Submitted:
26 August 2024
Posted:
28 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Global Health Impact
1.2. HBV Persistence
2. HBV DNA Integration Mechanisms
2.1. Process of HBV DNA Integration in the Host Genome
2.2. Genomic Sites Favored for Integration
2.3. Knowledge Gaps Related to HBV DNA Integration
3. HBV Infection Persistence
3.1. HBV DNA Integration Contributes to Persistent Viral Antigen and Host Immune Escape
3.2. Role of cccDNA in Viral Latency and Reactivation
4. Molecular Pathways and Cellular Consequences
4.1. Impact of HBV DNA Integration on Host Signaling Pathways
4.2. Mechanisms Underlying HBV-Related Hepatocellular Carcinoma
5. Diagnostic Detection
5.1. Diagnostic Methods for Detecting cccDNA and Integrated HBV DNA
6. Clinical Implications
6.1. Challenges of Targeting cccDNA and Integrated HBV DNA for Therapeutic Intervention
6.2. Emerging Treatment Strategies Aimed at Eradicating cccDNA and Integrated HBV DNA May Lead to Functional Cure in Chronic HBV Infection
7. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liang, T. J., Hepatitis B: the virus and disease. Hepatology 2009, 49, (5 Suppl), S13-21.
- Drazilova, S.; Kristian, P.; Janicko, M.; Halanova, M.; Safcak, D.; Dorcakova, P. D.; Marekova, M.; Pella, D.; Madarasova-Geckova, A.; Jarcuska, P.; HepaMeta, T., What is the Role of the Horizontal Transmission of Hepatitis B Virus Infection in Young Adult and Middle-Aged Roma Population Living in the Settlements in East Slovakia? Int J Environ Res Public Health 2020, 17, (9).
- Hepatitis B. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (August 2).
- Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer (August 2).
- Mason, W. S.; Jilbert, A. R.; Litwin, S., Hepatitis B Virus DNA Integration and Clonal Expansion of Hepatocytes in the Chronically Infected Liver. Viruses 2021, 13, (2). [CrossRef]
- Wei, L.; Ploss, A. , Hepatitis B virus cccDNA is formed through distinct repair processes of each strand. Nat Commun 2021, 12(1), 1591. [Google Scholar] [CrossRef] [PubMed]
- Feld, J. J.; Lok, A. S.; Zoulim, F. , New Perspectives on Development of Curative Strategies for Chronic Hepatitis B. Clin Gastroenterol Hepatol 2023, 21(8), 2040–2050. [Google Scholar] [CrossRef] [PubMed]
- Ghany, M. G.; Lok, A. S. Functional cure of hepatitis B requires silencing covalently closed circular and integrated hepatitis B virus DNA. J Clin Invest 2022, 132, (18).
- Nassal, M. , HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut 2015, 64(12), 1972–1984. [Google Scholar] [CrossRef]
- Tsai, K. N.; Kuo, C. F.; Ou, J. J. , Mechanisms of Hepatitis B Virus Persistence. Trends Microbiol 2018, 26(1), 33–42. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Thio, C. L.; Balagopal, A. Intracellular Host Restriction of Hepatitis B Virus Replication. Viruses 2024, 16, (5). [CrossRef]
- Tu, T.; Budzinska, M. A.; Shackel, N. A.; Urban, S. HBV DNA Integration: Molecular Mechanisms and Clinical Implications. Viruses 2017, 9, (4). [CrossRef]
- Tu, T.; Zhang, H.; Urban, S. Hepatitis B Virus DNA Integration: In Vitro Models for Investigating Viral Pathogenesis and Persistence. Viruses 2021, 13, (2). [CrossRef]
- Li, L.; Olvera, J. M.; Yoder, K. E.; Mitchell, R. S.; Butler, S. L.; Lieber, M.; Martin, S. L.; Bushman, F. D. , Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 2001, 20(12), 3272–81. [Google Scholar] [CrossRef]
- Budzinska, M. A.; Shackel, N. A.; Urban, S.; Tu, T., Cellular Genomic Sites of Hepatitis B Virus DNA Integration. Genes (Basel) 2018, 9, (7).
- Dias, J. D.; Sarica, N.; Cournac, A.; Koszul, R.; Neuveut, C., Crosstalk between Hepatitis B Virus and the 3D Genome Structure. Viruses 2022, 14, (2). [CrossRef]
- Jung M; Pfeifer GP, CpG Island - Brenner’s Encyclopedia of Genetics. Second ed.; Academic Press: 2013. [CrossRef]
- Zhao, L. H.; Liu, X.; Yan, H. X.; Li, W. Y.; Zeng, X.; Yang, Y.; Zhao, J.; Liu, S. P.; Zhuang, X. H.; Lin, C.; Qin, C. J.; Zhao, Y.; Pan, Z. Y.; Huang, G.; Liu, H.; Zhang, J.; Wang, R. Y.; Yang, Y.; Wen, W.; Lv, G. S.; Zhang, H. L.; Wu, H.; Huang, S.; Wang, M. D.; Tang, L.; Cao, H. Z.; Wang, L.; Lee, T. L.; Jiang, H.; Tan, Y. X.; Yuan, S. X.; Hou, G. J.; Tao, Q. F.; Xu, Q. G.; Zhang, X. Q.; Wu, M. C.; Xu, X.; Wang, J.; Yang, H. M.; Zhou, W. P.; Wang, H. Y., Genomic and oncogenic preference of HBV integration in hepatocellular carcinoma. Nat Commun 2016, 7, 12992.
- Telomere. In August 2, 2024 ed.; National Human Genome Research Institute: 2024.
- Meier, M. A.; Calabrese, D.; Suslov, A.; Terracciano, L. M.; Heim, M. H.; Wieland, S. , Ubiquitous expression of HBsAg from integrated HBV DNA in patients with low viral load. J Hepatol 2021, 75(4), 840–847. [Google Scholar] [CrossRef]
- Jia, Y.; Zhao, J.; Wang, C.; Meng, J.; Zhao, L.; Yang, H.; Zhao, X. , HBV DNA polymerase upregulates the transcription of PD-L1 and suppresses T cell activity in hepatocellular carcinoma. J Transl Med 2024, 22(1), 272. [Google Scholar] [CrossRef]
- Morales, J.; Li, L.; Fattah, F. J.; Dong, Y.; Bey, E. A.; Patel, M.; Gao, J.; Boothman, D. A. , Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 2014, 24(1), 15–28. [Google Scholar] [CrossRef]
- Busca, A.; Kumar, A. , Innate immune responses in hepatitis B virus (HBV) infection. Virol J 2014, 11, 22. [Google Scholar] [CrossRef]
- Sharma, S. K.; Saini, N.; Chwla, Y. , Hepatitis B virus: inactive carriers. Virol J 2005, 2, 82. [Google Scholar]
- Shi, Y.; Zheng, M. , Hepatitis B virus persistence and reactivation. BMJ 2020, 370, m2200. [Google Scholar] [CrossRef] [PubMed]
- Moghoofei, M.; Mostafaei, S.; Ashraf-Ganjouei, A.; Kavosi, H.; Mahmoudi, M. , HBV reactivation in rheumatic diseases patients under therapy: A meta-analysis. Microb Pathog 2018, 114, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Shouval, D.; Shibolet, O. , Immunosuppression and HBV reactivation. Semin Liver Dis 2013, 33(2), 167–77. [Google Scholar] [CrossRef]
- Teng, C. F.; Wu, H. C.; Tsai, H. W.; Shiah, H. S.; Huang, W.; Su, I. J. , Novel feedback inhibition of surface antigen synthesis by mammalian target of rapamycin (mTOR) signal and its implication for hepatitis B virus tumorigenesis and therapy. Hepatology 2011, 54(4), 1199–207. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, Q.; Zhao, H.; Zhang, J. , The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021, 8, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Laupeze, B.; Vassilev, V.; Badur, S. , A role for immune modulation in achieving functional cure for chronic hepatitis B among current changes in the landscape of new treatments. Expert Rev Gastroenterol Hepatol 2023, 17(11), 1135–1147. [Google Scholar] [CrossRef] [PubMed]
- Hai, H.; Tamori, A.; Kawada, N. , Role of hepatitis B virus DNA integration in human hepatocarcinogenesis. World J Gastroenterol 2014, 20(20), 6236–43. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, K.; Protzer, U.; Zeng, C. , HBV Integration Induces Complex Interactions between Host and Viral Genomic Functions at the Insertion Site. J Clin Transl Hepatol 2021, 9(3), 399–408. [Google Scholar] [CrossRef]
- Peneau, C.; Imbeaud, S.; La Bella, T.; Hirsch, T. Z.; Caruso, S.; Calderaro, J.; Paradis, V.; Blanc, J. F.; Letouze, E.; Nault, J. C.; Amaddeo, G.; Zucman-Rossi, J. , Hepatitis B virus integrations promote local and distant oncogenic driver alterations in hepatocellular carcinoma. Gut 2022, 71(3), 616–626. [Google Scholar] [CrossRef]
- Tamori, A.; Yamanishi, Y.; Kawashima, S.; Kanehisa, M.; Enomoto, M.; Tanaka, H.; Kubo, S.; Shiomi, S.; Nishiguchi, S. , Alteration of gene expression in human hepatocellular carcinoma with integrated hepatitis B virus DNA. Clin Cancer Res 2005, 11(16), 5821–6. [Google Scholar] [CrossRef]
- Li, Y. T.; Wu, H. L.; Liu, C. J., Molecular Mechanisms and Animal Models of HBV-Related Hepatocellular Carcinoma: With Emphasis on Metastatic Tumor Antigen 1. Int J Mol Sci 2021, 22, (17). [CrossRef]
- Sivasudhan, E.; Blake, N.; Lu, Z.; Meng, J.; Rong, R., Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells 2022, 11, (4). [CrossRef]
- Rizzo, G. E. M.; Cabibbo, G.; Craxi, A., Hepatitis B Virus-Associated Hepatocellular Carcinoma. Viruses 2022, 14, (5).
- Li, X.; Zhao, J.; Yuan, Q.; Xia, N., Detection of HBV Covalently Closed Circular DNA. Viruses 2017, 9, (6).
- Zhao, K.; Liu, A.; Xia, Y. , Insights into Hepatitis B Virus DNA Integration-55 Years after Virus Discovery. Innovation (Camb) 2020, 1(2), 100034. [Google Scholar] [CrossRef] [PubMed]
- Illumina - Innovative Technologies. www.illumina.com/science/technology/next-generation-sequencing/beginners.html (August 2).
- Zoulim, F.; Chen, P. J.; Dandri, M.; Kennedy, P.; Seeger, C. , Hepatitis B Virus DNA integration: Implications for diagnostics, therapy, and outcome. J Hepatol 2024. [Google Scholar] [CrossRef] [PubMed]
- Short-Read Sequencing vs. Long-Read Sequencing: Which Technology is Right for Your Research? https://seqwell.com/short-read-sequencing-vs-long-read-sequencing-which-technology-is-right-for-your-research/ (August 2).
- Ramirez, R.; van Buuren, N.; Gamelin, L.; Soulette, C.; May, L.; Han, D.; Yu, M.; Choy, R.; Cheng, G.; Bhardwaj, N.; Chiu, J.; Muench, R. C.; Delaney, W. E. t.; Mo, H.; Feierbach, B.; Li, L. , Targeted Long-Read Sequencing Reveals Comprehensive Architecture, Burden, and Transcriptional Signatures from Hepatitis B Virus-Associated Integrations and Translocations in Hepatocellular Carcinoma Cell Lines. J Virol 2021, 95(19), e0029921. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Guan, G.; Xu, G.; Wu, H.; Xie, C.; Mo, Z.; Deng, H.; Xiao, S.; Deng, Z.; Peng, L.; Lu, F.; Zhao, Q.; Gao, Z. , Integrated HBV DNA and cccDNA maintain transcriptional activity in intrahepatic HBsAg-positive patients with functional cure following PEG-IFN-based therapy. Aliment Pharmacol Ther 2023, 58(10), 1086–1098. [Google Scholar] [CrossRef]
- Podlaha, O.; Wu, G.; Downie, B.; Ramamurthy, R.; Gaggar, A.; Subramanian, M.; Ye, Z.; Jiang, Z. , Genomic modeling of hepatitis B virus integration frequency in the human genome. PLoS One 2019, 14(7), e0220376. [Google Scholar] [CrossRef]
- Spyrou, E.; Smith, C. I.; Ghany, M. G. , Hepatitis B: Current Status of Therapy and Future Therapies. Gastroenterol Clin North Am 2020, 49(2), 215–238. [Google Scholar] [CrossRef]
- Nguyen, M. H.; Wong, G.; Gane, E.; Kao, J. H.; Dusheiko, G., Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clin Microbiol Rev 2020, 33, (2).
- Suarez A; Zoulim, F., Opportunities and challenges for hepatitis B cure. eGastroenterology 2023. [CrossRef]
- Wang, G.; Guan, J.; Khan, N. U.; Li, G.; Shao, J.; Zhou, Q.; Xu, L.; Huang, C.; Deng, J.; Zhu, H.; Chen, Z. , Potential capacity of interferon-alpha to eliminate covalently closed circular DNA (cccDNA) in hepatocytes infected with hepatitis B virus. Gut Pathog 2021, 13(1), 22. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, L.; Shi, J.; Li, J.; Wen, Y.; Gu, G.; Cui, J.; Feng, C.; Jiang, M.; Fan, Q.; Tang, J.; Chen, S.; Zhang, J.; Zheng, X.; Pan, M.; Li, X.; Sun, Y.; Zhang, Z.; Li, X.; Hu, F.; Zhang, L.; Tang, X.; Li, F. , Interferon stimulated immune profile changes in a humanized mouse model of HBV infection. Nat Commun 2023, 14(1), 7393. [Google Scholar] [CrossRef]
- Watanabe, T.; Hayashi, S.; Tanaka, Y. Drug Discovery Study Aimed at a Functional Cure for HBV. Viruses 2022, 14, (7). [CrossRef]
- Di Bisceglie, A. M. , Combination therapy for hepatitis B. Gut 2002, 50(4), 443–5. [Google Scholar] [CrossRef]
- Leowattana, W.; Leowattana, T. , Chronic hepatitis B: New potential therapeutic drugs target. World J Virol 2022, 11(1), 57–72. [Google Scholar] [CrossRef]
- Ferrantini, M.; Capone, I.; Belardelli, F. Interferon-alpha and cancer: mechanisms of action and new perspectives of clinical use. Biochimie 2007, 89, (6-7), 884-93. [CrossRef]
- Fung, J.; Lai, C. L.; Seto, W. K.; Yuen, M. F. , Nucleoside/nucleotide analogues in the treatment of chronic hepatitis B. J Antimicrob Chemother 2011, 66(12), 2715–25. [Google Scholar] [CrossRef]
- Howell, J.; Chan, H. L. Y.; Feld, J. J.; Hellard, M. E.; Thompson, A. J. , Closing the Stable Door After the Horse Has Bolted: Should We Be Treating People With Immune-Tolerant Chronic Hepatitis B to Prevent Hepatocellular Carcinoma? Gastroenterology 2020, 158(8), 2028–2032. [Google Scholar] [CrossRef]
- Sneller, L.; Lin, C.; Price, A.; Kottilil, S.; Chua, J. V. RNA Interference Therapeutics for Chronic Hepatitis B: Progress, Challenges, and Future Prospects. Microorganisms 2024, 12, (3). [CrossRef]
- Vaillant, A., Oligonucleotide-Based Therapies for Chronic HBV Infection: A Primer on Biochemistry, Mechanisms and Antiviral Effects. Viruses 2022, 14, (9). [CrossRef]
- Yuen, M. F.; Lim, S. G.; Plesniak, R.; Tsuji, K.; Janssen, H. L. A.; Pojoga, C.; Gadano, A.; Popescu, C. P.; Stepanova, T.; Asselah, T.; Diaconescu, G.; Yim, H. J.; Heo, J.; Janczewska, E.; Wong, A.; Idriz, N.; Imamura, M.; Rizzardini, G.; Takaguchi, K.; Andreone, P.; Arbune, M.; Hou, J.; Park, S. J.; Vata, A.; Cremer, J.; Elston, R.; Lukic, T.; Quinn, G.; Maynard, L.; Kendrick, S.; Plein, H.; Campbell, F.; Paff, M.; Theodore, D.; Group, B. C. S., Efficacy and Safety of Bepirovirsen in Chronic Hepatitis B Infection. N Engl J Med 2022, 387, (21), 1957-1968. [CrossRef]
- Cai, B.; Chang, S.; Tian, Y.; Zhen, S. CRISPR/Cas9 for hepatitis B virus infection treatment. Immun Inflamm Dis 2023, 11, (5), e866. [CrossRef] [PubMed]
- Sharma, G.; Sharma, A. R.; Bhattacharya, M.; Lee, S. S.; Chakraborty, C. , CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol Ther 2021, 29(2), 571–586. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, V.; Shlomai, A.; Cox, D. B.; Schwartz, R. E.; Michailidis, E.; Bhatta, A.; Scott, D. A.; Zhang, F.; Rice, C. M.; Bhatia, S. N. , CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Sci Rep 2015, 5, 10833. [Google Scholar] [CrossRef]
- Wang, J.; Chen, R.; Zhang, R.; Ding, S.; Zhang, T.; Yuan, Q.; Guan, G.; Chen, X.; Zhang, T.; Zhuang, H.; Nunes, F.; Block, T.; Liu, S.; Duan, Z.; Xia, N.; Xu, Z.; Lu, F. , The gRNA-miRNA-gRNA Ternary Cassette Combining CRISPR/Cas9 with RNAi Approach Strongly Inhibits Hepatitis B Virus Replication. Theranostics 2017, 7(12), 3090–3105. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. C.; Yang, H. C., Recent Progress and Future Prospective in HBV Cure by CRISPR/Cas. Viruses 2021, 14, (1). [CrossRef]
- Hsieh, Y. H.; Su, I. J.; Yen, C. J.; Tsai, T. F.; Tsai, H. W.; Tsai, H. N.; Huang, Y. J.; Chen, Y. Y.; Ai, Y. L.; Kao, L. Y.; Hsieh, W. C.; Wu, H. C.; Huang, W. , Histone deacetylase inhibitor suberoylanilide hydroxamic acid suppresses the pro-oncogenic effects induced by hepatitis B virus pre-S2 mutant oncoprotein and represents a potential chemopreventive agent in high-risk chronic HBV patients. Carcinogenesis 2013, 34(2), 475–85. [Google Scholar] [CrossRef]
- Pham, E. A.; Perumpail, R. B.; Fram, B. J.; Glenn, J. S.; Ahmed, A.; Gish, R. G. , Future Therapy for Hepatitis B Virus: Role of Immunomodulators. Curr Hepatol Rep 2016, 15(4), 237–244. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
