Submitted:
27 August 2024
Posted:
28 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction

- Predictive Accuracy. Traditional modeling and simulation methods often struggle with predictive accuracy in digital twins. These methods may not capture the dynamic and complex nature of real-world systems, leading to less reliable predictions. This limitation can impede the effectiveness of digital twin implementations that rely on accurate and timely predictions [8].
- Data Analysis and Integration. Digital twins rely on vast amounts of data collected from various sensors and data sources. This data is often incomplete, noisy, and comes in different formats and standards. Effectively integrating and analyzing this data, especially in real-time, is a major challenge. Data accuracy and timeliness are critical to the reliability of digital twins [9].
- Data quality. High-quality data is key to the success of digital twins, but in reality, data is often incomplete, inaccurate, or scarce. These data issues can affect the accuracy and reliability of digital twins. Automatically detecting and correcting errors and anomalies in the data is also a complex task [10].
- Applications. We explore various real-world application domains and highlight the vast opportunities that AI and digital twin technologies offer in bridging operational and data analysis gaps (Section 2).
- Trustworthiness. We analyze the trustworthiness of the AI-based digital twin model, including safety, privacy, and interpretability (Section 6).
- Privacy and Fairness. We address concerns regarding privacy and fairness, as sensitive data used in digital twins can lead to privacy issues and biases from the original data can be replicated. We evaluate current technological measures and their limitations in protecting data privacy and ensuring fairness in the development of digital twins (Section 6 and Section 7).
- Evaluation. We describe various strategies to assess the quality of digital twin simulations, ensuring their accuracy and applicability in real-world scenarios (Section 7).
- Future work. We pinpoint challenges encountered in the creation and implementation of digital twins, highlighting areas for further research that could improve their functionality and deployment (Section 8).

2. Digital Twin and Its Application Domains

- Digital Representation: An accurate and dynamic virtual model that mirrors the physical entity’s geometry, behavior, and interactions. This model can range from simple graphical renderings to sophisticated simulations that incorporate physics-based modeling, machine learning algorithms, and historical data.
- Data Fusion and Analytics: Real-time data from sensors embedded in the physical entity is collected and integrated with the digital representation. Advanced analytics, including statistical analysis, machine learning, and AI techniques, are applied to this data to extract insights, detect anomalies, predict outcomes, and optimize performance.
- Bidirectional Communication: There is a continuous two-way flow of information between the physical entity and its digital counterpart. Changes in the physical world are reflected in the digital twin. Conversely, actions or adjustments suggested by the digital twin can be communicated back to the physical entity, facilitating remote monitoring, control, and intervention.
2.1. Industry
2.2. Healthcare
2.3. Urban Planning
2.4. Business
2.5. Education
2.6. Technology
3. Deep Neural Network
3.1. Convolutional Neural Network (CNN)
3.2. Recurrent Neural Network (RNN)
3.3. Graph Neural Network (GNN)
4. Generative AI Methods
4.1. Variational Auto-Encoder (VAE)
- Encoder maps the data object to a fixed-dimensional latent variable . It is denoted as , with as learnable parameters.
- Decoder reconstructs the data object from . It is denoted as , with as learnable parameters.
4.2. Generative Adversarial Network (GAN)
4.3. Large Language Model
Key Components
- Transformer-based Architectures. LLMs typically rely on transformer architectures, which use self-attention mechanisms to capture complex dependencies in the data. The self-attention mechanism can be described as:where Q, K, and V are the query, key, and value matrices, respectively, and is the dimension of the key vectors.
- Pre-training. LLMs are pre-trained on massive text corpora to learn general language representations. This unsupervised phase allows the model to capture a wide range of linguistic patterns and knowledge.
- Fine-tuning. After pre-training, LLMs are fine-tuned on specific tasks using labeled data. This process adapts the general language knowledge to the particular requirements of the target task.
5. Other AI Methods
5.1. Federated Learning
Federated Learning Framework
- Clients. Local entities that hold data subsets and perform local computations.
- Local Model Update. Clients update the local model using their data by optimizing the local objective function .
- Global Model Aggregation. The server aggregates updates from clients as:where is the client update.
- Privacy Mechanisms. Techniques like differential privacy and secure multi-party computation protect data during aggregation.
5.2. Transfer Learning
Transfer Learning Framework
- Source Domain and Task. The source domain contains a large labeled dataset for the source task . For example, could be ImageNet, with being image classification.
- Target Domain and Task. The target domain has fewer labeled examples for the target task , like a medical imaging dataset for disease detection.
- Pre-trained Model. A model is trained on to solve and serves as the pre-trained model, often involving deep neural networks.
- Feature Extraction and Fine-tuning. The pre-trained model is adapted to either by using it as a fixed feature extractor or by fine-tuning it on the target data.
- Knowledge Transfer. Knowledge is transferred through shared features that benefit both domains.
5.3. Reinforcement Learning
Markov Decision Process (MDP)
- State space : Set of all possible states.
- Action space : Set of all possible actions.
- Agent: Policy , often a deep neural network, maps states to actions.
- State transition dynamics: The transition from to under action a.
- Reward function : Provides feedback based on the current state.
5.4. Genetic Algorithm (GA)
- Crossover: Recombines the structure of two randomly selected parents from the population to generate new children. This process is repeated multiple times, producing an offspring set .
- Mutation: Slightly alters the structure of a single parent, randomly selected from the population, by modifying a substructure. The mutation is performed multiple times, with the resulting offspring added to .
- Evolution: Given the offspring pool generated by crossover and mutation, the candidates are filtered, and the top K candidates are selected to form the next generation .
5.5. Post-Training
6. Trustworthiness
6.1. Safety
- Data Privacy. AI systems in digital twins often utilize extensive data sets to simulate and predict the behavior of physical systems. Protecting the privacy and security of this sensitive data is crucial to prevent unauthorized access, breaches, or misuse, especially since these systems can represent critical infrastructure or personal data.
- Cybersecurity: AI-powered digital twins are susceptible to cyber threats. Protecting the digital twin infrastructure from hacking or malicious manipulation is vital to maintaining the integrity and functionality of these virtual representations.
- Robustness and Reliability: AI models used in digital twins must be robust against adversarial attacks and capable of handling unexpected inputs. Quantifying uncertainty is particularly important to ensure the safety and reliability of AI algorithms in digital twins, where decisions might directly impact physical systems and have real-world consequences.
6.2. Interpretability
6.3. Fairness
7. Evaluation
- Human Evaluation: This method involves human judges, either domain experts or general users, assessing the quality of digital twins. Evaluators might compare the behaviors and outputs of digital twins with those of their physical counterparts to determine their accuracy and realism. Although direct, human evaluation can be costly, slow, subjective, and difficult to scale, especially when the digital twins represent complex or high-dimensional systems.
- Statistical Difference Evaluation: This approach involves calculating and comparing statistical metrics from both the digital twins and their real-world counterparts. Metrics such as performance consistency, operational data alignment, and other relevant statistical measures are analyzed. The closer these statistics between the digital twins and real systems, the higher the quality and fidelity of the digital twins.
- Evaluation with Pre-trained Machine Learning Models: In the context of digital twins, pre-trained models can assess the realism and accuracy of a twin by predicting its responses under various conditions and comparing them with actual system responses. This method is particularly useful in scenarios where digital twins are used for predictive maintenance and operational optimization.
- Training on Digital Twin Data and Testing on Real Data (TSTR): This method tests the utility of digital twins by using them to train machine learning models and then testing these models on real-world data. High performance on real data indicates that the digital twin has successfully captured essential characteristics of the physical system, making it a useful proxy for simulations and predictions [152,207].
- Application-Specific Evaluation: Depending on the specific use case or domain, tailored evaluation methods may be employed to assess the quality of digital twins. These methods consider the unique requirements or constraints of the application, such as regulatory compliance, operational accuracy, and safety considerations. Evaluating digital twins within the context of their intended use provides a more accurate assessment of their quality and applicability.
- legal Challenges: In the legal field, digital twins provide innovative methods for scenario analysis and forensic investigations. Digital recreations of crime scenes or accident sites enable the simulation of various scenarios to assess their plausibility. This application supports more accurate interpretations of events and aids in courtroom presentations, offering clear, visual explanations of complex situations [208]. The ability to virtually revisit scenes and test different hypotheses can significantly impact the outcome of legal proceedings [209].
8. Future Directions
- Improved Algorithms for Real-Time Processing: As digital twins are increasingly used in dynamic environments where real-time decision-making is critical, the development of more efficient algorithms capable of processing and analyzing vast amounts of data instantaneously becomes essential. Future research should focus on optimizing these algorithms to handle high-frequency data streams, ensuring that digital twins can provide timely and accurate insights. By improving the speed and accuracy of real-time data processing, digital twins will be better equipped to mirror their physical counterparts and react to changes with minimal latency, which is crucial for applications in areas like manufacturing, healthcare [210,211], and smart cities.
- Advanced Simulation Techniques: The complexity of modern systems demands simulation methodologies that can accurately model and predict behaviors across multiple dimensions and scales. Research into multi-scale and multi-physics simulations is critical for expanding the applicability of digital twins to more complex systems. For instance, digital twins of entire ecosystems or industrial processes require simulations that can account for a wide range of variables and interactions. Future advancements in this area could lead to more precise and reliable digital twins, enabling better decision-making and optimization in industries ranging from energy to urban planning.
- Integration of Edge Computing: The integration of edge computing with digital twin technology offers a promising avenue for enhancing the performance and efficiency of these systems. By decentralizing data processing and bringing it closer to the source of data generation, edge computing can significantly reduce latency and bandwidth requirements. This is particularly important for applications that require near-instantaneous responses, such as autonomous vehicles, industrial automation, and telemedicine. Future research should explore the synergies between edge computing and digital twins, focusing on developing architectures that can seamlessly distribute computing tasks between edge devices and central servers, thereby optimizing the overall system performance.
- Sustainable Practices: In the context of global sustainability efforts, digital twins offer a powerful tool for optimizing resource management and reducing environmental impact. Research in this area should focus on how digital twins can be leveraged to monitor and optimize energy usage, minimize waste, and enhance the efficiency of industrial processes. Additionally, digital twins can play a crucial role in achieving sustainability goals by enabling predictive maintenance, reducing operational downtime, and facilitating the transition to more sustainable business models. The potential for digital twins to contribute to the circular economy and help industries meet their sustainability targets is vast and requires targeted research to fully realize.
References
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Computers and Electronics in Agriculture 2021, 184, 105942. [Google Scholar] [CrossRef]
- Jiang, Y.; Yin, S.; Li, K.; Luo, H.; Kaynak, O. Industrial applications of digital twins. Philosophical Transactions of the Royal Society A 2021, 379, 20200360. [Google Scholar] [CrossRef] [PubMed]
- Kamel Boulos, M.N.; Zhang, P. Digital twins: from personalised medicine to precision public health. Journal of personalized medicine 2021, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Zhang, T.; Deng, X.; Liu, Z.; Tan, J. Digital twin: A state-of-the-art review of its enabling technologies, applications and challenges. Journal of Intelligent Manufacturing and Special Equipment 2021, 2, 1–34. [Google Scholar] [CrossRef]
- Attaran, M.; Celik, B.G. Digital Twin: Benefits, use cases, challenges, and opportunities. Decision Analytics Journal 2023, 6, 100165. [Google Scholar] [CrossRef]
- Boschert, S.; Rosen, R. Digital twin—the simulation aspect. In Mechatronic futures: Challenges and solutions for mechatronic systems and their designers; 2016; pp. 59–74. [Google Scholar] [CrossRef]
- Tarkhov, D.; Malykhina, G. Neural network modelling methods for creating digital twins of real objects. In Journal of Physics: Conference Series; IOP Publishing, 2019; Vol. 1236, p. 012056. [Google Scholar] [CrossRef]
- Tao, F.; Xiao, B.; Qi, Q.; Cheng, J.; Ji, P. Digital twin modeling. Journal of Manufacturing Systems 2022, 64, 372–389. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital twin: Enabling technologies, challenges and open research. IEEE access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Ríos, J.; Staudter, G.; Weber, M.; Anderl, R.; Bernard, A. Uncertainty of data and the digital twin: a review. International Journal of Product Lifecycle Management 2020, 12, 329–358. [Google Scholar] [CrossRef]
- Rathore, M.M.; Shah, S.A.; Shukla, D.; Bentafat, E.; Bakiras, S. The role of ai, machine learning, and big data in digital twinning: A systematic literature review, challenges, and opportunities. IEEE Access 2021, 9, 32030–32052. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q.; Liu, A.; Kusiak, A. Data-driven smart manufacturing. Journal of Manufacturing Systems 2018, 48, 157–169. [Google Scholar] [CrossRef]
- Leng, J.; Wang, D.; Shen, W.; Li, X.; Liu, Q.; Chen, X. Digital twins-based smart manufacturing system design in Industry 4.0: A review. Journal of manufacturing systems 2021, 60, 119–137. [Google Scholar] [CrossRef]
- Li, L.; Lei, B.; Mao, C. Digital twin in smart manufacturing. Journal of Industrial Information Integration 2022, 26, 100289. [Google Scholar] [CrossRef]
- Broo, D.G.; Bravo-Haro, M.; Schooling, J. Design and implementation of a smart infrastructure digital twin. Automation in construction 2022, 136, 104171. [Google Scholar] [CrossRef]
- Costantini, A.; Di Modica, G.; Ahouangonou, J.C.; Duma, D.C.; Martelli, B.; Galletti, M.; Antonacci, M.; Nehls, D.; Bellavista, P.; Delamarre, C.; et al. IoTwins: toward implementation of distributed digital twins in industry 4.0 settings. Computers 2022, 11, 67. [Google Scholar] [CrossRef]
- Schroeder, G.N.; Steinmetz, C.; Rodrigues, R.N.; Henriques, R.V.B.; Rettberg, A.; Pereira, C.E. A methodology for digital twin modeling and deployment for industry 4.0. Proceedings of the IEEE 2020, 109, 556–567. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Suman, R. Digital twin applications toward industry 4.0: a review. Cognitive Robotics 2023, 3, 71–92. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, H.; Li, X.; Yang, G.; Zheng, P.; Song, C.; Yuan, Y.; Wuest, T.; Yang, H.; Wang, L. Human Digital Twin in the context of Industry 5.0. Robotics and Computer-Integrated Manufacturing 2024, 85, 102626. [Google Scholar] [CrossRef]
- Lv, Z. Digital twins in industry 5.0. Research 2023, 6, 0071. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y. Enabling technologies and tools for digital twin. Journal of Manufacturing Systems 2021, 58, 3–21. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, J.; Wang, P.; Law, J.; Calinescu, R.; Mihaylova, L. A deep learning-enhanced Digital Twin framework for improving safety and reliability in human–robot collaborative manufacturing. Robotics and computer-integrated manufacturing 2024, 85, 102608. [Google Scholar] [CrossRef]
- Roy, R.B.; Mishra, D.; Pal, S.K.; Chakravarty, T.; Panda, S.; Chandra, M.G.; Pal, A.; Misra, P.; Chakravarty, D.; Misra, S. Digital twin: current scenario and a case study on a manufacturing process. The International Journal of Advanced Manufacturing Technology 2020, 107, 3691–3714. [Google Scholar] [CrossRef]
- Bilberg, A.; Malik, A.A. Digital twin driven human–robot collaborative assembly. CIRP annals 2019, 68, 499–502. [Google Scholar] [CrossRef]
- Jiang, H.; Qin, S.; Fu, J.; Zhang, J.; Ding, G. How to model and implement connections between physical and virtual models for digital twin application. Journal of Manufacturing Systems 2021, 58, 36–51. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, J.; Qi, Q.; Zhang, M.; Zhang, H.; Sui, F. Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology 2018, 94, 3563–3576. [Google Scholar] [CrossRef]
- Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.Y.; Nee, A.Y. Digital twin-driven product design framework. International Journal of Production Research 2019, 57, 3935–3953. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Data-driven invariant modelling patterns for digital twin design. Journal of Industrial Information Integration 2023, 31, 100424. [Google Scholar] [CrossRef]
- Feng, K.; Ji, J.; Zhang, Y.; Ni, Q.; Liu, Z.; Beer, M. Digital twin-driven intelligent assessment of gear surface degradation. Mechanical Systems and Signal Processing 2023, 186, 109896. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Q.; Ji, W.; Tao, F. An update method for digital twin multi-dimension models. Robotics and Computer-Integrated Manufacturing 2023, 80, 102481. [Google Scholar] [CrossRef]
- Ritto, T.; Rochinha, F. Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mechanical Systems and Signal Processing 2021, 155, 107614. [Google Scholar] [CrossRef]
- Mendi, A.F. A digital twin case study on automotive production line. Sensors 2022, 22, 6963. [Google Scholar] [CrossRef]
- Zhao, L.; Han, G.; Li, Z.; Shu, L. Intelligent digital twin-based software-defined vehicular networks. IEEE network 2020, 34, 178–184. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, D.; Feng, H.; Zhu, H.; Lv, H. Digital twins in unmanned aerial vehicles for rapid medical resource delivery in epidemics. IEEE Transactions on Intelligent Transportation Systems 2021, 23, 25106–25114. [Google Scholar] [CrossRef] [PubMed]
- Almeaibed, S.; Al-Rubaye, S.; Tsourdos, A.; Avdelidis, N.P. Digital twin analysis to promote safety and security in autonomous vehicles. IEEE Communications Standards Magazine 2021, 5, 40–46. [Google Scholar] [CrossRef]
- Khan, S.; Farnsworth, M.; McWilliam, R.; Erkoyuncu, J. On the requirements of digital twin-driven autonomous maintenance. Annual Reviews in Control 2020, 50, 13–28. [Google Scholar] [CrossRef]
- Erol, T.; Mendi, A.F.; Doğan, D. The digital twin revolution in healthcare. In Proceedings of the 2020 4th international symposium on multidisciplinary studies and innovative technologies (ISMSIT); IEEE, 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Björnsson, B.; Borrebaeck, C.; Elander, N.; Gasslander, T.; Gawel, D.R.; Gustafsson, M.; Jörnsten, R.; Lee, E.J.; Li, X.; Lilja, S.; et al. Digital twins to personalize medicine. Genome medicine 2020, 12, 1–4. [Google Scholar] [CrossRef]
- Venkatesh, K.P.; Brito, G.; Kamel Boulos, M.N. Health digital twins in life science and health care innovation. Annual Review of Pharmacology and Toxicology 2024, 64, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Armeni, P.; Polat, I.; De Rossi, L.M.; Diaferia, L.; Meregalli, S.; Gatti, A. Digital twins in healthcare: is it the beginning of a new era of evidence-based medicine? a critical review. Journal of Personalized Medicine 2022, 12, 1255. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Hoang, T.N.; Xiao, C.; Sun, J. DDL: Deep dictionary learning for predictive phenotyping. International Joint Conference on Artificial Intelligence 2019. [Google Scholar] [CrossRef]
- Fu, T.; Xiao, C.; Qian, C.; Glass, L.M.; Sun, J. Probabilistic and dynamic molecule-disease interaction modeling for drug discovery. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data Mining; 2021. [Google Scholar] [CrossRef]
- Cellina, M.; Cè, M.; Alì, M.; Irmici, G.; Ibba, S.; Caloro, E.; Fazzini, D.; Oliva, G.; Papa, S. Digital Twins: The New Frontier for Personalized Medicine? Applied Sciences 2023, 13, 7940. [Google Scholar] [CrossRef]
- Li, X.; Lee, E.J.; Lilja, S.; Loscalzo, J.; Schäfer, S.; Smelik, M.; Strobl, M.R.; Sysoev, O.; Wang, H.; Zhang, H.; et al. A dynamic single cell-based framework for digital twins to prioritize disease genes and drug targets. Genome Medicine 2022, 14, 48. [Google Scholar] [CrossRef]
- Filippo, M.D.; Damiani, C.; Vanoni, M.; Maspero, D.; Mauri, G.; Alberghina, L.; Pescini, D. Single-cell digital twins for cancer preclinical investigation. Metabolic Flux Analysis in Eukaryotic Cells: Methods and Protocols 2020, 331–343. [Google Scholar] [CrossRef]
- Park, S.Y.; Park, C.H.; Choi, D.H.; Hong, J.K.; Lee, D.Y. Bioprocess digital twins of mammalian cell culture for advanced biomanufacturing. Current Opinion in Chemical Engineering 2021, 33, 100702. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, S.J.; Park, C.H.; Kim, J.; Lee, D.Y. Data-driven prediction models for forecasting multistep ahead profiles of mammalian cell culture toward bioprocess digital twins. Biotechnology and Bioengineering 2023, 120, 2494–2508. [Google Scholar] [CrossRef] [PubMed]
- Möller, J.; Pörtner, R. Digital twins for tissue culture techniques—concepts, expectations, and state of the art. Processes 2021, 9, 447. [Google Scholar] [CrossRef]
- Lu, W.; Zheng, Q.; Xu, N.; Feng, J.; Consortium, D. The human digital twin brain in the resting state and in action. arXiv 2022, arXiv:2211.15963. [Google Scholar] [CrossRef]
- Lu, W.; Zeng, L.; Du, X.; Zhang, W.; Xiang, S.; Wang, H.; Wang, J.; Ji, M.; Hou, Y.; Wang, M.; et al. Digital Twin Brain: a simulation and assimilation platform for whole human brain. arXiv 2023, arXiv:2308.01241. [Google Scholar] [CrossRef]
- Ustyuzhaninov, I.; Burg, M.F.; Cadena, S.A.; Fu, J.; Muhammad, T.; Ponder, K.; Froudarakis, E.; Ding, Z.; Bethge, M.; Tolias, A.S.; et al. Digital twin reveals combinatorial code of non-linear computations in the mouse primary visual cortex. bioRxiv 2022. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, C.T.; Parker, S.J.; Chen, L.; Saylor, G.; Van Eyk, J.E.; Herrington, D.M.; Wang, Y. COT: an efficient Python tool for detecting marker genes among many subtypes. bioRxiv 2021. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, C.T.; Parker, S.J.; Cheng, Z.; Saylor, G.; Van Eyk, J.E.; Yu, G.; Clarke, R.; Herrington, D.M.; Wang, Y. COT: an efficient and accurate method for detecting marker genes among many subtypes. Bioinformatics Advances 2022, 2, vbac037. [Google Scholar] [CrossRef] [PubMed]
- Shengli, W. Is human digital twin possible? Computer Methods and Programs in Biomedicine Update 2021, 1, 100014. [Google Scholar] [CrossRef]
- Chen, J.; Yi, C.; Du, H.; Niyato, D.; Kang, J.; Cai, J.; Shen, X. A revolution of personalized healthcare: Enabling human digital twin with mobile AIGC. IEEE Network 2024. [Google Scholar] [CrossRef]
- Laubenbacher, R.; Mehrad, B.; Shmulevich, I.; Trayanova, N. Digital twins in medicine. Nature Computational Science 2024, 4, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, K.P.; Raza, M.M.; Kvedar, J.C. Health digital twins as tools for precision medicine: Considerations for computation, implementation, and regulation. NPJ digital medicine 2022, 5, 150. [Google Scholar] [CrossRef] [PubMed]
- Tardini, E.; Zhang, X.; Canahuate, G.; Wentzel, A.; Mohamed, A.S.; Van Dijk, L.; Fuller, C.D.; Marai, G.E. Optimal policy determination in sequential systemic and locoregional therapy of oropharyngeal squamous carcinomas: A patient-physician digital twin dyad with deep Q-learning for treatment selection. medRxiv 2021. [Google Scholar] [CrossRef]
- Cappon, G.; Vettoretti, M.; Sparacino, G.; Del Favero, S.; Facchinetti, A. Replaybg: A digital twin-based methodology to identify a personalized model from type 1 diabetes data and simulate glucose concentrations to assess alternative therapies. IEEE Transactions on Biomedical Engineering 2023. [Google Scholar] [CrossRef]
- Herrgårdh, T.; Hunter, E.; Tunedal, K.; Örman, H.; Amann, J.; Navarro, F.A.; Martinez-Costa, C.; Kelleher, J.D.; Cedersund, G. Digital twins and hybrid modelling for simulation of physiological variables and stroke risk. bioRxiv 2022. [Google Scholar] [CrossRef]
- Corral-Acero, J.; Margara, F.; Marciniak, M.; Rodero, C.; Loncaric, F.; Feng, Y.; Gilbert, A.; Fernandes, J.F.; Bukhari, H.A.; Wajdan, A.; et al. The ‘Digital Twin’to enable the vision of precision cardiology. European heart journal 2020, 41, 4556–4564. [Google Scholar] [CrossRef]
- Martinez-Velazquez, R.; Gamez, R.; El Saddik, A. Cardio Twin: A Digital Twin of the human heart running on the edge. In Proceedings of the 2019 IEEE international symposium on medical measurements and applications (MeMeA); IEEE, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Coorey, G.; Figtree, G.A.; Fletcher, D.F.; Snelson, V.J.; Vernon, S.T.; Winlaw, D.; Grieve, S.M.; McEwan, A.; Yang, J.Y.H.; Qian, P.; et al. The health digital twin to tackle cardiovascular disease—a review of an emerging interdisciplinary field. NPJ digital medicine 2022, 5, 126. [Google Scholar] [CrossRef]
- Xing, X.; Del Ser, J.; Wu, Y.; Li, Y.; Xia, J.; Xu, L.; Firmin, D.; Gatehouse, P.; Yang, G. HDL: Hybrid deep learning for the synthesis of myocardial velocity maps in digital twins for cardiac analysis. IEEE Journal of Biomedical and Health Informatics 2022, 27, 5134–5142. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Gliozzo, J.; Petrini, A.; Valtolina, S. Human digital twin for fitness management. Ieee Access 2020, 8, 26637–26664. [Google Scholar] [CrossRef]
- Yang, P.C.; Jeng, M.T.; Yarov-Yarovoy, V.; Santana, L.F.; Vorobyov, I.; Clancy, C.E. Toward digital twin technology for precision pharmacology. Clinical Electrophysiology 2024, 10, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Moingeon, P.; Chenel, M.; Rousseau, C.; Voisin, E.; Guedj, M. Virtual patients, digital twins and causal disease models: Paving the ground for in silico clinical trials. Drug discovery today 2023, 103605. [Google Scholar] [CrossRef]
- Yankeelov, T.E.; Hormuth, D.A.; Lima, E.A.; Lorenzo, G.; Wu, C.; Okereke, L.C.; Rauch, G.M.; Venkatesan, A.M.; Chung, C. Designing clinical trials for patients who are not average. Iscience 2024, 27. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Sato, K.; Wang, J. Deep Learning based Multi-Label Image Classification of Protest Activities. arXiv 2023, arXiv:2301.04212. [Google Scholar] [CrossRef]
- Lu, Y. Machine learning enabled bioinformatics tools for analysis of biologically diverse samples. 2023. [Google Scholar]
- Fu, T.; Sun, J. Antibody Complementarity Determining Regions (CDRs) design using Constrained Energy Model. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining; 2022. [Google Scholar]
- Fu, T.; Gao, W.; Coley, C.W.; Sun, J. Reinforced Genetic Algorithm for Structure-based Drug Design. Advances in Neural Information Processing Systems (NeurIPS) 2022. [Google Scholar] [CrossRef]
- Croatti, A.; Gabellini, M.; Montagna, S.; Ricci, A. On the integration of agents and digital twins in healthcare. Journal of Medical Systems 2020, 44, 161. [Google Scholar] [CrossRef]
- Kulkarni, C.; Quraishi, A.; Raparthi, M.; Shabaz, M.; Khan, M.A.; Varma, R.A.; Keshta, I.; Soni, M.; Byeon, H. Hybrid disease prediction approach leveraging digital twin and metaverse technologies for health consumer. BMC Medical Informatics and Decision Making 2024, 24, 92. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, F.; Rossi, R.M.; De Nys, K.; Defraeye, T. An individualized digital twin of a patient for transdermal fentanyl therapy for chronic pain management. Drug delivery and translational research 2023, 13, 2272–2285. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Huang, K.; Sun, J. Automated prediction of clinical trial outcome, 2023. US Patent App. 17/749,065.
- Fu, T.; Huang, K.; Xiao, C.; Glass, L.M.; Sun, J. HINT: Hierarchical interaction network for clinical-trial-outcome predictions. Patterns 2022, 3, 100445. [Google Scholar] [CrossRef] [PubMed]
- Barenji, R.V.; Hariry, R.W. Blockchain-enabled quality improvement digital twin for clinical trials. 2023. [Google Scholar] [CrossRef]
- Chebanov, D.K.; Misyurin, V.A. Predictive Modeling of Clinical Trial Outcomes for Novel Drugs using Digital Twin Patient Cohorts and GenerativeAI. medRxiv 2023. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, T.; Hao, N.; Van Rechem, C.; Chen, J.; Fu, T. Uncertainty quantification and interpretability for clinical trial approval prediction. Health Data Science 2024, 4, 0126. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Hao, N.; Lu, Y.; Van Rechem, C. Uncertainty quantification on clinical trial outcome prediction. arXiv 2024, arXiv:2401.03482. [Google Scholar] [CrossRef]
- Sacks, R.; Brilakis, I.; Pikas, E.; Xie, H.S.; Girolami, M. Construction with digital twin information systems. Data-Centric Engineering 2020, 1, e14. [Google Scholar] [CrossRef]
- Torzoni, M.; Tezzele, M.; Mariani, S.; Manzoni, A.; Willcox, K.E. A digital twin framework for civil engineering structures. Computer Methods in Applied Mechanics and Engineering 2024, 418, 116584. [Google Scholar] [CrossRef]
- Jiang, F.; Ma, L.; Broyd, T.; Chen, K. Digital twin and its implementations in the civil engineering sector. Automation in Construction 2021, 130, 103838. [Google Scholar] [CrossRef]
- Agrawal, A.; Thiel, R.; Jain, P.; Singh, V.; Fischer, M. Digital Twin: Where do humans fit in? Automation in Construction 2023, 148, 104749. [Google Scholar] [CrossRef]
- Ivanov, S.; Nikolskaya, K.; Radchenko, G.; Sokolinsky, L.; Zymbler, M. Digital twin of city: Concept overview. In Proceedings of the 2020 Global Smart Industry Conference (GloSIC); IEEE, 2020; pp. 178–186. [Google Scholar] [CrossRef]
- Deren, L.; Wenbo, Y.; Zhenfeng, S. Smart city based on digital twins. Computational Urban Science 2021, 1, 1–11. [Google Scholar] [CrossRef]
- EL Azzaoui, A.; Kim, T.W.; Loia, V.; Park, J.H. Blockchain-based secure digital twin framework for smart healthy city. In Advanced Multimedia and Ubiquitous Engineering: MUE-FutureTech 2020; Springer, 2021; pp. 107–113. [Google Scholar] [CrossRef]
- Li, X.; Feng, M.; Ran, Y.; Su, Y.; Liu, F.; Huang, C.; Shen, H.; Xiao, Q.; Su, J.; Yuan, S.; et al. Big Data in Earth system science and progress towards a digital twin. Nature Reviews Earth & Environment 2023, 4, 319–332. [Google Scholar] [CrossRef]
- Schrotter, G.; Hürzeler, C. The digital twin of the city of Zurich for urban planning. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science 2020, 88, 99–112. [Google Scholar] [CrossRef]
- Pang, J.; Huang, Y.; Xie, Z.; Li, J.; Cai, Z. Collaborative city digital twin for the COVID-19 pandemic: A federated learning solution. Tsinghua science and technology 2021, 26, 759–771. [Google Scholar] [CrossRef]
- Du, D.; Bhardwaj, S.; Parker, S.J.; Cheng, Z.; Zhang, Z.; Lu, Y.; Van Eyk, J.E.; Yu, G.; Clarke, R.; Herrington, D.M.; et al. ABDS: tool suite for analyzing biologically diverse samples. bioRxiv 2023. [Google Scholar] [CrossRef]
- Grieves, M.W. Virtually intelligent product systems: Digital and physical twins. 2019. [Google Scholar]
- Kuehn, W. Digital twins for decision making in complex production and logistic enterprises. International Journal of Design & Nature and Ecodynamics 2018, 13, 260–271. [Google Scholar]
- Perez, H.D.; Amaran, S.; Erisen, E.; Wassick, J.M.; Grossmann, I.E. A digital twin framework for business transactional processes in supply chains. In Computer aided chemical engineering; Elsevier, 2021; Vol. 50, pp. 1755–1760. [Google Scholar] [CrossRef]
- Li, X.; Cao, J.; Liu, Z.; Luo, X. Sustainable business model based on digital twin platform network: The inspiration from haier’s case study in China. Sustainability 2020, 12, 936. [Google Scholar] [CrossRef]
- Fei, T.; Xuemin, S.; Cheng, J.; Yonghuai, Z.; Weiran, L.; Yong, W.; Hui, X.; Tianliang, H.; Xiaojun, L.; Tingyu, L.; et al. makeTwin: A reference architecture for digital twin software platform. Chinese Journal of Aeronautics 2024, 37, 1–18. [Google Scholar] [CrossRef]
- Sepasgozar, S.M. Digital twin and web-based virtual gaming technologies for online education: A case of construction management and engineering. Applied Sciences 2020, 10, 4678. [Google Scholar] [CrossRef]
- Nikolaev, S.; Gusev, M.; Padalitsa, D.; Mozhenkov, E.; Mishin, S.; Uzhinsky, I. Implementation of “digital twin” concept for modern project-based engineering education. In Proceedings of the Product Lifecycle Management to Support Industry 4.0: 15th IFIP WG 5.1 International Conference, PLM 2018, Turin, Italy, 2-4 July 2018; Proceedings 15. Springer, 2018; pp. 193–203. [Google Scholar] [CrossRef]
- Almasan, P.; Ferriol-Galmés, M.; Paillisse, J.; Suárez-Varela, J.; Perino, D.; López, D.; Perales, A.A.P.; Harvey, P.; Ciavaglia, L.; Wong, L.; et al. Digital twin network: Opportunities and challenges. arXiv arXiv:2201.01144. [CrossRef]
- Zhu, Y.; Chen, D.; Zhou, C.; Lu, L.; Duan, X. A knowledge graph based construction method for Digital Twin Network. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI); IEEE, 2021; pp. 362–365. [Google Scholar] [CrossRef]
- Qiu, C.; Zhou, S.; Liu, Z.; Gao, Q.; Tan, J. Digital assembly technology based on augmented reality and digital twins: a review. Virtual Reality & Intelligent Hardware 2019, 1, 597–610. [Google Scholar] [CrossRef]
- Yin, Y.; Zheng, P.; Li, C.; Wang, L. A state-of-the-art survey on Augmented Reality-assisted Digital Twin for futuristic human-centric industry transformation. Robotics and Computer-Integrated Manufacturing 2023, 81, 102515. [Google Scholar] [CrossRef]
- del Campo, G.; Saavedra, E.; Piovano, L.; Luque, F.; Santamaria, A. Virtual Reality and Internet of Things Based Digital Twin for Smart City Cross-Domain Interoperability. Applied Sciences 2024, 14, 2747. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Li, X.; Tang, S.; Li, Y.; Xie, L.; Lv, Z. BIM information integration based VR modeling in digital twins in industry 5.0. Journal of Industrial Information Integration 2022, 28, 100351. [Google Scholar] [CrossRef]
- Booyse, W.; Wilke, D.N.; Heyns, S. Deep digital twins for detection, diagnostics and prognostics. Mechanical Systems and Signal Processing 2020, 140, 106612. [Google Scholar] [CrossRef]
- Dinh, P.V.; Nguyen, Q.U.; Hoang, D.T.; Nguyen, D.N.; Bao, S.P.; Dutkiewicz, E. Constrained Twin Variational Auto-Encoder for Intrusion Detection in IoT Systems. IEEE Internet of Things Journal 2023. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Dongare, A.; Kharde, R.; Kachare, A.D.; et al. Introduction to artificial neural network. International Journal of Engineering and Innovative Technology (IJEIT) 2012, 2, 189–194. [Google Scholar]
- O’shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press, 2016. [Google Scholar]
- Garg, H.; Sharma, B.; Shekhar, S.; Agarwal, R. Spoofing detection system for e-health digital twin using EfficientNet Convolution Neural Network. Multimedia Tools and Applications 2022, 81, 26873–26888. [Google Scholar] [CrossRef]
- Hu, W.; Wang, C.; Liu, F.; Peng, X.; Sun, P.; Tan, J. A grasps-generation-and-selection convolutional neural network for a digital twin of intelligent robotic grasping. Robotics and Computer-Integrated Manufacturing 2022, 77, 102371. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Garg, A.; Gao, L. Enhancing real-time degradation prediction of lithium-ion battery: A digital twin framework with CNN-LSTM-attention model. Energy 2024, 286, 129681. [Google Scholar] [CrossRef]
- Ji, T.; Mohamad Nor, N. Deep learning-empowered digital twin using acoustic signal for welding quality inspection. Sensors 2023, 23, 2643. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiao, W.; Zhang, Y. Deep learning-empowered digital twin for visualized weld joint growth monitoring and penetration control. Journal of Manufacturing Systems 2020, 57, 429–439. [Google Scholar] [CrossRef]
- Medsker, L.; Jain, L.C. Recurrent neural networks: design and applications; CRC press, 1999. [Google Scholar]
- Elman, J.L. Finding structure in time. Cognitive science 1990, 14, 179–211. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural computation 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar] [CrossRef]
- Hu, W.; He, Y.; Liu, Z.; Tan, J.; Yang, M.; Chen, J. Toward a digital twin: time series prediction based on a hybrid ensemble empirical mode decomposition and BO-LSTM neural networks. Journal of Mechanical Design 2021, 143, 051705. [Google Scholar] [CrossRef]
- Yi, Y.; Xia, C.; Feng, C.; Zhang, W.; Fu, C.; Qian, L.; Chen, S. Digital twin-long short-term memory (LSTM) neural network based real-time temperature prediction and degradation model analysis for lithium-ion battery. Journal of Energy Storage 2023, 64, 107203. [Google Scholar] [CrossRef]
- Xie, N.; Kou, R.; Yao, Y. Tool condition prognostic model based on digital twin system. Procedia CIRP 2020, 93, 1502–1507. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, C.; Li, X.; Yao, J.; Yao, Q.; Han, B. On Strengthening and Defending Graph Reconstruction Attack with Markov Chain Approximation. arXiv 2023, arXiv:2306.09104. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Z.; Yao, Q.; Chu, X.; Han, B. AdaProp: Learning Adaptive Propagation for Graph Neural Network based Knowledge Graph Reasoning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining; 2023. [Google Scholar] [CrossRef]
- Liu, S.; Ying, R.; Dong, H.; Li, L.; Xu, T.; Rong, Y.; Zhao, P.; Huang, J.; Wu, D. Local augmentation for graph neural networks. In Proceedings of the International Conference on Machine Learning; 2022. [Google Scholar]
- Li, X.; Zhou, Z.; Yao, J.; Rong, Y.; Zhang, L.; Han, B. Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel. In Proceedings of the Twelfth International Conference on Learning Representations; 2024. [Google Scholar]
- Wang, H.; Wu, Y.; Min, G.; Miao, W. A graph neural network-based digital twin for network slicing management. IEEE Transactions on Industrial Informatics 2020, 18, 1367–1376. [Google Scholar] [CrossRef]
- Ferriol-Galmés, M.; Suárez-Varela, J.; Paillissé, J.; Shi, X.; Xiao, S.; Cheng, X.; Barlet-Ros, P.; Cabellos-Aparicio, A. Building a digital twin for network optimization using graph neural networks. Computer Networks 2022, 217, 109329. [Google Scholar] [CrossRef]
- Mortlock, T.; Muthirayan, D.; Yu, S.Y.; Khargonekar, P.P.; Al Faruque, M.A. Graph learning for cognitive digital twins in manufacturing systems. IEEE Transactions on Emerging Topics in Computing 2021, 10, 34–45. [Google Scholar] [CrossRef]
- Barbiero, P.; Vinas Torne, R.; Lió, P. Graph representation forecasting of patient’s medical conditions: Toward a digital twin. Frontiers in genetics 2021, 12, 652907. [Google Scholar] [CrossRef] [PubMed]
- Ferriol-Galmés, M.; Cheng, X.; Shi, X.; Xiao, S.; Barlet-Ros, P.; Cabellos-Aparicio, A. FlowDT: a flow-aware digital twin for computer networks. In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); IEEE, 2022; pp. 8907–8911. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, X.; Liu, X.; Li, L.; Sun, K. GNN-Based Power Allocation and User Association in Digital Twin Network for the Terahertz Band. IEEE Journal on Selected Areas in Communications 2023. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. International Conference on Learning Representations (ICLR) 2014. [Google Scholar]
- Das, T.; Wang, Z.; Sun, J. Twin: Personalized clinical trial digital twin generation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining; 2023; pp. 402–413. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. Advances in neural information processing systems 2014. [Google Scholar]
- Goodfellow, I.J. On distinguishability criteria for estimating generative models. arXiv 2014, arXiv:1412.6515. [Google Scholar] [CrossRef]
- Tai, Y.; Zhang, L.; Li, Q.; Zhu, C.; Chang, V.; Rodrigues, J.J.; Guizani, M. Digital-Twin-Enabled IoMT system for surgical simulation using rAC-GAN. IEEE Internet of Things Journal 2022, 9, 20918–20931. [Google Scholar] [CrossRef]
- Quilodrán-Casas, C.; Silva, V.L.; Arcucci, R.; Heaney, C.E.; Guo, Y.; Pain, C.C. Digital twins based on bidirectional LSTM and GAN for modelling the COVID-19 pandemic. Neurocomputing 2022, 470, 11–28. [Google Scholar] [CrossRef]
- Hasan, M.N.; Jan, S.U.; Koo, I. Wasserstein GAN-based Digital Twin Inspired Model for Early Drift Fault Detection in Wireless Sensor Networks. IEEE Sensors Journal 2023. [Google Scholar] [CrossRef]
- Zotov, E.; Tiwari, A.; Kadirkamanathan, V. Towards a digital twin with generative adversarial network modelling of machining vibration. In Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference: Proceedings of the EANN 2020 21; Springer, 2020; pp. 190–201. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, C.; Tao, D. GAN-MDF: A Method for Multi-fidelity Data Fusion in Digital Twins. arXiv 2021, arXiv:2106.14655. [Google Scholar] [CrossRef]
- Zhang, Y.; He, R.; Ai, B.; Yang, M.; Chen, R.; Wang, C.; Zhang, Z.; Zhong, Z. Generative adversarial networks based digital twin channel modeling for intelligent communication networks. China Communications 2023, 20, 32–43. [Google Scholar] [CrossRef]
- Tsialiamanis, G.; Wagg, D.J.; Dervilis, N.; Worden, K. On generative models as the basis for digital twins. Data-Centric Engineering 2021, 2, e11. [Google Scholar] [CrossRef]
- Xu, Q.; Ali, S.; Yue, T. Digital twin-based anomaly detection in cyber-physical systems. In Proceedings of the 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST); IEEE, 2021; pp. 205–216. [Google Scholar] [CrossRef]
- Lian, Y.; Geng, Y.; Tian, T. Anomaly detection method for multivariate time series data of oil and gas stations based on digital twin and mtad-gan. Applied Sciences 2023, 13, 1891. [Google Scholar] [CrossRef]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; et al. Language models are few-shot learners. Advances in Neural Information Processing Systems 2020. [Google Scholar]
- Li, X.; Zhou, Z.; Zhu, J.; Yao, J.; Liu, T.; Han, B. DeepInception: Hypnotize Large Language Model to Be Jailbreaker. arXiv 2023, arXiv:2311.03191. [Google Scholar] [CrossRef]
- Zhao, W.X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al. A survey of large language models. arXiv 2023, arXiv:2303.18223. [Google Scholar] [CrossRef]
- Aydın, Ö.; Karaarslan, E. OpenAI ChatGPT generated literature review: Digital twin in healthcare. In Emerging Computer Technologies; Aydın, Ö., Ed.; 2022; Volume 2. [Google Scholar] [CrossRef]
- Lu, Y. Multi-omics Data Integration for Identifying Disease Specific Biological Pathways. PhD thesis, Virginia Tech, 2018. [Google Scholar]
- Wang, Y.; Lu, Y.; Xu, Y.; Ma, Z.; Xu, H.; Du, B.; Gao, H.; Wu, J. TWIN-GPT: Digital Twins for Clinical Trials via Large Language Model. arXiv 2024, arXiv:2404.01273. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Y.; Wang, Y.; Lu, Y.; Cao, X.; Lin, M.; Xu, H.; Wu, J.; Xiao, C.; Sun, J.; et al. TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets. arXiv 2024, arXiv:2407.00631. [Google Scholar] [CrossRef]
- Blasek, N.; Eichenmüller, K.; Ernst, B.; Götz, N.; Nast, B.; Sandkuhl, K. Large language models in requirements engineering for digital twins. 2023. [Google Scholar]
- Xia, Y.; Xiao, Z.; Jazdi, N.; Weyrich, M. Generation of Asset Administration Shell with Large Language Model Agents: Interoperability in Digital Twins with Semantic Node. arXiv 2024, arXiv:2403.17209. [Google Scholar] [CrossRef]
- Li, M.; Wang, R.; Zhou, X.; Zhu, Z.; Wen, Y.; Tan, R. ChatTwin: Toward Automated Digital Twin Generation for Data Center via Large Language Models. In Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation; 2023; pp. 208–211. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Communication-efficient federated learning for digital twin edge networks in industrial IoT. IEEE Transactions on Industrial Informatics 2020, 17, 5709–5718. [Google Scholar] [CrossRef]
- Sun, W.; Lei, S.; Wang, L.; Liu, Z.; Zhang, Y. Adaptive federated learning and digital twin for industrial internet of things. IEEE Transactions on Industrial Informatics 2020, 17, 5605–5614. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, X.; Zhang, K.; Maharjan, S.; Zhang, Y. Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks. IEEE Transactions on Industrial Informatics 2020, 17, 5098–5107. [Google Scholar] [CrossRef]
- Sun, W.; Xu, N.; Wang, L.; Zhang, H.; Zhang, Y. Dynamic digital twin and federated learning with incentives for air-ground networks. IEEE Transactions on Network Science and Engineering 2020, 9, 321–333. [Google Scholar] [CrossRef]
- Lu, Y.; Chang, Y.T.; Hoffman, E.P.; Yu, G.; Herrington, D.M.; Clarke, R.; Wu, C.T.; Chen, L.; Wang, Y. Integrated Identification of Disease Specific Pathways Using Multi-omics data. bioRxiv 2019. [Google Scholar] [CrossRef]
- Maschler, B.; Braun, D.; Jazdi, N.; Weyrich, M. Transfer learning as an enabler of the intelligent digital twin. Procedia CIRP 2021, 100, 127–132. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Y.; Liu, X.; Zheng, Y. A digital-twin-assisted fault diagnosis using deep transfer learning. Ieee Access 2019, 7, 19990–19999. [Google Scholar] [CrossRef]
- Xia, M.; Shao, H.; Williams, D.; Lu, S.; Shu, L.; de Silva, C.W. Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning. Reliability Engineering & System Safety 2021, 215, 107938. [Google Scholar] [CrossRef]
- Teng, S.; Chen, X.; Chen, G.; Cheng, L. Structural damage detection based on transfer learning strategy using digital twins of bridges. Mechanical Systems and Signal Processing 2023, 191, 110160. [Google Scholar] [CrossRef]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep reinforcement learning. arXiv 2013, arXiv:1312.5602. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement learning: An introduction; MIT press, 2018. [Google Scholar]
- Van Otterlo, M.; Wiering, M. Reinforcement learning and markov decision processes. In Reinforcement learning: State-of-the-art; Springer, 2012; pp. 3–42. [Google Scholar]
- Cronrath, C.; Aderiani, A.R.; Lennartson, B. Enhancing digital twins through reinforcement learning. In Proceedings of the 2019 IEEE 15th International conference on automation science and engineering (CASE); IEEE, 2019; pp. 293–298. [Google Scholar] [CrossRef]
- Xia, K.; Sacco, C.; Kirkpatrick, M.; Saidy, C.; Nguyen, L.; Kircaliali, A.; Harik, R. A digital twin to train deep reinforcement learning agent for smart manufacturing plants: Environment, interfaces and intelligence. Journal of Manufacturing Systems 2021, 58, 210–230. [Google Scholar] [CrossRef]
- Park, K.T.; Son, Y.H.; Ko, S.W.; Noh, S.D. Digital twin and reinforcement learning-based resilient production control for micro smart factory. Applied Sciences 2021, 11, 2977. [Google Scholar] [CrossRef]
- Matulis, M.; Harvey, C. A robot arm digital twin utilising reinforcement learning. Computers & Graphics 2021, 95, 106–114. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.; Liu, D.; Wang, L. A digital twin-based sim-to-real transfer for deep reinforcement learning-enabled industrial robot grasping. Robotics and Computer-Integrated Manufacturing 2022, 78, 102365. [Google Scholar] [CrossRef]
- Wu, J.; Huang, Z.; Hang, P.; Huang, C.; De Boer, N.; Lv, C. Digital twin-enabled reinforcement learning for end-to-end autonomous driving. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI); IEEE, 2021; pp. 62–65. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, K.; Maharjan, S.; Zhang, Y. Deep reinforcement learning for stochastic computation offloading in digital twin networks. IEEE Transactions on Industrial Informatics 2020, 17, 4968–4977. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.; Masoud, N.; Krishnan, M.; Li, V.C. Digital twin-driven deep reinforcement learning for adaptive task allocation in robotic construction. Advanced Engineering Informatics 2022, 53, 101710. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, J.; Zhang, Y. Adaptive digital twin and multiagent deep reinforcement learning for vehicular edge computing and networks. IEEE Transactions on Industrial Informatics 2021, 18, 1405–1413. [Google Scholar] [CrossRef]
- Liu, T.; Tang, L.; Wang, W.; Chen, Q.; Zeng, X. Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network. IEEE Internet of Things Journal 2021, 9, 1427–1444. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, W.; Xu, J.; Zhang, Y.; Min, G. Dynamic task offloading for digital twin-empowered mobile edge computing via deep reinforcement learning. China Communications 2023. [Google Scholar] [CrossRef]
- Zhou, X.; Zheng, X.; Cui, X.; Shi, J.; Liang, W.; Yan, Z.; Yang, L.T.; Shimizu, S.; Kevin, I.; Wang, K. Digital twin enhanced federated reinforcement learning with lightweight knowledge distillation in mobile networks. IEEE Journal on Selected Areas in Communications 2023. [Google Scholar] [CrossRef]
- Abideen, A.Z.; Sundram, V.P.K.; Pyeman, J.; Othman, A.K.; Sorooshian, S. Digital twin integrated reinforced learning in supply chain and logistics. Logistics 2021, 5, 84. [Google Scholar] [CrossRef]
- Shen, G.; Lei, L.; Zhang, X.; Li, Z.; Cai, S.; Zhang, L. Multi-UAV cooperative search based on reinforcement learning with a digital twin driven training framework. IEEE Transactions on Vehicular Technology 2023. [Google Scholar] [CrossRef]
- Shen, C.; Krenn, M.; Eppel, S.; Aspuru-Guzik, A. Deep Molecular Dreaming: Inverse machine learning for de-novo molecular design and interpretability with surjective representations. Machine Learning: Science and Technology 2021. [Google Scholar] [CrossRef]
- Yang, W.; Xiang, W.; Yang, Y.; Cheng, P. Optimizing federated learning with deep reinforcement learning for digital twin empowered industrial IoT. IEEE Transactions on Industrial Informatics 2022, 19, 1884–1893. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Scientific american 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, D.; Tao, B.; Jiang, G.; Sun, Y.; Kong, J.; Tong, X.; Zhao, G.; Chen, B. Genetic algorithm-based trajectory optimization for digital twin robots. Frontiers in Bioengineering and Biotechnology 2022, 9, 793782. [Google Scholar] [CrossRef]
- Guzman Razo, D.E.; Müller, B.; Madsen, H.; Wittwer, C. A genetic algorithm approach as a self-learning and optimization tool for PV power simulation and digital twinning. Energies 2020, 13, 6712. [Google Scholar] [CrossRef]
- Frantzén, M.; Bandaru, S.; Ng, A.H. Digital-twin-based decision support of dynamic maintenance task prioritization using simulation-based optimization and genetic programming. Decision Analytics Journal 2022, 3, 100039. [Google Scholar] [CrossRef]
- Xuan, D.T.; Huynh, T.V.; Hung, N.T.; Thang, V.T. Applying Digital Twin and Multi-Adaptive Genetic Algorithms in Human–Robot Cooperative Assembly Optimization. Applied Sciences 2023, 13, 4229. [Google Scholar] [CrossRef]
- Goodwin, T.; Xu, J.; Celik, N.; Chen, C.H. Real-time digital twin-based optimization with predictive simulation learning. Journal of Simulation 2024, 18, 47–64. [Google Scholar] [CrossRef]
- Liu, J.; Ji, Q.; Zhang, X.; Chen, Y.; Zhang, Y.; Liu, X.; Tang, M. Digital twin model-driven capacity evaluation and scheduling optimization for ship welding production line. Journal of Intelligent Manufacturing 2023, 1–23. [Google Scholar] [CrossRef]
- Negri, E.; Ardakani, H.D.; Cattaneo, L.; Singh, J.; Macchi, M.; Lee, J. A digital twin-based scheduling framework including equipment health index and genetic algorithms. IFAC-PapersOnLine 2019, 52, 43–48. [Google Scholar] [CrossRef]
- Fang, Y.; Peng, C.; Lou, P.; Zhou, Z.; Hu, J.; Yan, J. Digital-twin-based job shop scheduling toward smart manufacturing. IEEE transactions on industrial informatics 2019, 15, 6425–6435. [Google Scholar] [CrossRef]
- Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.; Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.; et al. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems 2022. [Google Scholar]
- Achiam, J.; Adler, S.; Agarwal, S.; Ahmad, L.; Akkaya, I.; Aleman, F.L.; Almeida, D.; Altenschmidt, J.; Altman, S.; Anadkat, S.; et al. Gpt-4 technical report. arXiv 2023, arXiv:2303.08774. [Google Scholar] [CrossRef]
- Liang, Y.; He, J.; Li, G.; Li, P.; Klimovskiy, A.; Carolan, N.; Sun, J.; Pont-Tuset, J.; Young, S.; Yang, F.; et al. Rich human feedback for text-to-image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2024. [Google Scholar]
- Liu, S.; Dai, H.; Zhao, Y.; Liu, P. Preference Optimization for Molecule Synthesis with Conditional Residual Energy-based Models. Proceedings of the International Conference on Machine Learning 2024. [Google Scholar] [CrossRef]
- Uysal, İ.; Kose, U. Explainability and the Role of Digital Twins in Personalized Medicine and Healthcare Optimization. In Explainable Artificial Intelligence (XAI) in Healthcare; CRC Press, 2024; pp. 141–156. [Google Scholar]
- Fu, T.; Gao, W.; Xiao, C.; Yasonik, J.; Coley, C.W.; Sun, J. Differentiable Scaffolding Tree for Molecular Optimization. International Conference on Learning Representations 2022. [Google Scholar] [CrossRef]
- Fu, T.; Gao, T.; Xiao, C.; Ma, T.; Sun, J. Pearl: Prototype learning via rule learning. In Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics; 2019; pp. 223–232. [Google Scholar] [CrossRef]
- Yi, S.; Lu, M.; Yee, A.; Harmon, J.; Meng, F.; Hinduja, S. Enhance wound healing monitoring through a thermal imaging based smartphone app. Medical Imaging: Imaging Informatics for Healthcare, Research, and Applications 2018. [Google Scholar]
- Wu, C.T.; Shen, M.; Du, D.; Cheng, Z.; Parker, S.J.; Lu, Y.; Van Eyk, J.E.; Yu, G.; Clarke, R.; Herrington, D.M.; et al. Cosbin: cosine score-based iterative normalization of biologically diverse samples. Bioinformatics Advances 2022, 2, vbac076. [Google Scholar] [CrossRef]
- Peters, D.; Schindler, S. FAIR for digital twins. CEAS Space Journal 2024, 16, 367–374. [Google Scholar] [CrossRef]
- Popa, E.O.; van Hilten, M.; Oosterkamp, E.; Bogaardt, M.J. The use of digital twins in healthcare: socio-ethical benefits and socio-ethical risks. Life sciences, society and policy 2021, 17, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Lu, Y.; Wang, Y.; Zhang, B.; Zhang, Z.; Yu, G.; Liu, C.; Clarke, R.; Herrington, D.M.; Wang, Y. DDN3.0: Determining significant rewiring of biological network structure with differential dependency networks. Bioinformatics 2024, btae376. [Google Scholar] [CrossRef]
- Zhang, B.; Fu, Y.; Lu, Y.; Zhang, Z.; Clarke, R.; Van Eyk, J.E.; Herrington, D.M.; Wang, Y. DDN2.0: R and Python packages for differential dependency network analysis of biological systems. bioRxiv 2021. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Kong, Z.; Wu, Y.; Wang, Y.; Lu, Y.; Gao, H.; Wu, J.; Xu, H. MambaCapsule: Towards Transparent Cardiac Disease Diagnosis with Electrocardiography Using Mamba Capsule Network. arXiv 2024, arXiv:2407.20893. [Google Scholar] [CrossRef]
- Clementson, J.; Teng, J.; Wood, P.; Windmill, C. Legal considerations for using digital twins in additive manufacture a review of the literature. Adv. Transdiscipl. Eng 2021, 15, 91–96. [Google Scholar] [CrossRef]
- Teller, M. Legal aspects related to digital twin. Philosophical Transactions of the Royal Society A 2021, 379, 20210023. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.; Wu, C.T.; Clarke, R.; Yu, G.; Van Eyk, J.E.; Herrington, D.M.; Wang, Y. Data-driven detection of subtype-specific differentially expressed genes. Scientific reports 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, Y.; Li, C. DrugCLIP: Contrastive Drug-Disease Interaction For Drug Repurposing. arXiv 2024, arXiv:2407.02265. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
