Submitted:
19 August 2024
Posted:
21 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mycoviruses
3. Botrytis Cinerea
| Genome | Family | No. of species | Distribution | |
|---|---|---|---|---|
| Polarity | Segmented? | |||
| dsRNA | √ | Partitiviridae | 4 | Chile, China, Italy, Spain |
| √ |
Botybirnaviridae * (proposed) |
4 | Chile, Pakistan, Spain | |
| √ | Quadriviridae | 2 | China, Spain | |
| Totiviridae * | 5 | China, Italy, Pakistan, Spain, USA | ||
| Unclassified ** | 3 | China, Colombia, Italy, Spain | ||
| (+)ssRNA | Togaviridae-related | 1 | Italy, Australia | |
| Botourmiaviridae | 20 | China, Italy, Pakistan, Spain, Australia | ||
| Deltaflexiviridae | 4 | China, Pakistan, Spain, Australia | ||
| Endornaviridae | 4 | China, Pakistan, Italy, Australia | ||
| Fusariviridae | 9 | China, Italy, Pakistan, Spain, Australia | ||
| Hypoviridae | 6 | China, Italy, Pakistan, Spain, Australia | ||
| Hypoviridae satellite *** | 1 | China, Russia, Spain | ||
| Mitoviridae **** | 14 | China, Italy, Pakistan, Russia, Spain, Australia | ||
| Tymoviridae-related | 1 | China, Pakistan, Spain | ||
| Narnaviridae | 1 | Spain | ||
| √ | Splipalmviridae (proposed) | 5 | China, Pakistan, Spain | |
|
Mycotombusviridae or Ambiguiviridae (proposed) |
4 | China, Pakistan, Spain | ||
| Gammaflexiviridae | 1 | France, New Zealand, Spain, Australia | ||
| Alphaflexiviridae | 1 | New Zealand | ||
| Unclassified | 1 | Italy | ||
| (-)ssRNA | √ | Phenuiviridae | 1 | Spain |
| Mymonaviridae | 9 | China, Italy, Pakistan, Spain, Australia | ||
| Peribunyaviridae-related | 2 | Italy, Pakistan, Spain | ||
| Unclassified | 8 | China, Italy, Pakistan, Spain | ||
| ssDNA | √ | Genomoviridae | 1 | China, Italy, New Zealand, Spain |
| 113 | 113 | |||
| Genome | Taxon | Virus | Location | Reference |
|---|---|---|---|---|
| dsRNA | Botybirnavirus | Botrytis porri botybirnavirus 1 (BpBV1) | Spain | [41] |
|
Unclassified |
Sclerotinia sclerotiorum dsRNA mycovirus L (SsNsV-L) | Spain and Australia | [39,41] | |
| (+)ssRNA | Deltaflexivirus | Sclerotinia sclerotiorum deltaflexivirus 2 (SsDFV2) | Spain, Italy and Australia | [41] |
| Umbravirus | Sclerotinia sclerotiorum umbra-like virus 2 (SsUV2) | Spain and Italy | [41] | |
| Umbravirus | Sclerotinia sclerotiorum umbra-like virus 3 (SsUV3) | Spain, Italy and Australia | [41] | |
| Hypovirus | Sclerotinia sclerotiorum hypovirus 1 A (SsHV1A) | Spain and Italy | [41] | |
| Botourmiaviridae | Pyricularia oryzae ourmia-like virus 2 (PoOLV2) | Italy | [41] | |
| Mitovirus | Sclerotinia sclerotiorum mitovirus 3 (SsMV3) | Spain and Italy | [39,41] | |
|
Mitovirus |
Sclerotinia sclerotiorum mitovirus 4 (SsMV4) | Spain and Italy | [41] |
| Incidence | No. of isolates/ samples | Detection method | Location, fungus host [if reported], field/cultured isolate | Reference |
|---|---|---|---|---|
| 100% | 29 pools (total 248 isolates) | RNA-Seq | Italy and Spain, Vitis vinifera, field | [41] |
| 93 % | 29 | Botrytis cinerea mitovirus 1 specific RT-PCR and Sanger sequencing* |
Spain, Capsicum annuum, Cucumis sativus, Cucurbita pepo, Solanum lycopersicum, Solanum melongena, Phaseolus vulgaris, Vitis vinifera, field |
[52] |
| 83% | 24 | RNASeq | Australia, a wide range of plants, cultured | R. Coy et al., Unpublished data |
| 72% | 200 | dsRNA purification* | New Zealand, Cucumis sativus, V. vinifera, Solanum lycopersicum, Fragaria × ananassa, Phaseolus vulgaris, Rubus fruticosus, cultured | [53] |
| 55 % | 96 | dsRNA purification* | Spain, Capsicum annuum, Cucumis sativus, Cucurbita pepo, Solanum lycopersicum, Solanum melongena, Phaseolus vulgaris, Vitis vinifera, field |
[52] |
| 29% | 87 | Botrytis virus X RT-PCR | New Zealand, a wide range of plants, cultured | [45] |
| 27.8% | 248 | Botrytis cinerea ssDNA virus 1 RT-PCR |
Spain and Italy, Vitis vinifera, field | [42] |
| 16% | 87 | Botrytis virus F RT-PCR | International, a wide range of plants, cultured | [45] |
| 14% | 84 |
Botrytis virus F RT-PCR | International, a wide range of plants, cultured | [55] |
| 4.8% | 21 | dsRNA purification* | China, wide range of plants (suggestion) | [56] |
| 3% | 30 | dsRNA purification* | Chile, Malus domestica, Pyrus, Rubus idaeus, Vitis vinífera, field | [54] |
| 2% | 500 | Genomoviridae rolling-circle amplification and high throughput sequencing of product | New Zealand, a wide range of asymptomatic plants, cultured | [48] |
| 0.8 | 508 | Botrytis cinerea mymonavirus 1 RT-PCR |
China | [57] |
4. The Dual Challenges of Mycovirology: Virus Description and Biology
5. Botrytis cinerea Serves as A Perfect Experimental System
6. Other Fungal Model Systems for Mycoviruses
7. Research Strategies to Better Understand Mycovirus Biology
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Xie, J.; Fu, Y.; Cheng, J.; Qu, Z.; Zhao, Z.; Cheng, S.; Chen, T.; Li, B.; Wang, Q.; Liu, X.; Tian, B.; Collinge, D.B.; Jiang, D. A 2-Kb Mycovirus Converts a Pathogenic Fungus into a Beneficial Endophyte for Brassica Protection and Yield Enhancement. Mol. Plant 2020, 13, 1420–1433. [CrossRef]
- García-Pedrajas, M.D.; Cañizares, M.C.; Sarmiento-Villamil, J.L.; Jacquat, A.G.; Dambolena, J.S. Mycoviruses in Biological Control: From Basic Research to Field Implementation. Phytopathology® 2019, 109, 1828–1839. [CrossRef]
- Kyrychenko, A.N.; Tsyganenko, K.S.; Olishevska, S.V. Hypovirulence of Mycoviruses as a Tool for Biotechnological Control of Phytopathogenic Fungi. Cytol. Genet. 2018, 52, 374–384. [CrossRef]
- Niu, Y.; Yuan, Y.; Mao, J.; Yang, Z.; Cao, Q.; Zhang, T.; Wang, S.; Liu, D. Characterization of Two Novel Mycoviruses from Penicillium Digitatum and the Related Fungicide Resistance Analysis. Sci. Rep. 2018, 8, 5513. [CrossRef]
- Edgar, R.C.; Taylor, B.; Lin, V.; Altman, T.; Barbera, P.; Meleshko, D.; Lohr, D.; Novakovsky, G.; Buchfink, B.; Al-Shayeb, B.; Banfield, J.F.; de la Peña, M.; Korobeynikov, A.; Chikhi, R.; Babaian, A. Petabase-Scale Sequence Alignment Catalyses Viral Discovery. Nature 2022, 602, 142–147. [CrossRef]
- Villan Larios, D.C.; Diaz Reyes, B.M.; Pirovani, C.P.; Loguercio, L.L.; Santos, V.C.; Góes-Neto, A.; Fonseca, P.L.C.; Aguiar, E.R.G.R. Exploring the Mycovirus Universe: Identification, Diversity, and Biotechnological Applications. J. Fungi 2023, 9, 361. [CrossRef]
- Ayllón, M.A.; Vainio, E.J. Mycoviruses as a Part of the Global Virome: Diversity, Evolutionary Links and Lifestyle. In; 2023; pp. 1–86.
- Kotta-Loizou, I. Mycoviruses and Their Role in Fungal Pathogenesis. Curr. Opin. Microbiol. 2021, 63, 10–18. [CrossRef]
- Myers, J.M.; James, T.Y. Mycoviruses. Curr. Biol. 2022, 32, R150–R155. [CrossRef]
- Kondo, H.; Botella, L.; Suzuki, N. Mycovirus Diversity and Evolution Revealed/Inferred from Recent Studies. Annu. Rev. Phytopathol. 2022, 60, 307–336. [CrossRef]
- Sato, Y.; Suzuki, N. Continued Mycovirus Discovery Expanding Our Understanding of Virus Lifestyles, Symptom Expression, and Host Defense. Curr. Opin. Microbiol. 2023, 75, 102337. [CrossRef]
- Lockhart, S.R.; Chowdhary, A.; Gold, J.A.W. The Rapid Emergence of Antifungal-Resistant Human-Pathogenic Fungi. Nat. Rev. Microbiol. 2023, 21, 818–832. [CrossRef]
- Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, S.J. Worldwide Emergence of Resistance to Antifungal Drugs Challenges Human Health and Food Security. Science (80-. ). 2018, 360, 739–742. [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The Global Burden of Pathogens and Pests on Major Food Crops. Nat. Ecol. Evol. 2019, 3, 430–439. [CrossRef]
- Fones, H.N.; Bebber, D.P.; Chaloner, T.M.; Kay, W.T.; Steinberg, G.; Gurr, S.J. Threats to Global Food Security from Emerging Fungal and Oomycete Crop Pathogens. Nat. Food 2020, 1, 332–342. [CrossRef]
- Veloso, J.; van Kan, J.A.L. Many Shades of Grey in Botrytis–Host Plant Interactions. Trends Plant Sci. 2018, 23, 613–622. [CrossRef]
- Elad, Y.; Pertot, I.; Cotes Prado, A.M.; Stewart, A. Plant Hosts of Botrytis Spp. In Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer International Publishing: Cham, 2016; pp. 413–486.
- Hahn, M. The Rising Threat of Fungicide Resistance in Plant Pathogenic Fungi: Botrytis as a Case Study. J. Chem. Biol. 2014, 7, 133–141. [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; Foster, G.D. The Top 10 Fungal Pathogens in Molecular Plant Pathology. Mol. Plant Pathol. 2012, 13, 414–430. [CrossRef]
- Hevia, M.A.; Canessa, P.; Müller-Esparza, H.; Larrondo, L.F. A Circadian Oscillator in the Fungus Botrytis cinerea Regulates Virulence When Infecting Arabidopsis Thaliana. Proc. Natl. Acad. Sci. 2015, 112, 8744–8749. [CrossRef]
- Schumacher, J. How Light Affects the Life of Botrytis. Fungal Genet. Biol. 2017, 106, 26–41. [CrossRef]
- Arshed, S.; Cox, M.P.; Beever, R.E.; Parkes, S.L.; Pearson, M.N.; Bowen, J.K.; Templeton, M.D. The Bcvic1 and Bcvic2 Vegetative Incompatibility Genes in Botrytis cinerea Encode Proteins with Domain Architectures Involved in Allorecognition in Other Filamentous Fungi. Fungal Genet. Biol. 2023, 169, 103827. [CrossRef]
- Rodenburg, S.Y.A.; Terhem, R.B.; Veloso, J.; Stassen, J.H.M.; van Kan, J.A.L. Functional Analysis of Mating Type Genes and Transcriptome Analysis during Fruiting Body Development of Botrytis cinerea. MBio 2018, 9. [CrossRef]
- Bi, K.; Liang, Y.; Mengiste, T.; Sharon, A. Killing Softly: A Roadmap of Botrytis cinerea Pathogenicity. Trends Plant Sci. 2023, 28, 211–222. [CrossRef]
- Staats, M.; van Kan, J.A.L. Genome Update of Botrytis cinerea Strains B05.10 and T4. Eukaryot. Cell 2012, 11, 1413–1414. [CrossRef]
- Atwell, S.; Corwin, J.A.; Soltis, N.E.; Subedy, A.; Denby, K.J.; Kliebenstein, D.J. Whole Genome Resequencing of Botrytis cinerea Isolates Identifies High Levels of Standing Diversity. Front. Microbiol. 2015, 6. [CrossRef]
- Mercier, A.; Simon, A.; Lapalu, N.; Giraud, T.; Bardin, M.; Walker, A.-S.; Viaud, M.; Gladieux, P. Population Genomics Reveals Molecular Determinants of Specialization to Tomato in the Polyphagous Fungal Pathogen Botrytis cinerea in France. Phytopathology® 2021, 111, 2355–2366. [CrossRef]
- Van Kan, J.A.L.; Stassen, J.H.M.; Mosbach, A.; Van Der Lee, T.A.J.; Faino, L.; Farmer, A.D.; Papasotiriou, D.G.; Zhou, S.; Seidl, M.F.; Cottam, E.; Edel, D.; Hahn, M.; Schwartz, D.C.; Dietrich, R.A.; Widdison, S.; Scalliet, G. A Gapless Genome Sequence of the Fungus Botrytis cinerea. Mol. Plant Pathol. 2017, 18, 75–89. [CrossRef]
- Hahn, M.; Scalliet, G. One Cut to Change Them All: CRISPR/Cas, a Groundbreaking Tool for Genome Editing in Botrytis cinerea and Other Fungal Plant Pathogens. Phytopathology® 2021, 111, 474–477. [CrossRef]
- Leisen, T.; Werner, J.; Pattar, P.; Safari, N.; Ymeri, E.; Sommer, F.; Schroda, M.; Suárez, I.; Collado, I.G.; Scheuring, D.; Hahn, M. Multiple Knockout Mutants Reveal a High Redundancy of Phytotoxic Compounds Contributing to Necrotrophic Pathogenesis of Botrytis cinerea. PLOS Pathog. 2022, 18, e1010367. [CrossRef]
- Qin, S.; Veloso, J.; Baak, M.; Boogmans, B.; Bosman, T.; Puccetti, G.; Shi-Kunne, X.; Smit, S.; Grant-Downton, R.; Leisen, T.; Hahn, M.; van Kan, J.A.L. Molecular Characterization Reveals No Functional Evidence for Naturally Occurring Cross-kingdom RNA Interference in the Early Stages of Botrytis cinerea –Tomato Interaction. Mol. Plant Pathol. 2023, 24, 3–15. [CrossRef]
- Bar, M.; Romanazzi, G. Editorial: Highlights from the Botrytis and Sclerotinia 2022 Joint Conference. Front. Plant Sci. 2023, 14. [CrossRef]
- Garfinkel, A.R.; Coats, K.P.; Sherry, D.L.; Chastagner, G.A. Genetic Analysis Reveals Unprecedented Diversity of a Globally-Important Plant Pathogenic Genus. Sci. Rep. 2019, 9, 6671. [CrossRef]
- ICTV. Available online: https://ictv.global/ (accessed on 18 June 2024).
- Approved Proposals | ICTV. Available online: https://ictv.global/files/proposals/approved (accessed on 18 June 2024).
- Unclassified Viruses | ICTV. Available online: https://ictv.global/report/chapter/unclassified/unclassified-viruses (accessed on 5 July 2024).
- Simmonds, P.; Adams, M.J.; Benkő, M.; Breitbart, M.; Brister, J.R.; Carstens, E.B.; Davison, A.J.; Delwart, E.; Gorbalenya, A.E.; Harrach, B.; Hull, R.; King, A.M.Q.; Koonin, E.V.; Krupovic, M.; Kuhn, J.H.; Lefkowitz, E.J.; Nibert, M.L.; Orton, R.; Roossinck, M.J.; Sabanadzovic, S.; Sullivan, M.B.; Suttle, C.A.; Tesh, R.B.; van der Vlugt, R.A.; Varsani, A.; Zerbini, F.M. Virus Taxonomy in the Age of Metagenomics. Nat. Rev. Microbiol. 2017, 15, 161–168. [CrossRef]
- Donaire, L.; Rozas, J.; Ayllón, M.A. Molecular Characterization of Botrytis Ourmia-like Virus, a Mycovirus Close to the Plant Pathogenic Genus Ourmiavirus. Virology 2016, 489, 158–164. [CrossRef]
- Donaire, L.; Ayllón, M.A. Deep Sequencing of Mycovirus-derived Small RNAs from Botrytis Species. Mol. Plant Pathol. 2017, 18, 1127–1137. [CrossRef]
- Ayllón, M.A.; Turina, M.; Xie, J.; Nerva, L.; Marzano, S.-Y.L.; Donaire, L.; Jiang, D.; Consortium, I.R. ICTV Virus Taxonomy Profile: Botourmiaviridae. J. Gen. Virol. 2020, 101, 454–455. [CrossRef]
- Ruiz-Padilla, A.; Rodríguez-Romero, J.; Gómez-Cid, I.; Pacifico, D.; Ayllón, M.A. Novel Mycoviruses Discovered in the Mycovirome of a Necrotrophic Fungus. MBio 2021, 12. [CrossRef]
- Ruiz-Padilla, A.; Turina, M.; Ayllón, M.A. Molecular Characterization of a Tetra Segmented ssDNA Virus Infecting Botrytis cinerea Worldwide. Virol. J. 2023, 20, 306. [CrossRef]
- Hao, F.; Zhou, Z.; Wu, M.; Li, G. Molecular Characterization of a Novel Endornavirus from the Phytopathogenic Fungus Botrytis cinerea. Arch. Virol. 2017, 162, 313–316. [CrossRef]
- Wang, H.; Li, C.; Cai, L.; Fang, S.; Zheng, L.; Yan, F.; Zhang, S.; Liu, Y. The Complete Genomic Sequence of a Novel Botybirnavirus Isolated from a Phytopathogenic Bipolaris maydis. Virus Genes 2018, 54, 733–736. [CrossRef]
- Pearson, M.N.; Bailey, A.M. Viruses of Botrytis. Adv. Virus Res. 2013, 86, 249–272. [CrossRef]
- Jiāng, D.; Ayllón, M.A.; Marzano, S.-Y.L.; Kondō, H.; Turina, M. ICTV Virus Taxonomy Profile: Mymonaviridae 2022. J. Gen. Virol. 2022, 103. [CrossRef]
- Hao, F.; Wu, M.; Li, G. Characterization of a Novel Genomovirus in the Phytopathogenic Fungus Botrytis cinerea. Virology 2021, 553, 111–116. [CrossRef]
- Khalifa, M.E.; MacDiarmid, R.M. A Mechanically Transmitted DNA Mycovirus Is Targeted by the Defence Machinery of Its Host, Botrytis cinerea. Viruses 2021, 13, 1315. [CrossRef]
- Donaire, L.; Pagán, I.; Ayllón, M.A. Characterization of Botrytis cinerea Negative-Stranded RNA Virus 1, a New Mycovirus Related to Plant Viruses, and a Reconstruction of Host Pattern Evolution in Negative-Sense SsRNA Viruses. Virology 2016, 499, 212–218. [CrossRef]
- Ghabrial, S.A.; Castón, J.R.; Jiang, D.; Nibert, M.L.; Suzuki, N. 50-plus Years of Fungal Viruses. Virology 2015, 479–480, 356–368. [CrossRef]
- Pearson, M.N.; Beever, R.E.; Boine, B.; Arthur, K. Mycoviruses of Filamentous Fungi and Their Relevance to Plant Pathology. Mol. Plant Pathol. 2009, 10, 115–128. [CrossRef]
- Rodríguez-García, C.; Medina, V.; Alonso, A.; Ayllón, M.A. Mycoviruses of Botrytis cinerea Isolates from Different Hosts. Ann. Appl. Biol. 2014, 164, 46–61. [CrossRef]
- Howitt, R.L.J.; Beever, R.E.; Pearson, M.N.; Forster, R.L.S. Presence of Double-Stranded RNA and Virus-like Particles in Botrytis cinerea. Mycol. Res. 1995, 99, 1472–1478. [CrossRef]
- Vilches, S.; Castillo, A. A Double-Stranded RNA Mycovirus in Botrytis cinerea. FEMS Microbiol. Lett. 2006, 155, 125–130. [CrossRef]
- Arthur, K.; Pearson, M. Geographic Distribution and Sequence Diversity of the Mycovirus Botrytis Virus F. Mycol. Prog. 2014, 13, 1000. [CrossRef]
- Wu, M.D.; Zhang, L.; Li, G.Q.; Jiang, D.H.; Hou, M.S.; Huang, H.C. Hypovirulence and Double-Stranded RNA in Botrytis cinerea. Phytopathology 2007, 97, 1590–1599. [CrossRef]
- Hao, F.; Wu, M.; Li, G. Molecular Characterization and Geographic Distribution of a Mymonavirus in the Population of Botrytis cinerea. Viruses 2018, 10, 432. [CrossRef]
- Pappas, N.; Roux, S.; Hölzer, M.; Lamkiewicz, K.; Mock, F.; Marz, M.; Dutilh, B.E. Virus Bioinformatics. In Encyclopedia of Virology; Elsevier, 2021; pp. 124–132.
- Kraberger, S.; Hofstetter, R.W.; Potter, K.A.; Farkas, K.; Varsani, A. Genomoviruses Associated with Mountain and Western Pine Beetles. Virus Res. 2018, 256, 17–20. [CrossRef]
- Bian, R.; Andika, I.B.; Pang, T.; Lian, Z.; Wei, S.; Niu, E.; Wu, Y.; Kondo, H.; Liu, X.; Sun, L. Facilitative and Synergistic Interactions between Fungal and Plant Viruses. Proc. Natl. Acad. Sci. 2020, 117, 3779–3788. [CrossRef]
- Córdoba, L.; Ruiz-Padilla, A.; Rodríguez-Romero, J.; Ayllón, M.A. Construction and Characterization of a Botrytis Virus F Infectious Clone. J. Fungi 2022, 8, 459. [CrossRef]
- Hao, F.; Ding, T.; Wu, M.; Zhang, J.; Yang, L.; Chen, W.; Li, G. Two Novel Hypovirulence-Associated Mycoviruses in the Phytopathogenic Fungus Botrytis cinerea: Molecular Characterization and Suppression of Infection Cushion Formation. Viruses 2018, 10, 254. [CrossRef]
- Kamaruzzaman, M.; He, G.; Wu, M.; Zhang, J.; Yang, L.; Chen, W.; Li, G. A Novel Partitivirus in the Hypovirulent Isolate QT5-19 of the Plant Pathogenic Fungus Botrytis cinerea. Viruses 2019, 11, 24. [CrossRef]
- Hai, D.; Li, J.; Jiang, D.; Cheng, J.; Fu, Y.; Xiao, X.; Yin, H.; Lin, Y.; Chen, T.; Li, B.; Yu, X.; Cai, Q.; Chen, W.; Kotta-Loizou, I.; Xie, J. Plants Interfere with Non-Self Recognition of a Phytopathogenic Fungus via Proline Accumulation to Facilitate Mycovirus Transmission. Nat. Commun. 2024, 15, 4748. [CrossRef]
- Torres-Trenas, A.; Prieto, P.; Cañizares, M.C.; García-Pedrajas, M.D.; Pérez-Artés, E. Mycovirus Fusarium oxysporum f. Sp. Dianthi Virus 1 Decreases the Colonizing Efficiency of Its Fungal Host. Front. Cell. Infect. Microbiol. 2019, 9. [CrossRef]
- Baek, J.-H.; Park, J.-A.; Kim, J.-M.; Oh, J.-M.; Park, S.-M.; Kim, D.-H. Functional Analysis of a Tannic-Acid-Inducible and Hypoviral-Regulated Small Heat-Shock Protein Hsp24 from the Chestnut Blight Fungus Cryphonectria parasitica. Mol. Plant-Microbe Interact. 2014, 27, 56–65. [CrossRef]
- Chun, J.; Ko, Y.-H.; Kim, D.-H. Transcriptome Analysis of Cryphonectria parasitica Infected With Cryphonectria Hypovirus 1 (CHV1) Reveals Distinct Genes Related to Fungal Metabolites, Virulence, Antiviral RNA-Silencing, and Their Regulation. Front. Microbiol. 2020, 11. [CrossRef]
- Bormann, J.; Heinze, C.; Blum, C.; Mentges, M.; Brockmann, A.; Alder, A.; Landt, S.K.; Josephson, B.; Indenbirken, D.; Spohn, M.; Plitzko, B.; Loesgen, S.; Freitag, M.; Schäfer, W. Expression of a Structural Protein of the Mycovirus FgV-Ch9 Negatively Affects the Transcript Level of a Novel Symptom Alleviation Factor and Causes Virus Infection-Like Symptoms in Fusarium graminearum. J. Virol. 2018, 92. [CrossRef]
- Lee, K.-M.; Cho, W.K.; Yu, J.; Son, M.; Choi, H.; Min, K.; Lee, Y.-W.; Kim, K.-H. A Comparison of Transcriptional Patterns and Mycological Phenotypes Following Infection of Fusarium graminearum by Four Mycoviruses. PLoS ONE 2014, 9, e100989. [CrossRef]
- Li, H.; Fu, Y.; Jiang, D.; Li, G.; Ghabrial, S.A.; Yi, X. Down-Regulation of Sclerotinia sclerotiorum Gene Expression in Response to Infection with Sclerotinia Sclerotiorum Debilitation-Associated RNA Virus. Virus Res. 2008, 135, 95–106. [CrossRef]
- Ding, F.; Cheng, J.; Fu, Y.; Chen, T.; Li, B.; Jiang, D.; Xie, J. Early Transcriptional Response to DNA Virus Infection in Sclerotinia sclerotiorum. Viruses 2019, 11, 278. [CrossRef]
- Wang, Y.; Li, Q.; Wu, Y.; Han, S.; Xiao, Y.; Kong, L. The Effects of Mycovirus BmPV36 on the Cell Structure and Transcription of Bipolaris maydis. J. Fungi 2024, 10, 133. [CrossRef]
- Sun, A.; Zhao, L.; Sun, Y.; Chen, Y.; Li, C.; Dong, W.; Yang, G. Horizontal and Vertical Transmission of a Mycovirus Closely Related to the Partitivirus RhsV717 That Confers Hypovirulence in Rhizoctonia solani. Viruses 2023, 15, 2088. [CrossRef]
- Nolan, T. The Post-Transcriptional Gene Silencing Machinery Functions Independently of DNA Methylation to Repress a LINE1-like Retrotransposon in Neurospora crassa. Nucleic Acids Res. 2005, 33, 1564–1573. [CrossRef]
- Nakayashiki, H.; Nguyen, Q.B. RNA Interference: Roles in Fungal Biology. Curr. Opin. Microbiol. 2008, 11, 494–502. [CrossRef]
- Girard, C.; Budin, K.; Boisnard, S.; Zhang, L.; Debuchy, R.; Zickler, D.; Espagne, E. RNAi-Related Dicer and Argonaute Proteins Play Critical Roles for Meiocyte Formation, Chromosome-Axes Lengths and Crossover Patterning in the Fungus Sordaria macrospora. Front. Cell Dev. Biol. 2021, 9. [CrossRef]
- Qian, J.; Ibrahim, H.M.M.; Erz, M.; Kümmel, F.; Panstruga, R.; Kusch, S. Long Noncoding RNAs Emerge from Transposon-Derived Antisense Sequences and May Contribute to Infection Stage-Specific Transposon Regulation in a Fungal Phytopathogen. Mob. DNA 2023, 14, 17. [CrossRef]
- Dang, Y.; Yang, Q.; Xue, Z.; Liu, Y. RNA Interference in Fungi: Pathways, Functions, and Applications. Eukaryot. Cell 2011, 10, 1148–1155. [CrossRef]
- Yeadon, P.J.; Bowring, F.J.; Catcheside, D.E.A. Recombination Hotspots in Neurospora crassa Controlled by Idiomorphic Sequences and Meiotic Silencing. Genetics 2024, 226. [CrossRef]
- Cai, Q.; He, B.; Kogel, K.-H.; Jin, H. Cross-Kingdom RNA Trafficking and Environmental RNAi — Nature’s Blueprint for Modern Crop Protection Strategies. Curr. Opin. Microbiol. 2018, 46, 58–64. [CrossRef]
- Spada, M.; Pugliesi, C.; Fambrini, M.; Pecchia, S. Challenges and Opportunities Arising from Host–Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int. J. Mol. Sci. 2024, 25, 6798. [CrossRef]
- Nowara, D.; Gay, A.; Lacomme, C.; Shaw, J.; Ridout, C.; Douchkov, D.; Hensel, G.; Kumlehn, J.; Schweizer, P. HIGS: Host-Induced Gene Silencing in the Obligate Biotrophic Fungal Pathogen Blumeria graminis. Plant Cell 2010, 22, 3130–3141. [CrossRef]
- Xiong, F.; Liu, M.; Zhuo, F.; Yin, H.; Deng, K.; Feng, S.; Liu, Y.; Luo, X.; Feng, L.; Zhang, S.; Li, Z.; Ren, M. Host-induced Gene Silencing of BcTOR in Botrytis cinerea Enhances Plant Resistance to Grey Mould. Mol. Plant Pathol. 2019, 20, 1722–1739. [CrossRef]
- Hua, C.; Zhao, J.-H.; Guo, H.-S. Trans-Kingdom RNA Silencing in Plant–Fungal Pathogen Interactions. Mol. Plant 2018, 11, 235–244. [CrossRef]
- Zhang, X.; Segers, G.C.; Sun, Q.; Deng, F.; Nuss, D.L. Characterization of Hypovirus-Derived Small RNAs Generated in the Chestnut Blight Fungus by an Inducible DCL-2-Dependent Pathway. J. Virol. 2008, 82, 2613–2619. [CrossRef]
- Hammond, T.M.; Andrewski, M.D.; Roossinck, M.J.; Keller, N.P. Aspergillus Mycoviruses Are Targets and Suppressors of RNA Silencing. Eukaryot. Cell 2008, 7, 350–357. [CrossRef]
- Himeno, M.; Maejima, K.; Komatsu, K.; Ozeki, J.; Hashimoto, M.; Kagiwada, S.; Yamaji, Y.; Namba, S. Significantly Low Level of Small RNA Accumulation Derived from an Encapsidated Mycovirus with DsRNA Genome. Virology 2010, 396, 69–75. [CrossRef]
- Wang, S.; Li, P.; Zhang, J.; Qiu, D.; Guo, L. Generation of a High Resolution Map of sRNAs from Fusarium graminearum and Analysis of Responses to Viral Infection. Sci. Rep. 2016, 6, 26151. [CrossRef]
- Yaegashi, H.; Shimizu, T.; Ito, T.; Kanematsu, S. Differential Inductions of RNA Silencing among Encapsidated Double-Stranded RNA Mycoviruses in the White Root Rot Fungus Rosellinia necatrix. J. Virol. 2016, 90, 5677–5692. [CrossRef]
- Mochama, P.; Jadhav, P.; Neupane, A.; Marzano, S.Y.L. Mycoviruses as Triggers and Targets of RNA Silencing in White Mold Fungus Sclerotinia sclerotiorum. Viruses 2018, 10. [CrossRef]
- Sato, Y.; Kondo, H.; Suzuki, N. Argonaute-Independent, Dicer-Dependent Antiviral Defense against RNA Viruses. Proc. Natl. Acad. Sci. 2024, 121. [CrossRef]
- Tauati, S.J.; Pearson, M.N.; Choquer, M.; Foster, G.D.; Bailey, A.M. Investigating the Role of Dicer 2 (Dcr2) in Gene Silencing and the Regulation of Mycoviruses in Botrytis cinerea. Microbiology 2014, 83, 140–148. [CrossRef]
- Weiberg, A.; Wang, M.; Lin, F.M.; Zhao, H.; Zhang, Z.; Kaloshian, I.; Huang, H. Da; Jin, H. Fungal Small RNAs Suppress Plant Immunity by Hijacking Host RNA Interference Pathways. Science 2013, 342, 118–123. [CrossRef]
- Cheng, A.-P.; Lederer, B.; Oberkofler, L.; Huang, L.; Johnson, N.R.; Platten, F.; Dunker, F.; Tisserant, C.; Weiberg, A. A Fungal RNA-Dependent RNA Polymerase Is a Novel Player in Plant Infection and Cross-Kingdom RNA Interference. PLOS Pathog. 2023, 19, e1011885. [CrossRef]
- Atabekova, A.K.; Solovieva, A.D.; Chergintsev, D.A.; Solovyev, A.G.; Morozov, S.Y. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int. J. Mol. Sci. 2023, 24, 9049. [CrossRef]
- Burgyán, J.; Havelda, Z. Viral Suppressors of RNA Silencing. Trends Plant Sci. 2011, 16, 265–272. [CrossRef]
- Schuster, S.; Miesen, P.; van Rij, R.P. Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses 2019, 11, 448. [CrossRef]
- Baulcombe, D. Viral Suppression of Systemic Silencing. Trends Microbiol. 2002, 10, 306–308. [CrossRef]
- Bivalkar-Mehla, S.; Vakharia, J.; Mehla, R.; Abreha, M.; Kanwar, J.R.; Tikoo, A.; Chauhan, A. Viral RNA Silencing Suppressors (RSS): Novel Strategy of Viruses to Ablate the Host RNA Interference (RNAi) Defense System. Virus Res. 2011, 155, 1–9. [CrossRef]
- Voinnet, O.; Lederer, C.; Baulcombe, D.C. A Viral Movement Protein Prevents Spread of the Gene Silencing Signal in Nicotiana benthamiana. Cell 2000, 103, 157–167. [CrossRef]
- Senshu, H.; Ozeki, J.; Komatsu, K.; Hashimoto, M.; Hatada, K.; Aoyama, M.; Kagiwada, S.; Yamaji, Y.; Namba, S. Variability in the Level of RNA Silencing Suppression Caused by Triple Gene Block Protein 1 (TGBp1) from Various Potexviruses during Infection. J. Gen. Virol. 2009, 90, 1014–1024. [CrossRef]
- Lim, H.-S.; Vaira, A.M.; Reinsel, M.D.; Bae, H.; Bailey, B.A.; Domier, L.L.; Hammond, J. Pathogenicity of Alternanthera Mosaic Virus Is Affected by Determinants in RNA-Dependent RNA Polymerase and by Reduced Efficacy of Silencing Suppression in a Movement-Competent TGB1. J. Gen. Virol. 2010, 91, 277–287. [CrossRef]
- Sehki, H.; Yu, A.; Elmayan, T.; Vaucheret, H. TYMV and TRV Infect Arabidopsis thaliana by Expressing Weak Suppressors of RNA Silencing and Inducing Host RNASE THREE LIKE1. PLOS Pathog. 2023, 19, e1010482. [CrossRef]
- Powers, J.G.; Sit, T.L.; Heinsohn, C.; George, C.G.; Kim, K.-H.; Lommel, S.A. The Red Clover Necrotic Mosaic Virus RNA-2 Encoded Movement Protein Is a Second Suppressor of RNA Silencing. Virology 2008, 381, 277–286. [CrossRef]
- Takeda, A.; Tsukuda, M.; Mizumoto, H.; Okamoto, K.; Kaido, M.; Mise, K.; Okuno, T. A Plant RNA Virus Suppresses RNA Silencing through Viral RNA Replication. EMBO J. 2005, 24, 3147–3157. [CrossRef]
- Zhang, C.; Liu, X.; Wu, K.; Zheng, L.-P.; Ding, Z.; Li, F.; Zou, P.; Yang, L.; Wu, J.; Wu, Z. Rice Grassy Stunt Virus Nonstructural Protein P5 Serves as a Viral Suppressor of RNA Silencing and Interacts with Nonstructural Protein P3. Arch. Virol. 2015, 160, 2769–2779. [CrossRef]
- Mathur, K.; Anand, A.; Dubey, S.K.; Sanan-Mishra, N.; Bhatnagar, R.K.; Sunil, S. Analysis of Chikungunya Virus Proteins Reveals That Non-Structural Proteins NsP2 and NsP3 Exhibit RNA Interference (RNAi) Suppressor Activity. Sci. Rep. 2016, 6, 38065. [CrossRef]
- Yu, J.; Park, J.Y.; Heo, J.; Kim, K. The ORF2 Protein of Fusarium Graminearum Virus 1 Suppresses the Transcription of FgDICER2 and FgAGO1 to Limit Host Antiviral Defences. Mol. Plant Pathol. 2020, 21, 230–243. [CrossRef]
- Segers, G.; Zhang, X.; Deng, F.; Sun, Q.; Nuss, D.L. Evidence That RNA Silencing Functions as an Antiviral Defense Mechanism in Fungi. Proc. Natl. Acad. Sci. 2007, 104, 12902–12906. [CrossRef]
- Segers, G.; van Wezel, R.; Zhang, X.; Hong, Y.; Nuss, D.L. Hypovirus Papain-Like Protease P29 Suppresses RNA Silencing in the Natural Fungal Host and in a Heterologous Plant System. Eukaryot. Cell 2006, 5, 896–904. [CrossRef]
- Aulia, A.; Hyodo, K.; Hisano, S.; Kondo, H.; Hillman, B.I.; Suzuki, N. Identification of an RNA Silencing Suppressor Encoded by a Symptomless Fungal Hypovirus, Cryphonectria Hypovirus 4. Biology (Basel). 2021, 10, 100. [CrossRef]
- Shimura, H.; Kim, H.; Matsuzawa, A.; Akino, S.; Masuta, C. Coat Protein of Partitiviruses Isolated from Mycorrhizal Fungi Functions as an RNA Silencing Suppressor in Plants and Fungi. Sci. Rep. 2022, 12, 7855. [CrossRef]
- Yu, J.; Park, J.Y.; Heo, J.; Kim, K. The ORF2 Protein of Fusarium Graminearum Virus 1 Suppresses the Transcription of FgDICER2 and FgAGO1 to Limit Host Antiviral Defences. Mol. Plant Pathol. 2020, 21, 230–243. [CrossRef]
- Sela, N.; Luria, N.; Dombrovsky, A. Genome Assembly of Bell Pepper Endornavirus from Small RNA. J. Virol. 2012, 86, 7721–7721. [CrossRef]
- Nordenstedt, N.; Marcenaro, D.; Chilagane, D.; Mwaipopo, B.; Rajamäki, M.-L.; Nchimbi-Msolla, S.; Njau, P.J.R.; Mbanzibwa, D.R.; Valkonen, J.P.T. Pathogenic Seedborne Viruses Are Rare but Phaseolus Vulgaris Endornaviruses Are Common in Bean Varieties Grown in Nicaragua and Tanzania. PLoS ONE 2017, 12, e0178242. [CrossRef]
- Schiwek, S.; Slonka, M.; Alhussein, M.; Knierim, D.; Margaria, P.; Rose, H.; Richert-Pöggeler, K.R.; Rostás, M.; Karlovsky, P. Mycoviruses Increase the Attractiveness of Fusarium graminearum for Fungivores and Suppress Production of the Mycotoxin Deoxynivalenol. Toxins (Basel). 2024, 16, 131. [CrossRef]
- Boine, B.; Kingston, R.L.; Pearson, M.N. Recombinant Expression of the Coat Protein of Botrytis Virus X and Development of an Immunofluorescence Detection Method to Study Its Intracellular Distribution in Botrytis cinerea. J. Gen. Virol. 2012, 93, 2502–2511. [CrossRef]
- Fournier, E.; Giraud, T. Sympatric Genetic Differentiation of a Generalist Pathogenic Fungus, Botrytis cinerea, on Two Different Host Plants, Grapevine and Bramble. J. Evol. Biol. 2008, 21, 122–132. [CrossRef]
- Faretra, F.; Antonacci, E.; Pollastro, S. Sexual Behaviour and Mating System of Botryotinia fuckeliana, Teleomorph of Botrytis cinerea. Microbiology 1988, 134, 2543–2550. [CrossRef]
- Kamaruzzaman, M.; Lyu, A.; Zhang, J.; Wu, M.; Yang, L.; Chen, W.; Li, G. Competitive Saprophytic Ability of the Hypovirulent Isolate QT5-19 of Botrytis cinerea and Its Importance in Biocontrol of Necrotrophic Fungal Pathogens. Biol. Control 2020, 142, 104182. [CrossRef]
- Ko, Y.H.; So, K.K.; Chun, J.; Kim, D.H. Distinct Roles of Two Dna Methyltransferases from Cryphonectria parasitica in Fungal Virulence, Responses to Hypovirus Infection, and Viral Clearance. MBio 2021, 12, 1–16. [CrossRef]
- Schumacher, J. Tools for Botrytis cinerea: New Expression Vectors Make the Gray Mold Fungus More Accessible to Cell Biology Approaches. Fungal Genet. Biol. 2012, 49, 483–497. [CrossRef]
- Vanderwaeren, L.; Dok, R.; Voordeckers, K.; Nuyts, S.; Verstrepen, K.J. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. Int. J. Mol. Sci. 2022, 23, 11665. [CrossRef]
- Sahaya Glingston, R.; Yadav, J.; Rajpoot, J.; Joshi, N.; Nagotu, S. Contribution of Yeast Models to Virus Research. Appl. Microbiol. Biotechnol. 2021, 105, 4855–4878. [CrossRef]
- Crabtree, A.M.; Taggart, N.T.; Lee, M.D.; Boyer, J.M.; Rowley, P.A. The Prevalence of Killer Yeasts and Double-Stranded RNAs in the Budding Yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2023, 23. [CrossRef]
- Billmyre, R.B.; Calo, S.; Feretzaki, M.; Wang, X.; Heitman, J. RNAi Function, Diversity, and Loss in the Fungal Kingdom. Chromosom. Res. 2013, 21, 561–572. [CrossRef]
- Eusebio-Cope, A.; Sun, L.; Tanaka, T.; Chiba, S.; Kasahara, S.; Suzuki, N. The Chestnut Blight Fungus for Studies on Virus/Host and Virus/Virus Interactions: From a Natural to a Model Host. Virology 2015, 477, 164–175. [CrossRef]
- Sato, Y.; Hisano, S.; Suzuki, N. Exploration of the Yadokari/Yadonushi Nature of YkV3 and RnMBV3 in the Original Host and a Model Filamentous Fungus. Virus Res. 2023, 334, 199155. [CrossRef]
- Segers, G.C.; van Wezel, R.; Zhang, X.; Hong, Y.; Nuss, D.L. Hypovirus Papain-Like Protease P29 Suppresses RNA Silencing in the Natural Fungal Host and in a Heterologous Plant System. Eukaryot. Cell 2006, 5, 896–904. [CrossRef]
- Sun, L.; Nuss, D.L.; Suzuki, N. Synergism between a Mycoreovirus and a Hypovirus Mediated by the Papain-like Protease P29 of the Prototypic Hypovirus CHV1-EP713. J. Gen. Virol. 2006, 87, 3703–3714. [CrossRef]
- GISD Cryphonectria Parasitica. Available online: https://www.iucngisd.org/gisd/speciesname/Cryphonectria+parasitica (accessed on 27 May 2024).
- Pest Register for NZ Importers | ONZPR | MPI | NZ Govt. Available online: https://pierpestregister.mpi.govt.nz/pest-register-importing/?scientificName=&organismType=&freeSearch=Cryphonectria+parasitica (accessed on 23 May 2024).
- Rigling, D.; Prospero, S. Cryphonectria Parasitica, the Causal Agent of Chestnut Blight: Invasion History, Population Biology and Disease Control. Mol. Plant Pathol. 2018, 19, 7–20. [CrossRef]
- Cryphonectria Parasitica. Available online: https://storymaps.arcgis.com/stories/0554468188c946399998fe14854fd8e3 (accessed on 23 May 2024).
- Kulik, T.; Molcan, T.; Fiedorowicz, G.; van Diepeningen, A.; Stakheev, A.; Treder, K.; Olszewski, J.; Bilska, K.; Beyer, M.; Pasquali, M.; Stenglein, S. Whole-Genome Single Nucleotide Polymorphism Analysis for Typing the Pandemic Pathogen Fusarium graminearum Sensu Stricto. Front. Microbiol. 2022, 13. [CrossRef]
- Li, P.; Wang, S.; Zhang, L.; Qiu, D.; Zhou, X.; Guo, L. A Tripartite ssDNA Mycovirus from a Plant Pathogenic Fungus Is Infectious as Cloned DNA and Purified Virions. Sci. Adv. 2020, 6. [CrossRef]
- Li, P.; Bhattacharjee, P.; Wang, S.; Zhang, L.; Ahmed, I.; Guo, L. Mycoviruses in Fusarium Species: An Update. Front. Cell. Infect. Microbiol. 2019, 9. [CrossRef]
- Zou, C.; Cao, X.; Zhou, Q.; Yao, Z. The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Fusarium Species. Viruses 2024, 16, 253. [CrossRef]
- Zhang, L.; Wang, S.; Ruan, S.; Nzabanita, C.; Wang, Y.; Guo, L. A Mycovirus VIGS Vector Confers Hypovirulence to a Plant Pathogenic Fungus to Control Wheat FHB. Adv. Sci. 2023, 10. [CrossRef]
- Honda, S.; Eusebio-Cope, A.; Miyashita, S.; Yokoyama, A.; Aulia, A.; Shahi, S.; Kondo, H.; Suzuki, N. Establishment of Neurospora crassa as a Model Organism for Fungal Virology. Nat. Commun. 2020, 11, 5627. [CrossRef]
- Cogoni, C.; Macino, G. Isolation of Quelling-Defective ( Qde ) Mutants Impaired in Posttranscriptional Transgene-Induced Gene Silencing in Neurospora crassa. Proc. Natl. Acad. Sci. 1997, 94, 10233–10238. [CrossRef]
- Cogoni, C.; Macino, G. Gene Silencing in Neurospora crassa Requires a Protein Homologous to RNA-Dependent RNA Polymerase. Nature 1999, 399, 166–169. [CrossRef]
- Tabilo-Agurto, C.; Del Rio-Pinilla, V.; Eltit-Villarroel, V.; Goity, A.; Muñoz-Guzmán, F.; Larrondo, L.F. Developing a Temperature-Inducible Transcriptional Rheostat in Neurospora crassa. MBio 2023, 14. [CrossRef]
- Wang, Z.; Bartholomai, B.M.; Loros, J.J.; Dunlap, J.C. Optimized Fluorescent Proteins for 4-Color and Photoconvertible Live-Cell Imaging in Neurospora crassa. Fungal Genet. Biol. 2023, 164, 103763. [CrossRef]
- Kuo, H.-C.; Hui, S.; Choi, J.; Asiegbu, F.O.; Valkonen, J.P.T.; Lee, Y.-H. Secret Lifestyles of Neurospora crassa. Sci. Rep. 2014, 4, 5135. [CrossRef]
- Telengech, P.; Hisano, S.; Mugambi, C.; Hyodo, K.; Arjona-López, J.M.; López-Herrera, C.J.; Kanematsu, S.; Kondo, H.; Suzuki, N. Diverse Partitiviruses From the Phytopathogenic Fungus, Rosellinia necatrix. Front. Microbiol. 2020, 11. [CrossRef]
- Kondo, H.; Kanematsu, S.; Suzuki, N. Viruses of the White Root Rot Fungus, Rosellinia necatrix. In; 2013; pp. 177–214.
- Pliego, C.; López-Herrera, C.; Ramos, C.; Cazorla, F.M. Developing Tools to Unravel the Biological Secrets of Rosellinia necatrix, an Emergent Threat to Woody Crops. Mol. Plant Pathol. 2012, 13, 226–239. [CrossRef]
- List of Pests Regulated by Canada - Inspection.Canada.Ca. Available online: https://inspection.canada.ca/en/plant-health/invasive-species/regulated-pests#r (accessed on 28 June 2024).
- Zhang, R.; Hisano, S.; Tani, A.; Kondo, H.; Kanematsu, S.; Suzuki, N. A Capsidless ssRNA Virus Hosted by an Unrelated dsRNA Virus. Nat. Microbiol. 2016, 1, 15001. [CrossRef]
- Telengech, P.; Hyodo, K.; Ichikawa, H.; Kuwata, R.; Kondo, H.; Suzuki, N. Replication of Single Viruses across the Kingdoms, Fungi, Plantae, and Animalia. Proc. Natl. Acad. Sci. 2024, 121. [CrossRef]
- Ikeda, K.; Inoue, K.; Kida, C.; Uwamori, T.; Sasaki, A.; Kanematsu, S.; Park, P. Potentiation of Mycovirus Transmission by Zinc Compounds via Attenuation of Heterogenic Incompatibility in Rosellinia necatrix. Appl. Environ. Microbiol. 2013, 79, 3684–3691. [CrossRef]
- Mu, F.; Xie, J.; Cheng, S.; You, M.P.; Barbetti, M.J.; Jia, J.; Wang, Q.; Cheng, J.; Fu, Y.; Chen, T.; Jiang, D. Virome Characterization of a Collection of S. Sclerotiorum from Australia. Front. Microbiol. 2018, 8. [CrossRef]
- Jiang, D.; Fu, Y.; Guoqing, L.; Ghabrial, S.A. Viruses of the Plant Pathogenic Fungus Sclerotinia sclerotiorum. In; 2013; pp. 215–248.
- Yu, X.; Li, B.; Fu, Y.; Jiang, D.; Ghabrial, S.A.; Li, G.; Peng, Y.; Xie, J.; Cheng, J.; Huang, J.; Yi, X. A Geminivirus-Related DNA Mycovirus That Confers Hypovirulence to a Plant Pathogenic Fungus. Proc. Natl. Acad. Sci. 2010, 107, 8387–8392. [CrossRef]
- Qu, Z.; Fu, Y.; Lin, Y.; Zhao, Z.; Zhang, X.; Cheng, J.; Xie, J.; Chen, T.; Li, B.; Jiang, D. Transcriptional Responses of Sclerotinia sclerotiorum to the Infection by SsHADV-1. J. Fungi 2021, 7, 493. [CrossRef]
- Fu, M.; Qu, Z.; Pierre-Pierre, N.; Jiang, D.; Souza, F.L.; Miklas, P.N.; Porter, L.D.; Vandemark, G.J.; Chen, W. Exploring the Mycovirus Sclerotinia sclerotiorum Hypovirulence-Associated DNA Virus 1 as a Biocontrol Agent of White Mold Caused by Sclerotinia sclerotiorum. Plant Dis. 2024, 108, 624–634. [CrossRef]
- Amselem, J.; Cuomo, C.A.; van Kan, J.A.L.; Viaud, M.; Benito, E.P.; Couloux, A.; Coutinho, P.M.; de Vries, R.P.; Dyer, P.S.; Fillinger, S.; Fournier, E.; Gout, L.; Hahn, M.; Kohn, L.; Lapalu, N.; Plummer, K.M.; Pradier, J.; Quévillon, E.; Sharon, A.; Simon, A.; ten Have, A.; Tudzynski, B.; Tudzynski, P.; Wincker, P.; Andrew, M.; Anthouard, V.; Beever, R.E.; Beffa, R.; Benoit, I.; Bouzid, O.; Brault, B.; Chen, Z.; Choquer, M.; Collémare, J.; Cotton, P.; Danchin, E.G.; Da Silva, C.; Gautier, A.; Giraud, C.; Giraud, T.; Gonzalez, C.; Grossetete, S.; Güldener, U.; Henrissat, B.; Howlett, B.J.; Kodira, C.; Kretschmer, M.; Lappartient, A.; Leroch, M.; Levis, C.; Mauceli, E.; Neuvéglise, C.; Oeser, B.; Pearson, M.; Poulain, J.; Poussereau, N.; Quesneville, H.; Rascle, C.; Schumacher, J.; Ségurens, B.; Sexton, A.; Silva, E.; Sirven, C.; Soanes, D.M.; Talbot, N.J.; Templeton, M.; Yandava, C.; Yarden, O.; Zeng, Q.; Rollins, J.A.; Lebrun, M.; Dickman, M. Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 2011, 7, e1002230. [CrossRef]
- Derbyshire, M.; Denton-Giles, M.; Hegedus, D.; Seifbarghy, S.; Rollins, J.; van Kan, J.; Seidl, M.F.; Faino, L.; Mbengue, M.; Navaud, O.; Raffaele, S.; Hammond-Kosack, K.; Heard, S.; Oliver, R. The Complete Genome Sequence of the Phytopathogenic Fungus Sclerotinia sclerotiorum Reveals Insights into the Genome Architecture of Broad Host Range Pathogens. Genome Biol. Evol. 2017, 9, 593–618. [CrossRef]
- Regmi, R.; Newman, T.E.; Khentry, Y.; Kamphuis, L.G.; Derbyshire, M.C. Genome-Wide Identification of Sclerotinia sclerotiorum Small RNAs and Their Endogenous Targets. BMC Genomics 2023, 24, 582. [CrossRef]
- Qin, L.; Nong, J.; Cui, K.; Tang, X.; Gong, X.; Xia, Y.; Xu, Y.; Qiu, Y.; Li, X.; Xia, S. SsCak1 Regulates Growth and Pathogenicity in Sclerotinia sclerotiorum. Int. J. Mol. Sci. 2023, 24, 12610. [CrossRef]
- Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and Molecular Traits of a Cosmopolitan Pathogen. Mol. Plant Pathol. 2006, 7, 1–16. [CrossRef]
- Córdoba, L.; Ruiz-Padilla, A.; Pardo-Medina, J.; Rodríguez-Romero, J.L.; Ayllón, M.A. Construction of a Mycoviral Infectious Clone for Reverse Genetics in Botrytis cinerea. In; 2024; pp. 47–68.
- Kluge, J.; Terfehr, D.; Kück, U. Inducible Promoters and Functional Genomic Approaches for the Genetic Engineering of Filamentous Fungi. Appl. Microbiol. Biotechnol. 2018, 102, 6357–6372. [CrossRef]
- Hollstein, L.S.; Schmitt, K.; Valerius, O.; Stahlhut, G.; Pöggeler, S. Establishment of in Vivo Proximity Labeling with Biotin Using TurboID in the Filamentous Fungus Sordaria macrospora. Sci. Rep. 2022, 12, 17727. [CrossRef]
- Rodriguez Coy, L.; Plummer, K.M.; Khalifa, M.E.; MacDiarmid, R.M. Mycovirus-Encoded Suppressors of RNA Silencing: Possible Allies or Enemies in the Use of RNAi to Control Fungal Disease in Crops. Front. Fungal Biol. 2022, 3. [CrossRef]
| Virus | VSR protein/ Mechanism | Family | Host | Botrytis cinerea host? | Reference |
|---|---|---|---|---|---|
| Potato virus X | TGB1/ Blocking the silencing signal in initially infected cells or stopping its spread to uninfected cells | Alphaflexiviridae | Plants | No | [100] |
| Plantago asiatica mosaic virus | [101] | ||||
| Alternanthera mosaic virus | [102] | ||||
| Turnip yellow mosaic virus | p69/partially inhibits the amplification but not the execution of RNA silencing | Tymoviridae | Plants | No | [103] |
| Red clover necrotic mosaic virus | p27, p88, MP/ Sequestering DCL1, potentially utilizing its helicase properties for viral replication.Top of FormBottom of Form | Tombusviridae | Plants | No | [104,105] |
| Rice grassy stunt virus |
nsP5 | Phenuiviridae | Plants | No | [106] |
| chikungunya virus | nsP2, nsP3 | Togaviridae | Humans | No | [107] |
| Botrytis virus F | Unknown | Gammaflexiviridae | Fungi | Yes | [92] |
| Fusarium graminearum virus 1 | P2 gene/ FgDICER2 and FgAGO1 suppression | Fusariviridae | Fungi | No | [108] |
| Cryphonectria hypovirus 1 | p29/ reduction in transcription level of DCL2 and AGL2 | Hypoviridae | Fungi | No | [109,110] |
| Cryphonectria hypovirus 4 | p24 | Hypoviridae | Fungi | No | [111] |
| Aspergillus virus 1816 | unknown | Totiviridae | Fungi | No | [86] |
| Tulasnella partitivirus 2 | CP | Partitiviridae | Fungi | No | [112] |
| Tulasnella partitivirus 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
