Submitted:
17 August 2024
Posted:
20 August 2024
You are already at the latest version
Abstract
Keywords:Â
1. Introduction
2. Study Area, Datasets, and Methods
2.1. Study Area
2.2. Geodetic Datasets
2.2.1. Continuous Global Positioning System and Precise Leveling Survey
2.2.2. SAR Dataset Overview
2.2.3. SBAS-PSInSAR Processing and Deformation Extraction
2.3. Hydrogeological Datasets
2.3.1. Groundwater Level Dataset Overview
2.3.2. Linear Relation Between Groundwater Level Drops and Subsidence
2.3.3. Multilayer Compaction Monitoring Wells
2.3.4. Estimation of Fine-Grained Sedimentary Material Percentage
3. Results
3.1. SBAS-PSInSAR Average Deformation Map
3.2. The Analysis of Cumulative Compactions
3.3. The Percentage of Fine-grained Materials for the CRFP
4. Discussion
4.1. Subsidence Profile Along THSR
4.2. The Effects of Angular Deflection on THSR
4.3. Proposing Groundwater Drop Threshold for Subsidence Mitigation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poland, J.F. Guidebook to studies of land subsidence due to groundwater withdrawal; UNESCO: Paris, 1984; Volume 40.
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Land subsidence in the United States; US Geological Survey: Reston, VA, USA, 1999.
- Bagheri-Gavkosh, M.; Hosseini, S.M.; Ataie-Ashtiani, B.; Sohani, Y.; Ebrahimian, H.; Morovat, F.; Ashrafi, S. Land subsidence: A global challenge. Science of The Total Environment 2021, 778, 146193. [Google Scholar] [CrossRef]
- Gambolati, G.; Teatini, P.; Ferronato, M. Anthropogenic Land Subsidence. In Encyclopedia of Hydrological Sciences; John Wiley & Sons, Ltd.: Chichester, UK, 2006; pp. 231-245.
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Faunt, C.C.; Sneed, M.; Traum, J.; Brandt, J.T. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeology Journal 2016, 24, 675–684. [Google Scholar] [CrossRef]
- Ireland, R.L.; Poland, J.F.; Riley, F.S. Land subsidence in the San Joaquin Valley, California, as of 1980; U.S. Geological Survey: Reston, VA, 1984.
- Francesca, C.; Deodato, T. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sensing of Environment 2021, 253, 112161. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, H.; Zhang, Y.; Warner, T.A.; Wang, C. Spatiotemporal Evolution of Land Subsidence in the Beijing Plain 2003–2015 Using Persistent Scatterer Interferometry (PSI) with Multi-Source SAR Data. Remote Sensing 2018, 10, 552. [Google Scholar] [CrossRef]
- Nguyen, M.; Lin, Y.N.; Tran, Q.C.; Ni, C.-F.; Chan, Y.-C.; Tseng, K.-H.; Chang, C.-P. Assessment of long-term ground subsidence and groundwater depletion in Hanoi, Vietnam. Engineering Geology 2022, 299, 106555. [Google Scholar] [CrossRef]
- Tran, D.H.; Wang, S.J. Land subsidence due to groundwater extraction and tectonic activity in Pingtung Plain, Taiwan. Proceedings of the International Association of Hydrological Sciences 2020, 382, 361–365. [Google Scholar] [CrossRef]
- Liu, C.-H.; Pan, Y.-W.; Liao, J.-J.; Huang, C.-T.; Ouyang, S. Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environmental Geology 2004, 45, 1154–1166. [Google Scholar] [CrossRef]
- Hung, W.-C.; Hwang, C.; Chang, C.-P.; Yen, J.-Y.; Liu, C.-H.; Yang, W.-H. Monitoring severe aquifer-system compaction and land subsidence in Taiwan using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan. Environmental Earth Sciences 2010, 59, 1535–1548. [Google Scholar] [CrossRef]
- Hung, W.-C.; Hwang, C.-w.; Chen, Y.-A.; Chang, C.-P.; Yen, J.-Y.; Hooper, A.; Yang, C.-Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environment 2011, 115, 957–967. [Google Scholar] [CrossRef]
- Hung, W.-C.; Hwang, C.; Liou, J.-C.; Lin, Y.-S.; Yang, H.-L. Modeling aquifer-system compaction and predicting land subsidence in central Taiwan. Engineering Geology 2012, 147-148, 78–90. [Google Scholar] [CrossRef]
- Chang, C.-C.; Wang, T.-N. GPS monitoring ground subsidence associated with seasonal underground water level decline: case analysis for a section of Taiwan High Speed Rail. Surveying and Land Information Science 2006, 66, 45–54. [Google Scholar]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice; John Wiley & Sons: 1996; p. 592.
- Hwang, C.; Hung, W.-C.; Liu, C.-H. Results of geodetic and geotechnical monitoring of subsidence for Taiwan High Speed Rail operation. Natural Hazards 2008, 47, 1–16. [Google Scholar] [CrossRef]
- Hwang, C.; Yang, Y.; Kao, R.; Han, J.; Shum, C.K.; Galloway, D.L.; Sneed, M.; Hung, W.-C.; Cheng, Y.-S.; Li, F. Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China. Scientific Reports 2016, 6, 28160. [Google Scholar] [CrossRef] [PubMed]
- Tung, H.; Hu, J.-C. Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics 2012, 578, 126–135. [Google Scholar] [CrossRef]
- Teatini, P.; Tosi, L.; Strozzi, T.; Carbognin, L.; Wegmüller, U.; Rizzetto, F. Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sensing of Environment 2005, 98, 403–413. [Google Scholar] [CrossRef]
- Polcari, M.; Palano, M.; Fernández, J.; Samsonov, S.V.; Stramondo, S.; Zerbini, S. 3D displacement field retrieved by integrating Sentinel-1 InSAR and GPS data: the 2014 South Napa earthquake. European Journal of Remote Sensing 2016, 49, 1–13. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis, 1 ed.; Springer Dordrecht: 2001; Volume 2, p. 308.
- Lu, C.-H.; Ni, C.-F.; Chang, C.-P.; Yen, J.-Y.; Chuang, R.Y. Coherence Difference Analysis of Sentinel-1 SAR Interferogram to Identify Earthquake-Induced Disasters in Urban Areas. Remote Sensing 2018, 10, 1318. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Xue, F.; Lv, X.; Dou, F.; Yun, Y. A Review of Time-Series Interferometric SAR Techniques: A Tutorial for Surface Deformation Analysis. IEEE Geoscience and Remote Sensing Magazine 2020, 8, 22–42. [Google Scholar] [CrossRef]
- Lu, C.H.; Ni, C.F.; Chang, C.P.; Yen, J.Y.; Hung, W.C. Combination with precise leveling and PSInSAR observations to quantify pumping-induced land subsidence in central Taiwan. Proceedings of IAHS 2015, 372, 77–82. [Google Scholar] [CrossRef]
- Yang, Y.-J.; Hwang, C.; Hung, W.-C.; Fuhrmann, F.; Chen, Y.-A.; Wei, S.-H. Surface Deformation from Sentinel-1A InSAR: Relation to Seasonal Groundwater Extraction and Rainfall in Central Taiwan. Remote Sensing 2019, 11, 2817. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Hu, J.-C.; Chan, Y.-C.; Su, Y.-F.; Chang, C.-H. The Relationship between Surface Displacement and Groundwater Level Change and Its Hydrogeological Implications in an Alluvial Fan: Case Study of the Choshui River, Taiwan. Remote Sensing 2020, 12, 3315. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Chang, C.-P.; Hung, W.-C.; Yen, J.-Y.; Lu, C.-H.; Hwang, C. Space-Time Evolutions of Land Subsidence in the Choushui River Alluvial Fan (Taiwan) from Multiple-Sensor Observations. Remote Sensing 2021, 13, 2281. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters 2008, 35. [Google Scholar] [CrossRef]
- Central Geological, S. Project of groundwater monitoring network in Taiwan during first stage: Research report of Choushui River alluvial fan; 1999.
- Hung, W.C.; Wang, C.; Hwang, C.; Chen, Y.A.; Chiu, H.C.; Lin, S.H. Multiple sensors applied to monitor land subsidence in Central Taiwan. Proceedings of IAHS 2015, 372, 385–391. [Google Scholar] [CrossRef]
- Ge, L.; Ng, A.H.-M.; Du, Z.; Chen, H.-Y.; Li, X. Integrated space geodesy for mapping land deformation over Choushui River Fluvial Plain, Taiwan. International Journal of Remote Sensing 2017, 38, 6319–6345. [Google Scholar] [CrossRef]
- Nainggolan, L.; Ni, C.-F.; Darmawan, Y.; Lo, W.-C.; Lee, I.-H.; Lin, C.-P.; Hiep, N.H. Cost-Effective Groundwater Potential Mapping by Integrating Multiple Remote Sensing Data and the Index–Overlay Method. Remote Sensing 2024, 16, 502. [Google Scholar] [CrossRef]
- Chu, H.-J.; Lin, C.-W.; Burbey, T.J.; Ali, M.Z. Spatiotemporal Analysis of Extracted Groundwater Volumes Estimated from Electricity Consumption. Groundwater 2020, 58, 962–972. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Chen, W.-P.; Lee, R.-H. Estimation of groundwater recharge using water balance coupled with base-flow-record estimation and stable-base-flow analysis. Environmental Geology 2006, 51, 73–82. [Google Scholar] [CrossRef]
- Nainggolan, L.; Ni, C.-F.; Darmawan, Y.; Lee, I.-H.; Lin, C.-P.; Li, W.-C. Data-Driven Approach to Assess Spatial-Temporal Interactions of Groundwater and Precipitation in Choushui River Groundwater Basin, Taiwan. Water 2020, 12, 3097. [Google Scholar] [CrossRef]
- G.P.S. Lab of Academia Sinica. GPS Processed Data. 2022.
- Herring, T.A.; King, R.W.; McClusky, S.C. Documentation for the GAMIT GPS Analysis Software, Release 10.0 ed.; 2002.
- Lyard, F.; Lefevre, F.; Letellier, T.; Francis, O. Modelling the global ocean tides: modern insights from FES2004. Ocean Dynamics 2006, 56, 394–415. [Google Scholar] [CrossRef]
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters 2006, 33. [Google Scholar] [CrossRef]
- Altamimi, Z.; Collilieux, X.; Métivier, L. ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy 2011, 85, 457–473. [Google Scholar] [CrossRef]
- Chen, K.-H.; Yang, M.; Huang, Y.-T.; Ching, K.-E.; Rau, R.-J. Vertical displacement rate field of taiwan from geodetic levelling data 2000-2008. Survey Review 2011, 43, 296–302. [Google Scholar] [CrossRef]
- De Zan, F.; Guarnieri, A.M. TOPSAR: Terrain Observation by Progressive Scans. IEEE Transactions on Geoscience and Remote Sensing 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos, Transactions American Geophysical Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophysical Research Letters 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Xu, W.; Cumming, I. A region-growing algorithm for InSAR phase unwrapping. IEEE Transactions on Geoscience and Remote Sensing 1999, 37, 124–134. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Transactions on Geoscience and Remote Sensing 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Chih-Heng, L.; Chuen-Fa, N.; Chung-Pai, C.; Yi-An, C.; Jiun-Yee, Y. Geostatistical Data Fusion of Multiple Type Observations to Improve Land Subsidence Monitoring Resolution in the Choushui River Fluvial Plain, Taiwan. Terrestrial Atmospheric and Oceanic Sciences 2016, 27, 505–520. [Google Scholar] [CrossRef]
- Hsu, S.-K. Plan for a groundwater monitoring network in Taiwan. Hydrogeology Journal 1998, 6, 405–415. [Google Scholar] [CrossRef]
- Ku, C.-Y.; Liu, C.-Y. Modeling of land subsidence using GIS-based artificial neural network in Yunlin County, Taiwan. Scientific Reports 2023, 13, 4090. [Google Scholar] [CrossRef]
- Hung, W.-C.; Hwang, C.; Sneed, M.; Chen, Y.-A.; Chu, C.-H.; Lin, S.-H. Measuring and Interpreting Multilayer Aquifer-System Compactions for a Sustainable Groundwater-System Development. Water Resources Research 2021, 57, e2020WR028194. [Google Scholar] [CrossRef]
- ASTM D2487-17e1. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: West Conshohocken, PA, USA, 2017.
- Geological Survey and Mining Management Agency, M.o.E.A. Hydrogeological Information System of Taiwan. 2023.
- Burland, J.B.; Wroth, C.P. Settlement of Buildings and Associated Damage; Building Research Establishment: 1975; Volume 33-75.
- Montenegro, P.A.; Carvalho, H.; Ribeiro, D.; Calçada, R.; Tokunaga, M.; Tanabe, M.; Zhai, W.M. Assessment of train running safety on bridges: A literature review. Engineering Structures 2021, 241, 112425. [Google Scholar] [CrossRef]
- Peifeng, M.; Yi, Z.; Zhengjia, Z.; Zherong, W.; Chang, Y. Building risk monitoring and prediction using integrated multi-temporal InSAR and numerical modeling techniques. International Journal of Applied Earth Observation and Geoinformation 2022, 114, 103076. [Google Scholar] [CrossRef]
- Huang, M.-H.; Bürgmann, R.; Hu, J.-C. Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics 2016, 692, 252–264. [Google Scholar] [CrossRef]










| Orbit direction | Ascending |
| Product Type | Single Look Complex (SLC), Interferometric Wide Swath (IW) mode |
| Path | 69 |
| Frame | 74 |
| Incidence Angle (degree) | 31–46 |
| Heading Angle( degree) | 347.6 |
| Azimuth resolution (m) | 20 |
| Range resolution (m) | 5 |
| Polarization | VV + VH |
| Number of images | 292 |
| Acquisition Period | 14th April 2016–28th October 2022 |
| Layer | Sublayer | Number of wells |
| 1 | − | 46 |
| 2 | Shallow | 22 |
| Deep | 62 | |
| 3 | − | 41 |
| 4 | − | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
