Submitted:
19 August 2024
Posted:
20 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Diarrheagenic E. coli Pathotypes
1.2. Enterohaemorrhagic E. coli (EHEC)
1.3. Enterotoxigenic E. coli (ETEC)
1.4. Enteroinvasive E. coli (EIEC)
1.5. Enteropathogenic E. coli (EPEC)
1.6. Enteroaggregative E. coli (EAEC)
1.7. Diffusely Adherent E. coli (DAEC)
1.8. Cytolethal-Distending Toxin-Producing E. coli (CDTEC)
1.9. Cell-Detaching E. coli (CDEC)
2. Molecular Mechanisms of Antibiotic-Resistant E. coli
2.1. Community-Acquired Antibiotic-Resistant E. coli
2.2. Hospital-Acquired Antibiotic-Resistant E. coli
2.3. Extraintestinal Pathogenic E. coli (ExPEC)
2.4. Antibiotic-Resistant E. coli of Origins in Animals and the Environment
3. Distribution of E. coli with Sources in Nigeria
3.1. Prevalence of Urinary Tract Infections Caused by E. coli
3.2. E. coli in Food and Environment
| S/No | Source | Prevalence (n) | Author |
|---|---|---|---|
| 1. | Raw milk from cows | 44.8% (640) | Anueyiagu et al., [74] |
| 2. | Raw milk from does | 43.1% (206) | Anueyiagu et al., [74] |
| 3. | Raw milk from ewes | 39.2% (206) | Anueyiagu et al., [74] |
| 4. | Fresh meat on sale | 26% (300) | Adesiji et al [72] |
| 5. | Fresh/Roasted beef | 52.5% (300)/ 25.3% (150) | Dahiru et al., [81] |
| 6. | Poultry | 31.8% (111) | Aworh et al., [59] |
| 7. | Wild birds | 48.1% (160) | Oludairo et al., [82] |
| 8. | Vegetables | 17.5% (40) | Reuben and Makut, [77] |
| 9. | Fresh fruits | 21.3% (108) | Maikai and Akubo, [76] |
| 10. | Wastewater | 62.4% (700) | Edward et al., [78] |
| 11. | Municipal water | 45.5% (300) | Garba et al., [79] |
| 12. | Soil | 20% (75) | Ijabani et al., [80] |
4. Genotypes of E. coli in Nigeria and Other African Countries
5. Antibiotic Resistance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Escherich, T. Die Darmbakterien des Neugeboren und Sauglings Fortschr. Med 1885, 3, 515–522. [Google Scholar]
- Henry, R. Etymologia: Escherichia coli. Emerg. Infect. Dis 2015, 21, 1310. [Google Scholar]
- Curutiu, C.; Iordache, F.; Gurban, P.; Lazar, V.; Chifiriuc, M.C. Main Microbiological Pollutants of Bottled Waters and Beverages. Bottled and Packaged Water 2019, 403–422. [Google Scholar] [CrossRef]
- King, L.A.; Loukiadis, E.; Mariani-Kurkdjian, P.; Haeghebaert, S.; Weill, F.-X.; Baliere, C.; et al. Foodborne transmission of sorbitol-fermenting Escherichia coli O157:[H7] via ground beef: an outbreak in northern France, 2011. Clinical Microbiology and Infection 2014, 20, 01136–01144. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nature Reviews Microbiology 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; et al. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Yoon, J.W.; Hovide, C.J. A BRIEF overview of Escherichia coli O157:H7 and Its Plasmid O157. J Microbiol Biotechnol 2010, 20, 5–14. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 2013, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, P.; Sabin, D.; Charles, M.D. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023, 11, 344. [Google Scholar] [CrossRef]
- Balali, G.I.; Yar, D.D.; Afua Dela, V.G.; Adjei-Kusi, P. Microbial Contamination, an Increasing Threat to the Consumption of Fresh Fruits and Vegetables in Today's World. Int J Microbiol 2020, 22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bintsis, T. Foodborne pathogens. AIMS Microbiol 2017, 3, 529–563. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rybak, B.; Krawczyk. B.; Furmanek-Blaszk, B.; Wysocka, M.; Fordon, M.; Ziolkowski, P.; et al. Antibiotic resistance, virulence, and phylogenetic analysis of Escherichia coli strains isolated from free-living birds in human habitats. PLoS ONE 2022, 17, e0262236. [CrossRef]
- Martı´nez-Martı´nez, L.; Gonza´lez-Lo´pez, J.J. Carbapenemases in Enterobacteriaceae: types and molecular epidemiology. Enferm Infecc Microbiol Clin 2014, 32, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Odetoyin, B.; Ogundipe, O.; Onanuga, A. Prevalence, diversity of diarrhoeagenic Escherichia coli and associated risk factors in well water in Ile-Ife, Southwestern Nigeria. One Health Outlook 2022, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Tack, D.; Pindyck, T.; Griffin, P. Escherichia coli, Diarrheagenic. Centre for Disease Control and Prevention. Assessed on 2023 from: https://wwwnc.cdc.gov/travel/yellowbook/2024/infections-diseases/escherichia-coli-diarrheagenic.
- Mir, R.A.; Kudva, I.T. Antibiotic-resistant Shiga toxin-producing Escherichia coli: An overview of prevalence and intervention strategies. Zoonoses Public Health 2018, 66, 1–13. [Google Scholar] [CrossRef]
- Lyimo, B.; Buza, J.; Subbiah, M.; Smith. , W. Comparison of antibiotic resistant Escherichia coli obtained from drinking water sources in northern Tanzania: a cross-sectional study. BMC Microbiol 2016, 16, 254. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Stanford, K.; McAllister, T.A.; et al. Biofilm formation, virulence gene profiles, and antimicrobial resistance of nine serogroups of non-O157 Shiga toxin-producing Escherichia coli. Foodborne Pathog Dis 2016, 13, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Gambushe, S.M.; Zishirim, O.T.; El Zowalaty, M.E. Review of Escherichia coli O157:H7 Prevalence, Pathogenicity, Heavy Metal and Antimicrobial Resistance, African Perspective. Infect Drug Resist 2022, 23, 15:4645–4673. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peter, A.K.; Uzal, U. Combating diarrhoea in Nigeria: the way forward. J Micro Experiment 2018, 6. [Google Scholar]
- Oyedeji, O.; Olutiola, P.O.; Owolabi, K.D.; Adeojo, K.A. Multiresistant faecal indicator bacteria in stream and well waters of Ile-Ife City, southwestern Nigeria: public health implications. J Public Health Epidemiol 2011, 3, 371–81. [Google Scholar]
- Tula, M.Y.; Enabulele, O.I.; Ophori, E.A. Occurrence and antibiotic resistance profile of shiga toxin-producing Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) from sources of water in Mubi Region, Adamawa State, Nigeria. Public Health and Toxicology 2023, 3, 15. [Google Scholar] [CrossRef]
- Kolodziejek, A.M.; Minnich, S.A.; Hovde, C.J. Escherichia coli 0157:H7 virulence factors and the ruminant reservoir. Curr Opin Infect Dis 2022, 35, 205–214. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holtz, L.R.; Neill, M.A.; Tarr, P.I. Acute bloody diarrhoea: a medical emergency for patients of all ages. Gastroenterology 2009, 136, 1887–1898. [Google Scholar] [CrossRef] [PubMed]
- Tarr, P.I.; Gordon, C.A.; Chandler, W.L. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 2005, 365, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.E.; Wilker, P.R.; Reiter, P.L.; Hedican, E.B.; Bender, J.B.; Hedberg, C.W. Antibiotic treatment of Escherichia coli O157 infection and the risk of hemolytic uremic syndrome, Minnesota. The Pediatric infectious disease journal 2012, 31, 37–41. [Google Scholar] [CrossRef]
- Karch, H.; Tarr, P.I.; Bielaszewska, M. Enterohaemorrhagic Escherichia coli in human medicine. Int. J. Med. Microbiol 2005, 295, 405–418. [Google Scholar] [CrossRef]
- Mühlen, S.; Dersch, P. Treatment Strategies for Infections With Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2020, 6, 10–169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anderson, J.D.; Bagamian, K.H.; Muhib, F.; Amaya, M.P.; Laytner, L.A.; Wierzba, T.; Rheingans, R. Burden of enterotoxigenic Escherichia coli and shigella non-fatal diarrhoeal infections in 79 low-income and lower-middle-income countries: a modelling analysis. Lancet Glob Health 2019, 7, 321–322. [Google Scholar] [CrossRef]
- Silwamba, S.; Chilyabanyama, O.N.; Liswaniso, F.; Chisenga, C.C.; Chilengi, R.; Dougan, G.; Kwenda, G.; Chakraborty, S.; Simuyandi, M. Field evaluation of a novel, rapid diagnostic assay, and molecular epidemiology of enterotoxigenic E. coli among Zambian children presenting with diarrhoea. PLoS Negl Trop Dis 2022, 16, e0010207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Steffen, R.; Hill, D.R.; DuPont, H.L. Traveller’s diarrhoea: a clinical review. JAMA 2015, 313, 71–80. [Google Scholar] [CrossRef]
- Ahmed, D.; Islam, M.S.; Begum, Y.A.; Janzon, A.; Qadri, F.; Sjoling, A. The presence of enterotoxigenic Escherichia coli in biofilms formed in water containers in poor households coincides with epidemic seasons in Dhaka. J Appl Microbiol 2013, 114, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Poolman, J.T. Escherichia coli. International Encyclopaedia of Public Health (Second Edition) 2017. Academic Press, Pages 585-593. https://www.sciencedirect.com/science/article/pii/B978012803678500504X.
- Lanata, C.F.; Fischer-Walker, C.L.; Olascoaga, A.C.; Torres, C.X.; Aryee, M.J.; Black, R.E.; et al. Global Causes of Diarrheal Disease Mortality in Children <5 Years of Age: A Systematic Review. PLoS ONE 2013, 8, e72788. [Google Scholar] [CrossRef]
- Abba, K.; Sinfield, R.; Hart, C.A.; Garner, P. Pathogens associated with persistent diarrhoea in children in low and middle-income countries: systematic review. BMC Infect Dis 2009, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, T.J.; Barletta, F.; Contreras, C.; Mercado, E. New insights into the epidemiology of enteropathogenic Escherichia coli infection. Trans R Soc Trop Med Hyg 2008, 102, 852–856. [Google Scholar] [CrossRef]
- Okeke, I.N. Diarrheagenic Escherichia coli in sub-Saharan Africa: status, uncertainties and necessities. J Infect Dev Ctries 2009, 3, 817–842. [Google Scholar] [CrossRef]
- Ochoa, T.J.; Contreras, C.A. Enteropathogenic Escherichia coli infection in children. Curr Opin Infect Dis 2011, 24, 478–83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaur, P.; Chakraborti, A.; Asea, A. Enteroaggregative Escherichia coli: An Emerging Enteric Food Borne Pathogen. Interdiscip Perspect Infect Dis 2010, 254159. [Google Scholar] [CrossRef]
- Cravioto, A.; Tello, A.; Navarro, A.; Ruiz, J.; Villafan, H.; Uribe, F.; Eslava, C. Association of Escherichia coli HEp-2 adherence patterns with type and duration of diarrhoea. Lancet 1991, 337, 262–264. [Google Scholar] [CrossRef]
- Johnson, W.M.; Lior, H. A new heat-labile cytolethal distending toxin (CLDT) produced by Escherichia coli isolates from clinical material. Microb Pathog 1988, 4, 103–113. [Google Scholar] [CrossRef]
- Ceelen, L.M.; Decostere, A.; Ducatelle, R.; Haesebrouck, F. Cytolethal-distending toxin generates cell death by inducing a bottleneck in the cell cycle. Microbiological Research 2006, 161, 109–120. [Google Scholar] [CrossRef]
- Gunzburg, S.T.; Chang, B.J.; Elliott, S.J.; Burke, V.; Gracey, M. Diffuse and enteroaggregative patterns of adherence of enteric Escherichia coli isolated from aboriginal children from the Kimberley region of Western Australia. J Infect Dis 1993, 167, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Okeke, I.N.; Lamikanra, A.; Steinrück, H.; Kaper, J.B. Characterization of Escherichia coli strains from cases of childhood diarrhoea in provincial southwestern Nigeria. J Clin Microbiol 2000, 38, 7–12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nicoletti, M.; Superti, F.; Conti, C.; Calconi, A.; Zagaglia, C. Virulence factors of lactose-negative Escherichia coli strains isolated from children with diarrhoea in Somalia. J Clin Microbiol 1988, 26, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Okeke, I.N.; Steinrück, H.; Kanack, K.J.; Elliott, S.J.; Sundström, L.; Kaper, J.B.; Lamikanra, A. Antibiotic-resistant cell-detaching Escherichia coli strains from Nigerian children. J Clin Microbiol 2002, 40, 301–305. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Winstead, A.; Hunter, J.C.; Griffin, P.M. Escherichia coli, Diarrheagenic. In: Chapter 4—2020 Yellow Book | Travelers’ Health | CDC. Available from: https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-infectious-diseases/escherichia-coli-diarrheagenic, 2002, Accessed: 16 August 2021]. Available from: https://wwwnc.cdc.gov/travel/yellowbook/.
- Singhal, S.; Mathur, T.; Khan, S.; Upadhyay, D.J.; Chugh, S.; Gaind, R.; et al. Evaluation of methods for AmpC beta-lactamase in gram-negative clinical isolates from tertiary care hospitals. Indian J Med Microbiol 2005, 23, 120–124. [Google Scholar] [CrossRef]
- Conceição, T.; Brízio, A.; Duarte, A.; Barros, R. First isolation of bla (VIM-2) in Klebsiella oxytoca clinical isolates from Portugal. Antimicrob Agents Chemother 2005, 49, 476. [Google Scholar] [CrossRef]
- Ruppe, E.; Lixandru, B.; Cojocaru, R.; Buke, C.; Paramythiotou, E.; Angebault, C.; et al. ; Relative Faecal Abundance of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Strains and Their Occurrence in Urinary Tract Infections in Women. Antimicrobial Agents and Chemotherapy 2013, 57, 4512–4517. [Google Scholar] [CrossRef] [PubMed]
- Gulumbe, B.H.; Haruna, U.A.; Almazan, J.; et al. ; Combating the menace of antimicrobial resistance in Africa: a review on stewardship, surveillance and diagnostic strategies. Biol Proced Online 2022, 19. [Google Scholar] [CrossRef]
- Johnson, J.R.; Menard, M.E.; Lauderdale, T.L.; et al. ; Global distribution and epidemiology associations of Escherichia coli clonal group A, 1998 – 2007. Emerg Infect Dis 2011, 17, 2001–2009. [Google Scholar] [CrossRef]
- Nicolle, L.E. Antimicrobial resistance in community-acquired Escherichia coli isolated from urinary infection: Good news or bad? Can J Infect Dis Med Microbiol 2013, 24, 123–124. [Google Scholar] [CrossRef]
- Deng, Q.; Li, Q.; Lin, X.M.; Li, Y.M. Epidemiology and antimicrobial resistance of clinical isolates about hospital infection from patients with haematological diseases. [Article in Chinese] Zhonghua Xue Ye Xue Za Zhi 2012, 33, 994–999. [Google Scholar] [PubMed]
- Wang. ; M., Wei, H.; Zhao, Y.; Shang, L.; Di, L.; Lyu, C.; Liu, J. Analysis of multidrug-resistant bacteria in 3223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. Bosn J Basic Med Sci 2019, 12, 19–86. [Google Scholar] [CrossRef]
- Pitout, J.D.; DeVinney, R. Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Res 2017, 28, 6–F1000. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nicolas-Chanoine, M.H.; Bertrand, X.; Madec, J.Y. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 2014, 27, 543–574. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manishimwe, R.; Moncada, P.M.; Musanayire, V.; Shyaka, A.; Scott, H.M.; Loneragan, G.H. Antibiotic-resistant Escherichia coli and Salmonella from the faeces of food animals in the east province of Rwanda. Animals 2021, 11, 1013. [Google Scholar] [CrossRef] [PubMed]
- Aworh, M.K.; Kwaga, J.; Okolocha, E.; Harden, L.; Hull, D.; Hendriksen, R.S.; Thakur, S. Extended-spectrum ß-lactamase-producing Escherichia coli among humans, chickens and poultry environments in Abuja, Nigeria. One Health Outlook 2020, 2, 8. [Google Scholar] [CrossRef]
- Salim, A.; Babu, P.; Mohan, K.; Moorthy, M.; Raj, D.; Kallampillil, T.S.; et al. ; Draft genome sequence of an Escherichia coli sequence type 155 strain isolated from sewage in Kerala, India. Microbiol Resour Announc 2019, 8, 1707–1718. [Google Scholar] [CrossRef]
- Gomi, R.; Matsuda, T.; Matsumura, Y.; et al. ; Whole-genome analysis of antimicrobial-resistant and Extraintestinal pathogenic Escherichia coli in river water. Appl Environ Microbiol 2017, 83, 2703–2716. [Google Scholar] [CrossRef]
- Van Hamelsveld, S.; Adewale, M.E.; Kurenbach, B.; Godsoe, W.; Harding, J.S.; Remus-Emsermann, M.N.P.; Heinemann, J.A. Prevalence of antibiotic-resistant Escherichia coli isolated from urban and agricultural streams in Canterbury, New Zealand. FEMS Microbiol. Lett 2019, 366, fnz104. [Google Scholar]
- Olorunshola, I.D.; Smith, S.I.; Coker, A.O. Prevalence of EHEC O157:H7 in patients with diarrhoea in Lagos, Nigeria. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica 2000, 108, 761–763. [Google Scholar] [CrossRef]
- Ige, O.K.; Adesanmi, A.A.; Asuzu, M.C. Hospital-acquired infections in a Nigerian tertiary health facility: An audit of surveillance reports. Niger Med J 2011, 52, 239–243. [Google Scholar] [CrossRef]
- Iregbu, K.C.; Nwajiobi-Princewill, P.I. Urinary Tract Infections in a Tertiary Hospital in Abuja, Nigeria. African Journal of Clinical And Experimental Microbiology 2013, 14, 169–173. [Google Scholar] [CrossRef]
- Oladeinde, B.H.; Omoregie, R.; Olley, M.; Anunibe, J.A. Urinary tract infection in a rural community of Nigeria. N Am J Med Sci 2011, 3, 75–77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Okafor, J.; Nweze, E.I. Antibiotic susceptibility of Escherichia coli isolated in cases of urinary tract infection in Nsukka, Nigeria. J Pre Clin Clin Res 2020, 14, 1–7. [Google Scholar] [CrossRef]
- Mofolorunsho, K.C.; Ocheni, H.O.; Aminu, R.F.; Omatola, C.A.; Olowonibi, O.O. Prevalence and antimicrobial susceptibility of extended-spectrum beta lactamases-producing Escherichia coli and Klebsiella pneumoniae isolated in selected hospitals of Anyigba, Nigeria. Afr Health Sci 2021, 21, 505–512. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- [1]. Muhammed, M.S.; Bello, H.Y.; Shehu, A.; Pal, S.K. [1]. Muhammed, M.S.; Bello, H.Y.; Shehu, A.; Pal, S.K. Incidence and Antibiotic Susceptibility Pattern of Urinary Tract Infection in Aminu Kano Teaching Hospital (AKTH) Kano, Nigeria. Biosc. Biotech.Res. Comm, 2022; 15. [Google Scholar]
- [1]. Ohieku, J.D.; Magaji, R.A. Urinary Tract Infections Associated with Escherichia Coli: A 2005 to 2009 Clinical Assessment of Trends in Fluoroquinolones Activities in Maiduguri-City, Nigeria. J App Pharm Sci 2013, 3, 084–091. [Google Scholar]
- Ojezele, M.O. Urinary tract infection: prevalence, isolated organisms and antimicrobial susceptibility pattern, South-south Nigeria. Central African Journal of Medicine 2020, 65, 7–12. [Google Scholar]
- Adesiji, Y.O.; Alli, O.T.; Adekanle, M.A.; Jolayemi, J.B. Prevalence of Arcobacter, Escherichia coli, Staphylococcus aureus and Salmonella species in Retail Raw Chicken, Pork, Beef and Goat meat in Osogbo, Nigeria. Sierra Leone Journal of Biomedical Research 2011, 3, 8–12. [Google Scholar] [CrossRef]
- Anueyiagu, K.N.; Ayanbimpe, G.; Ikeh, E. Bovine mastitis due to coliform bacteria and susceptibility to antibiotics, Nigeria. International Journal of Veterinary and Animal Husbandry 2020, 6, 054–061. [Google Scholar]
- Anueyiagu, K.N.; Audu, S.K.; Joshua, B.D.; Pelumi, O.E.; Haji, S.A. Prevalence and antibiogram of coliform bacteria, occurrence of fungi in subclinical mastitis in small ruminants in Plateau State, Nigeria. Journal of Animal Science and Veterinary Medicine 2020, 5, 83–91. [Google Scholar] [CrossRef]
- Anueyiagu, K.N.; Agusi, E.R.; Audu, B.J.; Achi, L. Ch.; Ayanbimpe, G.M.; Ikeh, E.I.; Kamani, J. Prevalence and Phylodiversity of ESBL-producing coliforms Isolated from ruminant mastitis. Folia Veterinaria 2022, 66, 1–1. [Google Scholar] [CrossRef]
- Maikai, B.V.; Akubo, D.O. Coliform Count and Isolation of Escherichia coli in Fresh Fruits and Vegetables sold at Retail Outlets in Samaru, Kaduna State, Nigeria. Nig. Vet. J. 2018, 39, 327–337. [Google Scholar] [CrossRef]
- Reuben, C.R.; Makut, M.D. Occurrence of Escherichia coli O157:H7 in vegetables grown and sold in Lafia metropolis, Nigeria. World Journal of Microbiology 2014, 1, 17–21. [Google Scholar]
- Edward, K.C.; Ibekwe, V.I.; Amadi, E.S.; Umeh, S.I. Prevalence and antibiotic susceptibility pattern of Escherichia coli isolated from abattoir wastewaters in Abia State, Nigeria. International Research Journal of Public and Environmental Health 2020, 7, 140–148. [Google Scholar]
- Garba, I.; Tijjani, M.B.; Aliyu, M.S.; Yakubu, S.E.; Wada-Kura, A.; Olonitola, O.S. Prevalence of Escherichia coli in some public water sources in Gusau Municipal, North -Western Nigeria. Bayero Journal of Pure and Applied Sciences 2009, 2, 134–137. [Google Scholar] [CrossRef]
- Ijabani, E.; Salihu, A.; Pola, B.J. Antibiotic Resistance Pattern and Plasmid Curing of Escherichia coli Isolated from Soil Samples in Girei, Nigeria. Asian Soil Research Journal 2022, 6, 1–8. [Google Scholar] [CrossRef]
- Dahiru, M.; Uraih, N.; Enabulele, S.A.; Shamsudeen, U. Prevalence of Escherichia coli O157:H7 in fresh and roasted beef in Kano City Nigeria. Bayero Journal of Pure and Applied Sciences 2008, 1, 39–42. [Google Scholar]
- Oludairo, O.O.; Kwaga, J.K.P.; Dzikwi, A.A.; Kabir, J. Isolation and Prevalence of Escherichia coli In wild animals at the National Zoological Garden Jos, Nigeria. Bangl. J. Vet. Med. 2016, 14, 233–236. [Google Scholar] [CrossRef]
- Valilis, E.; Ramsey, A.; Sidiq, S.; DuPont, H.L. Non-O157 Shiga toxin-producing Escherichia coli—A poorly appreciated enteric pathogen: Systematic review. Int. J. Infect. Dis. 2018, 76, 82–87. [Google Scholar] [CrossRef]
- Stephan, R.; Hoelzle, L.E. Characterization of Shiga toxin type 2 variant B-subunit in Escherichia coli strains from asymptomatic human carriers by PCR-RFLP. Lett. Appl. Microbiol 2000, 31, 139–142. [Google Scholar] [CrossRef]
- Friedrich, A.W.; Bielaszewska, M.; Zhang, W.L.; Pulz, M.; Kuczius, T.; Ammon, A.; et al. Escherichia coli harbouring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J. Infect. Dis 2002, 185, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Fuller, C.A.; Pellino, C.A.; Flagler, M.J.; Strasser, J.E.; Weiss, A.A. Shiga toxin subtypes display dramatic differences in potency. Infect. Immun 2011, 79, 1329–1337. [Google Scholar] [CrossRef]
- Babolhavaeji, K.; Shokoohizadeh, L.; Yavari, M.; Moradi, A.; Alikhani, M.Y. Prevalence of Shiga Toxin-Producing Escherichia coli O157 and Non-O157 Serogroups Isolated from Fresh Raw Beef Meat Samples in an Industrial Slaughterhouse. International journal of microbiology 2021, 1978952. [Google Scholar] [CrossRef]
- Makhado, U.G.; Foka, F.E.T.; Tchatchouang, C.K.; Ateba, C.N.; Manganyi, M.C. Detection of virulence gene of Shiga toxin-producing Escherichia coli (STEC) strains from animals with diarrhoea and water samples in the North-West Province, South Africa. Gene Reports 2022, 27, 101617. [Google Scholar] [CrossRef]
- Carattol, A.; Zankari, E.; García-Fernández, A.; et al. In silico detection and typing of plasmids using 92 Plasmid Finder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014, 58, 895–903. [Google Scholar]
- Beyi, A.F.; Fite, A.T.; Tora, E.; et al. Prevalence, and antimicrobial susceptibility of Escherichia coli O157 in beef at butcher shops and restaurants in central Ethiopia. BMC Microbiol. 2017, 17, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J. World Health Organization Global Estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med 2010, 12, e1001923–124. [Google Scholar] [CrossRef]
- Fayemi, O.E.; Akanni, G.B.; Elegbeleye, J.A.; Aboaba, O.O.; Njage, P.M. Prevalence, characterization and antibiotic resistance of Shiga toxigenic Escherichia coli serogroups isolated from fresh beef and locally processed ready-to-eat meat products in Lagos, Nigeria. Int J Food Microbiol. 2021, 2, 109191. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.E.; Ajuwape, A.T.; Otesile, E.B.; Owoade, A.A.; Oyekunle, M.A.; Adetosoye, A.I. Potentially zoonotic Shiga toxin-producing Escherichia coli serogroups in the faeces and meat of food-producing animals in Ibadan, Nigeria. Int J Food Microbiol. 2010, 15, 214–221. [Google Scholar] [CrossRef]
- Ayoade, F.; Oguzie, J.; Eromon, P.; et al. Molecular surveillance of shiga toxigenic Escherichia coli in selected beef abattoirs in Osun State Nigeria. Sci Rep 11, 13966. [CrossRef]
- Olowe, O.A.; Choudhary, S.; Schierack, P.; Wieler, L.H.; Makanjuola, O.B.; Olayemi, A.B.; Anjum, M. Pathotyping bla CTX-M Escherichia coli from Nigeria. Eur J Microbiol Immunol (Bp) 2013, 3, 120–125. [Google Scholar] [CrossRef]
- Ming, P.X.; Ti, Y.L.X.; Bulmer, G.S. Outbreak of Trichophyton verrucosum in China transmitted from cows to humans. Mycopathologia 2006, 161, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qu, K.; Li, X.; Cao, Z.; Wang, X.; et al. Use of bacteriophages to control Escherichia coli O157:H7 in domestic ruminants, meat products, and fruits and vegetables. Foodborne Pathog Dis 2017, 14, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Amézquita-López, B.A.; Quiñones, B.; Soto-Beltrán, M.; et al. Antimicrobial resistance profiles of Shiga toxin-producing Escherichia coli O157 and non-O157 recovered from domestic farm animals in rural communities in Northwestern Mexico. Antimicrob Resist Infect Control 2016, 5, 1. [Google Scholar] [CrossRef]
- Iseghohi, F.; Igwe, J.C.; Galadima, M.; Kuta, A.F.; Abdullahi, A.M.; Chukwunwejim. C.R. Prevalence of Extended Spectrum Beta-Lactamases (ESBLs)-Producing Escherichia Coli Isolated from UTI Patients Attending some Selected Hospitals In Minna, Nigeria. Nigerian Journal of Biotechnology 2020, 37, 56–73. [Google Scholar] [CrossRef]
- Lavollay, M.; Mamlouk, K.T. A.; Burghoffer, B.; Ben Redjeb, S.; Bercion, R.; Gautier, V.; Arlet, G. Clonal Dissemination of a CTX-M-15 β-Lactamase-Producing Escherichia coli Strain in the Paris Area, Tunis, and Bangui. Antimicrob Agents Chemother 2006, 50. [Google Scholar] [CrossRef] [PubMed]
| Clonal group | Symptoms | Pathogenic mechanism | Reservoirs | Epidemiological aspects | |
|---|---|---|---|---|---|
| Enterohaemorrhagic (EHEC) | Mild to severe diarrhoea frequently containing blood, Haemorrhagic colitis, (Haemolytic Uremic Syndrome) | Attaching effacing and production of potent verocytotoxins (Stx) that target renal structures (Kidney Failure). | Zoonotic (ruminants, water) | In developed countries, most infections are in children or the elderly. Treated by intravenous fluids, corticosteroids, Plasma filtration/exchange, dialysis (no antibiotics) | |
| Enterotoxigenic (ETEC) | Mild to severe watery self-limiting diarrhoea | Possess either or both heat liable (LT) and heat-stable toxins (ST) like those produced by Vibrio cholera | Zoonotic (contaminated food and water) | Associated with childhood/traveller's diarrhoea in developing countries treated by ORS | |
| Enteroinvasive (EIEC) | Watery to dysentery-like diarrhoea - with blood & mucus in faeces, fever, abdominal cramps, inflammatory colitis | Ability to invade and replicate in intestinal epithelial cells Related to Shigella spp. | Poor sanitary practices, food/waterborne | more important in developing countries with high morbidity and mortality of children. | |
| Enteropathogenic (EPEC) | Watery diarrhoea, Vomiting | Attaching-effacing lesions. Localised clusters adhere to the surface of cells | Zoonotic (water, ruminants, chicken, faeces) | Associated with infantile diarrhoea (nurseries), especially in developing countries | |
| Enteroaggregative (EAEC) | Acute watery diarrhoea sometimes containing blood & mucous, mild fever, abdominal cramps, nausea, vomiting | Adherence by an aggregative adherence fimbria (AAF). Release of enterotoxin homologous to Shigella flexneri | Largely unknown, new-class foodborne outbreaks | Implicated with persistent diarrhoea (>14days) in developing and developed countries | |
| Diffusely adherent (DAEC) | Acute diarrhoea, vomiting, and sometimes fever | Fimbrial uniform adhesion -host cell elongates and wraps around the adherent bacteria | Largely unknown –new class | DAEC associated with infantile diarrhoea | |
| Cytolethal-distending toxin-producing E. coli (CDTEC) | Watery diarrhea; could progress to bloody diarrhea, abdominal pain, and fever. | Produces a toxin called cytolethal distending toxin (CDT) which has DNase activity, meaning it can damage DNA within the host cells. | Humans and animals (livestock and wild) | Affects individuals of all ages but young children, the elderly, and immunocompromised individuals are at higher risk of developing severe disease. | |
| Cell-detaching E. coli (CDEC) | Watery diarrhoea, which can sometimes progress to more severe forms such as bloody diarrhoea. Abdominal pain, nausea, and vomiting may also be present. | CDEC strains produce a toxin or factors that cause the detachment of epithelial cells from the intestinal lining. | The primary reservoir for CDEC is believed to be humans, although it may also be present in animals. | CDEC can affect individuals across all age groups, but children, especially those under five years old, are more susceptible to infections. The elderly and immunocompromised individuals are also at higher risk. |
| S/No | Source | Prevalence (n) | Author |
|---|---|---|---|
| 1. | Human stool sample (DEC) | 6% (100) | Olorunshola et al., [63] |
| 2. | Hospital-acquired | 19.55% (22,941) | Ige et al., [64] |
| 3. | UTI in Abuja | 37% (6,763) | Iregbu and Nwajiobi, [65] |
| 4. | UTI in South West | 39.69% (514) | Oladeinde et al., [66] |
| 5. | UTI in South East | 18.8% (266) | Okafor and Nweze, [67] |
| 6. | UTI in North Central | 70.3% (200) | Mofolorunsho et al [68] |
| 7. | UTI in North West | 68.7% (128) | Muhammed et al [69] |
| 8. | UTI in North East | 41% (1,590) | Ohieku and Magaji, [70] |
| 9. | UTI in South South | 40% (300) | Ojezele, [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
