal Chemistry 2005, 48, 4111–4119. [Google Scholar] [CrossRef]
- Vanhee, P.; van der Sloot, A.M.; Verschueren, E.; Serrano, L.; Rousseau, F.; Schymkowitz, J. Computational design of peptide ligands. Trends in Biotechnology 2011, 29, 231–239. [Google Scholar] [CrossRef]



| PDB ID | Structure Title (release date from newest to oldest) |
|---|---|
| 7MIX [6,7] | Human N-type voltage-gated calcium channel CaV2.2 in the presence of ziconotide at 3.0 Angstrom resolution |
| 7MIY [6,7] | Human N-type voltage-gated calcium channel CaV2.2 at 3.1 Angstrom resolution |
| 7VFU [8,9] | Human N-type voltage gated calcium channel CaV2.2-α2/δ1-β1 complex, bound to ziconotide |
| Design of ziconotide analogues | Inter-chain Kd (M) at 37 °C | Supplementary file |
|---|---|---|
| Native (PDB entry 7MIX) | 4,8 × 10-8 | PDB entry 7MIX |
| G18B_Y, G3B_Y, C1B_R, S9B_R, S19B_K | 1.4 × 10-10 | zic1.pdb |
| G3B_W, S22B_W, G18B_W, C1B_H, S19B_K | 1.4 × 10-10 | zic2.pdb |
| G3B_W, G18B_W, S19B_R, C1B_W, S9B_H | 1.5 × 10-10 | zic3.pdb |
| G18B_Y, G3B_W, C1B_H, S9B_K, S22B_E | 1.9 × 10-10 | zic4.pdb |
| G18B_Y, S22B_W, S19B_R, G3B_Y, C1B_H | 1.9 × 10-10 | zic5.pdb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
