Submitted:
14 August 2024
Posted:
14 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Epidemiology
1.2. Microbiology and Pathogenesis
1.3. Risk Factors
1.4. Clinical Presentation
2. Diagnosis
2.1. Blood Culture
2.2. Mannan/Anti-Mannan Antibody
2.3. 1,3-β-. D-Glycan
2.4. T2 Magnetic Resonance (T2MR) Assay
2.5. Polymerase Chain Reaction (PCR) Assays
2.6. Next Generation Sequencing (NGS)
3. Treatment
3.1. Antifungal Agents
3.1.1. Polyenes
3.1.2. Triazoles
3.1.3. Echinocandins
3.1.4. Nucleoside Analogues
3.2. Central Venous Catheters (CVC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weimer, K.E.D.; Smith, P.B.; Puia-Dumitrescu, M.; Aleem, S. Invasive fungal infections in neonates: A review. Pediatr Res 2022, 91, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Flannery, D.D.; Edwards, E.M.; Coggins, S.A.; Horbar, J.D.; Puopolo, K.M. Late-Onset Sepsis Among Very Preterm Infants. Pediatrics. 2022, 150, e2022058813. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, J.; Ding, Y.; Wei, B.; Wang, L.; Xu, S.; Qin, P.; Wei, L.; Jiang, L. Epidemiology of Candida albicans and non-C.albicans of neonatal candidemia at a tertiary care hospital in western China. BMC Infect Dis. 2017, 17, 329. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saha, A.K.; Saha, B. Profile of neonatal candidiasis in tertiary neonatal intensive care unit: A report from a developing country. J Neonatal Perinatal Med. 2023, 3, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.C.; Jiang, S.Y.; Li, S.J.; Han, J.Y.; Zhou, Q.; Li, M.M.; Bai, R.M.; Xia, S.W.; Yang, Z.M.; Ge, J.F.; et al. [Status of fungal sepsis among preterm infants in 25 neonatal intensive care units of tertiary hospitals in China]. Zhonghua Er Ke Za Zhi. 2023, 61, 29–35. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.M.; de Carvalho, A.M.R.; Macêdo, D.P.C.; Jucá, M.B.; Amorim, R.J.M.; Neves, R.P. Candidemia in Brazilian neonatal intensive care units: Risk factors, epidemiology, and antifungal resistance. Braz J Microbiol. 2023, 54, 817–825. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Molla, A.; Albadrani, M. Prevalence and Species Distribution of Neonatal Candidiasis: A Systematic Review and Meta-Analysis. Diseases 2024, 12, 154. [Google Scholar] [CrossRef] [PubMed]
- Ting, J.Y.; Roberts, A.; Synnes, A.; Canning, R.; Bodani, J.; Monterossa, L.; Shah, P.S. Canadian Neonatal Network Investigators. Invasive Fungal Infections in Neonates in Canada: Epidemiology and Outcomes. Pediatr Infect Dis J. 2018, 37, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Calley, J.L.; Warris, A. Recognition and diagnosis of invasive fungal infections in neonates. J Infect 2017, 74 (Suppl. S1), S108–S113. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.; O’Brien, K.; Robinson, J.L.; Davies, D.H.; Simpson, K.; Asztalos, E.; Langley, J.M.; Le Saux, N.; Sauve, R.; Synnes, A.; et al. Invasive candidiasis in low birth weight preterm infants: Risk factors, clinical course and outcome in a prospective multicenter study of cases and their matched controls. BMC Infect Dis. 2014, 14, 327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, Q.; Kelly, E.; Luu, T.M.; Ye, X.Y.; Ting, J.; Shah, P.S.; Lee, S.K. Fungal infection and neurodevelopmental outcomes at 18-30 months in preterm infants. Front Pediatr. 2023, 11, 1145252. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benjamin, D.K., Jr.; Stoll, B.J.; Fanaroff, A.A.; McDonald, S.A.; Oh, W.; Higgins, R.D.; Duara, S.; Poole, K.; Laptook, A.; Goldberg, R. National Institute of Child Health and Human Development Neonatal Research Network. Neonatal candidiasis among extremely low birth weight infants: Risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics 2006, 117, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans—The Virulence Factors and Clinical Manifestations of Infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef] [PubMed]
- Saiprom, N.; Wongsuk, T.; Oonanant, W.; Sukphopetch, P.; Chantratita, N.; Boonsilp, S. Characterization of Virulence Factors in Candida Species Causing Candidemia in a Tertiary Care Hospital in Bangkok, Thailand. J. Fungi 2023, 9, 353. [Google Scholar] [CrossRef]
- Warris, A.; Pana, Z.D.; Oletto, A.; Lundin, R.; Castagnola, E.; Lehrnbecher, T.; Groll, A.H.; Roilides, E.; EUROCANDY Study Group. Etiology and Outcome of Candidemia in Neonates and Children in Europe: An 11-year Multinational Retrospective Study. Pediatr Infect Dis J. 2020, 39, 114–120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sokou, R.; Palioura, A.E.; Kopanou Taliaka, P.; Konstantinidi, A.; Tsantes, A.G.; Piovani, D.; Tsante, K.A.; Gounari, E.A.; Iliodromiti, Z.; Boutsikou, T.; et al. Candida auris Infection, a Rapidly Emerging Threat in the Neonatal Intensive Care Units: A Systematic Review. J. Clin. Med. 2024, 13, 1586. [Google Scholar] [CrossRef] [PubMed]
- Benedict, K.; Roy, M.; Kabbani, S.; Anderson, E.J.; Farley, M.M.; Harb, S.; Harrison, L.H.; Bonner, L.; Wadu, V.L.; Marceaux, K.; et al. Neonatal and Pediatric Candidemia: Results From Population-Based Active Laboratory Surveillance in Four US Locations, 2009–2015. J. Pediatr. Infect. Dis. Soc. 2018, 7, e78–e85. [Google Scholar] [CrossRef]
- Cook, A.; Ferreras-Antolin, L.; Adhisivam, B.; Ballot, D.; Berkley, J.A.; Bernaschi, P.; Carvalheiro, C.G.; Chaikittisuk, N.; Chen, Y.; Chibabhai, V.; et al. Neonatal invasive candidiasis in low- and middle-income countries: Data from the NeoOBS study. Med Mycol. 2023, 61, myad010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Noni, M.; Stathi, A.; Vaki, I.; Velegraki, A.; Zachariadou, L.; Michos, A. Changing Epidemiology of Invasive Candidiasis in Children during a 10-Year Period. J Fungi 2019, 5, 19. [Google Scholar] [CrossRef]
- Chakrabarti, A.; Sood, P.; Rudramurthy, S.M.; Chen, S.; Jillwin, J.; Iyer, R.; Sharma, A.; Harish, B.N.; Roy, I.; Kindo, A.J.; et al. Characteristics, outcome and risk factors for mortality of paediatric patients with ICU-acquired candidemia in India: A multicentre prospective study. Mycoses 2020, 63, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xie, D.; He, N.; Wang, X.; Dong, W.; Lei, X. Prophylactic Use of Fluconazole in Very Premature Infants. Front Pediatr. 2021, 9, 726769. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferrando, G.; Castagnola, E. Prophylaxis of Invasive Fungal Infection in Neonates: A Narrative Review for Practical Purposes. J Fungi 2023, 9, 164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bendel, C.M. Colonization and epithelial adhesion in the pathogenesis of neonatal candidiasis. Semin Perinatol. 2003, 27, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Reef, S.E.; Lasker, B.A.; Butcher, D.S.; McNeil, M.M.; Pruitt, R.; Keyserling, H.; Jarvis, W.R. Nonperinatal nosocomial transmission of Candida albicans in a neonatal intensive care unit: Prospective study. J Clin Microbiol. 1998, 36, 1255–1259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fu, J.; Wang, X.; Wei, B.; Jiang, Y.; Chen, J. Risk factors and clinical analysis of candidemia in very-low-birth-weight neonates. Am J Infect Control. 2016, 44, 1321–1325. [Google Scholar] [CrossRef] [PubMed]
- Taïeb, A. Skin barrier in the neonate. Pediatr Dermatol. 2018, 35 (Suppl. S1), s5–s9. [Google Scholar] [CrossRef] [PubMed]
- Michalski, C.; Kan, Β.; Lavoie, P.M. Antifungal Immunological Defenses in Newborns. Front Immunol. 2017, 8, 281. [Google Scholar] [CrossRef]
- Hou, S.; Wang, X.; Yu, Y.; Ji, H.; Dong, X.; Li, J.; Li, H.; He, H.; Li, Z.; Yang, Z.; et al. Invasive fungal infection is associated with antibiotic exposure in preterm infants: A multi-centre prospective case-control study. J Hosp Infect. 2023, 134, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Eisi, H.; Ibraheem, S.; Hisham, T.; Al-Harbi, A.; Saidy, K.; Ali, I.; Nour, I.; Nasef, N. Risk factors and outcomes of deep tissue Candida invasion in neonates with invasive candidiasis. Mycoses. 2022, 65, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Saiman, L.; Ludington, E.; Pfaller, M.; Rangel-Frausto, S.; Wiblin, R.T.; Dawson, J.; Blumberg, H.M.; Patterson, J.E.; Rinaldi, M.; Edwards, J.E.; et al. Risk factors for candidemia in Neonatal Intensive Care Unit patients. The National Epidemiology of Mycosis Survey study group. Pediatr Infect Dis J. 2000, 19, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Pera, A.; Byun, A.; Gribar, S.; Schwartz, R.; Kumar, D.; Parimi, P. Dexamethasone therapy and Candida sepsis in neonates less than 1250 grams. J Perinatol. 2002, 22, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.S.; Freire, M.S.; Santana, R.N.S.; Martins-Filho, P.R.S.; Cuevas, L.E.; Gurgel, R.Q. Association between histamine-2 receptor antagonists and adverse outcomes in neonates: A systematic review and meta-analysis. PLoS ONE. 2019, 14, e0214135. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat Rev Dis Primers. 2018, 4, 18026. [Google Scholar] [CrossRef] [PubMed]
- Willems, H.M.E.; Stultz, J.S.; Coltrane, M.E.; Fortwendel, J.P.; Peters, B.M. Disparate Candida albicans Biofilm Formation in Clinical Lipid Emulsions Due to Capric Acid-Mediated Inhibition. Antimicrob Agents Chemother. 2019, 63, e01394-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Menezes, R.P.; Ferreira, I.C.D.S.; Lopes, M.S.M.; de Jesus, T.A.; de Araújo, L.B.; Santos Pedroso, R.D.; Röder, D.V.D.B. Epidemiological indicators and predictors of lethality associated with fungal infections in a NICU: A historical series. J Pediatr (Rio J). 2024, 100, 267–276. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barton, M.; O’Brien, K.; Robinson, J.L.; Davies, D.H.; Simpson, K.; Asztalos, E.; Langley, J.M.; Le Saux, N.; Sauve, R.; Synnes, A.; et al. Invasive candidiasis in low birth weight preterm infants: Risk factors, clinical course and outcome in a prospective multicenter study of cases and their matched controls. BMC Infect Dis. 2014, 14, 327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kelly, M.S.; Benjamin, D.K., Jr.; Smith, P.B. The epidemiology and diagnosis of invasive candidiasis among premature infants. Clin Perinatol. 2015, 42, 105–117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manzoni, P.; Farina, D.; Galletto, P.; Leonessa, M.; Priolo, C.; Arisio, R.; Gomirato, G. Type and number of sites colonized by fungi and risk of progression to invasive fungal infection in preterm neonates in neonatal intensive care unit. J Perinat Med. 2007, 35, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, R.; Scarrow, E.; Hornik, C.; Greenberg, R.G. Neonatal invasive candidiasis: Updates on clinical management and prevention. Lancet Child Adolesc Health. 2022, 6, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Qiu, M.; Niu, X.; Wang, S.; Wang, F.; Cao, J.; Tang, S.; Cheng, L.; Mei, Y.; Liang, H.; et al. End-organ damage from neonatal invasive fungal infection: A 14-year retrospective study from a tertiary center in China. BMC Infect Dis. 2024, 24, 521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benjamin, D.K., Jr.; Poole, C.; Steinbach, W.J.; Rowen, J.L.; Walsh, T.J. Neonatal candidemia and end-organ damage: A critical appraisal of the literature using meta-analytic techniques. Pediatrics. 2003, 112, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Noyola, D.E.; Fernandez, M.; Moylett, E.H.; Baker, C.J. Ophthalmologic, visceral, and cardiac involvement in neonates with candidemia. Clin Infect Dis. 2001, 32, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Karlowicz, M.G. Candidal renal and urinary tract infection in neonates. Semin Perinatol. 2003, 27, 393–400. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Pana, Z.D.; Lehrnbecher, T.; Steinbach, W.J.; Warris, A. Recognition and Clinical Presentation of Invasive Fungal Disease in Neonates and Children. J Pediatric Infect Dis Soc. 2017, 6, S12–S21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pana, Z.D.; Dotis, J.; Iosifidis, E.; Roilides, E. Fungal Endocarditis in Neonates: A Review of Seventy-one Cases (1971-2013). Pediatr Infect Dis J. 2015, 34, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Pammi, M. Candida infections in neonates: Epidemiology, clinical manifestations, and diagnosis. In: UpToDate; Edwards, M.; Puopolo, K. (Ed). Available online: www.uptodate.com (accessed on 5 July 2024).
- Robertson, N.J.; Kuna, J.; Cox, P.M.; Lakhoo, K. Spontaneous intestinal perforation and Candida peritonitis presenting as extensive necrotizing enterocolitis. Acta Paediatr. 2003, 92, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barantsevich, N.; Barantsevich, E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics 2022, 11, 718. [Google Scholar] [CrossRef]
- Keighley, C.; Cooley, L.; Morris, A.J.; Ritchie, D.; Clark, J.E.; Boan, P.; Worth, L.J. Australasian Antifungal Guidelines Steering Committee. Consensus guidelines for the diagnosis and management of invasive candidiasis in haematology, oncology and intensive care settings, 2021. Intern Med J. 2021, 51, 89–117. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, C.D.; Samsa, G.P.; Schell, W.A.; Reller, L.B.; Perfect, J.R.; Alexander, B.D. Quantitation of Candida CFU in initial positive blood cultures. J Clin Microbiol. 2011, 49, 2879–2883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bourika, V.; Siahanidou, T.; Theodoridou, K.; Tsakris, A.; Vrioni, G.; Michos, A. Evaluation of the mannan antigen assay in neonates with or without Candida albicans colonization. Med Mycol. 2024, 62, 138. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliveri, S.; Trovato, L.; Betta, P.; Romeo, M.G.; Nicoletti, G. Experience with the Platelia Candida ELISA for the diagnosis of invasive candidosis in neonatal patients. Clin Microbiol Infect. 2008, 14, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Montagna, M.T.; Lovero, G.; De Giglio, O.; Iatta, R.; Caggiano, G.; Montagna, O.; Laforgia, N.; AURORA Project Group. Invasive fungal infections in neonatal intensive care units of Southern Italy: A multicentre regional active surveillance (AURORA project). J Prev Med Hyg. 2010, 51, 125–130. [Google Scholar] [PubMed]
- Cohen, J.F.; Ouziel, A.; Matczak, S.; Brice, J.; Spijker, R.; Lortholary, O.; Bougnoux, M.E.; Toubiana, J. Diagnostic accuracy of serum (1,3)-beta-d-glucan for neonatal invasive candidiasis: Systematic review and meta-analysis. Clin Microbiol Infect. 2020, 26, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Wu, Y.; Lai, W.; Lu, W.; Mu, X. The diagnostic value of (1,3)-β-D-glucan alone or combined with traditional inflammatory markers in neonatal invasive candidiasis. BMC Infect Dis. 2019, 19, 716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreras-Antolin, L.; Borman, A.; Diederichs, A.; Warris, A.; Lehrnbecher, T. Serum Beta-D-Glucan in the Diagnosis of Invasive Fungal Disease in Neonates, Children and Adolescents: A Critical Analysis of Current Data. J Fungi 2022, 8, 1262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cliquennois, P.; Scherdel, P.; Lavergne, R.A.; Flamant, C.; Morio, F.; Cohen, J.F.; Launay, E.; Gras Le Guen, C. Serum (1 → 3)-β-D-glucan could be useful to rule out invasive candidiasis in neonates with an adapted cut-off. Acta Paediatr. 2021, 110, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Mylonakis, E.; Clancy, C.J.; Ostrosky-Zeichner, L.; Garey, K.W.; Alangaden, G.J.; Vazquez, J.A.; Groeger, J.S.; Judson, M.A.; Vinagre, Y.M.; Heard, S.O.; et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: A clinical trial. Clin Infect Dis. 2015, 60, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Lucignano, B.; Cento, V.; Agosta, M.; Ambrogi, F.; Albitar-Nehme, S.; Mancinelli, L.; Mattana, G.; Onori, M.; Galaverna, F.; Di Chiara, L.; et al. Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population. J Clin Microbiol. 2022, 60, e0029222. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Monday, L.M.; Parraga Acosta, T.; Alangaden, G. T2Candida for the Diagnosis and Management of Invasive Candida Infections. J Fungi 2021, 7, 178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramos, J.T.; Villar, S.; Bouza, E.; Bergon-Sendin, E.; Perez Rivilla, A.; Collados, C.T.; Andreu, M.; Reyes, C.S.; Campos-Herrero, M.I.; de Heredia, J.L.; et al. Performance of a Quantitative PCR-Based Assay and Beta-d-Glucan Detection for Diagnosis of Invasive Candidiasis in Very-Low-Birth-Weight Preterm Neonatal Patients (CANDINEO Study). J Clin Microbiol. 2017, 55, 2752–2764. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, B.; Yang, Q. Updates in Laboratory Identification of Invasive Fungal Infection in Neonates. Microorganisms. 2023, 11, 1001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agudelo-Pérez, S.; Fernández-Sarmiento, J.; Rivera León, D.; Peláez, R.G. Metagenomics by next-generation sequencing (mNGS) in the etiological characterization of neonatal and pediatric sepsis: A systematic review. Front Pediatr. 2023, 11, 1011723. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Overbeek, R.; Leitl, C.J.; Stoll, S.E.; Wetsch, W.A.; Kammerer, T.; Mathes, A.; Böttiger, B.W.; Seifert, H.; Hart, D.; Dusse, F. The Value of Next-Generation Sequencing in Diagnosis and Therapy of Critically Ill Patients with Suspected Bloodstream Infections: A Retrospective Cohort Study. J Clin Med. 2024, 13, 306. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Daniel, K.; Greenberg, R.G.; Boutzoukas, A.; Katakam, L. Updated Perspectives on the Diagnosis and Management of Neonatal Invasive Candidiasis. Research and Reports in Neonatology 2023, 13, 45–63. [Google Scholar] [CrossRef]
- Lancaster, D.P.; Friedman, D.F.; Chiotos, K.; Sullivan, K.V. Blood Volume Required for Detection of Low Levels and Ultralow Levels of Organisms Responsible for Neonatal Bacteremia by Use of Bactec Peds Plus/F, Plus Aerobic/F Medium, and the BD Bactec FX System: An In Vitro Study. J Clin Microbiol. 2015, 53, 3609–3613. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cuenca-Estrella, M.; Verweij, P.E.; Arendrup, M.C.; Arikan-Akdagli, S.; Bille, J.; Donnelly, J.P.; Jensen, H.E.; Lass-Flörl, C.; Richardson, M.D.; Akova, M.; et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Diagnostic procedures. Clin Microbiol Infect. 2012, 18, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.; Catel, R.; et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis. 2018, 67, e1–e94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harewood, F.C.; Curtis, N.; Daley, A.J.; Bryant, P.A.; Gwee, A.; Connell, T.G. Adequate or Inadequate? The Volume of Blood Submitted for Blood Culture at a Tertiary Children’s Hospital. Clin Pediatr 2018, 57, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, S. Ideal blood inoculant volume for neonatal sepsis evaluation: An alternative approach. Pediatr Res. 2021, 90, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Clancy, C.J.; Nguyen, M.H. Finding the “missing 50%” of invasive candidiasis: How nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis. 2013, 56, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Schelonka, R.L.; Moser, S.A. Time to positive culture results in neonatal Candida septicemia. J Pediatr. 2003, 142, 564–565. [Google Scholar] [CrossRef] [PubMed]
- Morrell, M.; Fraser, V.J.; Kollef, M.H. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: A potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005, 49, 3640–3645. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choe, K.W.; Lim, Y.K.; Lee, M.K. Comparison of new and old BacT/ALERT aerobic bottles for detection of Candida species. PLoS ONE. 2023, 18, e0288674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clancy, C.J.; Nguyen, M.H. Diagnosing Invasive Candidiasis. J Clin Microbiol. 2018, 56, e01909-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahlström, M.G.; Antsupova, V.S.; Pedersen, M.; Johansen, H.K.; Hansen, D.S.; Knudsen, I.J.D. A Dedicated Mycosis Flask Increases the Likelihood of Identifying Candidemia Sepsis. J Fungi 2023, 9, 441. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, K.; Luo, Y.; Zhang, W.; Xie, S.; Yan, P.; Liu, Y.; Li, Y.; Ma, X.; Xiao, K.; Fu, H.; et al. Diagnostic value of Candida mannan antigen and anti-mannan IgG and IgM antibodies for Candida infection. Mycoses. 2020, 63, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Huppler, A.R.; Fisher, B.T.; Lehrnbecher, T.; Walsh, T.J.; Steinbach, W.J. Role of Molecular Biomarkers in the Diagnosis of Invasive Fungal Diseases in Children. J Pediatric Infect Dis Soc. 2017, 6, S32–S44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cornu, M.; Goudjil, S.; Kongolo, G.; Leke, A.; Poulain, D.; Chouaki, T.; Sendid, B. Evaluation of the (1,3)-beta-D-glucan assay for the diagnosis of neonatal invasive yeast infections. Med. Mycol. 2018, 56, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Shabaan, A.E.; Elbaz, L.M.; El-Emshaty, W.M.; Shouman, B. Role of serum (1,3)-β-d-glucan assay in early diagnosis of invasive fungal infections in a neonatal intensive care unit. J Pediatr (Rio J). 2018, 94, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, F.; Zhu, X.; Shen, L.; Zhang, S.X. Evaluation of a Novel Plasma (1,3)-β-d-Glucan Detection Assay for Diagnosis of Candidemia in Pediatric Patients. J Clin Microbiol. 2015, 53, 3017–3020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, D.L.; Chen, X.; Zhu, C.G.; Li, Z.W.; Xia, Y.; Guo, X.G. Pooled analysis of T2 Candida for rapid diagnosis of candidiasis. BMC Infect Dis. 2019, 19, 798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamula, C.L.; Hughes, K.; Fisher, B.T.; Zaoutis, T.E.; Singh, I.R.; Velegraki, A. T2Candida Provides Rapid and Accurate Species Identification in Pediatric Cases of Candidemia. Am J Clin Pathol. 2016, 145, 858–861. [Google Scholar] [CrossRef] [PubMed]
- Mylonakis, E.; Zacharioudakis, I.M.; Clancy, C.J.; Nguyen, M.H.; Pappas, P.G. Efficacy of T2 Magnetic Resonance Assay in Monitoring Candidemia after Initiation of Antifungal Therapy: The Serial Therapeutic and Antifungal Monitoring Protocol (STAMP) Trial. J Clin Microbiol. 2018, 56, e01756-17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kidd, S.E.; Chen, S.C.; Meyer, W.; Halliday, C.L. A New Age in Molecular Diagnostics for Invasive Fungal Disease: Are We Ready? Front Microbiol. 2020, 10, 2903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taira, C.L.; Okay, T.S.; Delgado, A.F.; Ceccon, M.E.; de Almeida, M.T.; Del Negro, G.M. A multiplex nested PCR for the detection and identification of Candida species in blood samples of critically ill paediatric patients. BMC Infect Dis. 2014, 14, 406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Avni, T.; Leibovici, L.; Paul, M. PCR diagnosis of invasive candidiasis: Systematic review and meta-analysis. J Clin Microbiol. 2011, 49, 665–670. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kojabad, A.A.; Farzanehpour, M.; Galeh, H.E.G.; Dorostkar, R.; Jafarpour, A.; Bolandian, M.; Nodooshan, M.M. Droplet Digital PCR of Viral DNA/RNA, Current Progress, Challenges, and Future Perspectives. J. Med. Virol. 2021, 93, 4182–4197. [Google Scholar] [CrossRef]
- Li, H.T.; Lin, B.C.; Huang, Z.F.; Yang, C.Z.; Huang, W.M. [Clinical Value of Droplet Digital PCR in Rapid Diagnosis of Invasive Fungal Infection in Neonates]. Zhongguo Dang Dai Er Ke Za Zhi 2019, 21, 45–51. [Google Scholar] [PubMed]
- Yang, Q.; He, B.; Chen, C.; Wang, H.; Li, W.; Xue, X.; Qiu, T.; Hao, X.; Lv, F.; Wang, S. A Rapid, Visible, and Highly Sensitive Method for Recognizing and Distinguishing Invasive Fungal Infections via CCP-FRET Technology. ACS Infect. Dis. 2021, 7, 2816–2825. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, D.; Xia, H.; Wang, J.; Yang, H.; Xu, L.; Huang, K.; Fang, J. Metagenomic next-generation sequencing for detection of pathogens in children with hematological diseases complicated with infection. Mol Cell Probes. 2023, 67, 101889. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.L.; Hornik, C.D.; Zimmerman, K. Pharmacokinetic, efficacy, and safety considerations for the use of antifungal drugs in the neonatal population. Expert Opin Drug Metab Toxicol. 2020, 16, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Tezer, H.; Canpolat, F.E.; Dilmen, U. Invasive fungal infections during the neonatal period: Diagnosis, treatment and prophylaxis. Expert Opin Pharmacother. 2012, 13, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Bersani, I.; Piersigilli, F.; Goffredo, B.M.; Santisi, A.; Cairoli, S.; Ronchetti, M.P.; Auriti, C. Antifungal Drugs for Invasive Candida Infections (ICI) in Neonates: Future Perspectives. Front Pediatr. 2019, 7, 375. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faustino, C.; Pinheiro, L. Lipid Systems for the Delivery of Amphotericin B in Antifungal Therapy. Pharmaceutics. 2020, 12, 29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Akinosoglou, K.; Rigopoulos, E.A.; Papageorgiou, D.; Schinas, G.; Polyzou, E.; Dimopoulou, E.; Gogos, C.; Dimopoulos, G. Amphotericin B in the Era of New Antifungals: Where Will It Stand? J Fungi 2024, 10, 278. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Downes, K.J.; Fisher, B.T.; Zane, N.R. Administration and Dosing of Systemic Antifungal Agents in Pediatric Patients. Paediatr Drugs. 2020, 22, 165–188. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Le, J.; Adler-Shohet, F.C.; Nguyen, C.; Lieberman, J.M. Nephrotoxicity associated with amphotericin B deoxycholate in neonates. Pediatr Infect Dis J. 2009, 28, 1061–1063. [Google Scholar] [CrossRef] [PubMed]
- Cetin, H.; Yalaz, M.; Akisu, M.; Hilmioglu, S.; Metin, D.; Kultursay, N. The efficacy of two different lipid-based amphotericin B in neonatal Candida septicemia. Pediatr Int. 2005, 47, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Silver, C.; Rostas, S. Comprehensive drug utilization review in neonates: Liposomal amphotericin B. J Pharm Pharmacol. 2018, 70, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Unni, J.C. Review of Amphotericin B for Invasive Fungal Infections in Neonates and Children. Pediatr Inf Dis. 2020, 2, 114–117. [Google Scholar]
- Hope, W.W.; Castagnola, E.; Groll, A.H.; Roilides, E.; Akova, M.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Cornely, O.A.; et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: Prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect. 2012, 18 (Suppl. S7), 38–52. [Google Scholar] [CrossRef] [PubMed]
- Ambreen, G.; Rehman, A.; Hussain, K.; Sohail, M.; Javed, S.; Shamim, S.; Ali, U.; Ahmad, K.; Rizvi, A. Neonatal fluid and electrolytes profile effect on amphotericin B associated nephrotoxicity in neonatal tertiary care unit of Karachi-Pakistan. Expert Opin Drug Saf. 2020, 19, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Andrew, E.C.; Curtis, N.; Coghlan, B.; Cranswick, N.; Gwee, A. Adverse effects of amphotericin B in children; a retrospective comparison of conventional and liposomal formulations. Br J Clin Pharmacol. 2018, 4, 1006–1012. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Groll, A.H.; Giri, N.; Petraitis, V.; Petraitiene, R.; Candelario, M.; Bacher, J.S.; Piscitelli, S.C.; Walsh, T.J. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis. 2000, 182, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Hornik, C.D.; Bondi, D.S.; Greene, N.M.; Cober, M.P.; John, B. Review of Fluconazole Treatment and Prophylaxis for Invasive Candidiasis in Neonates. J Pediatr Pharmacol Ther. 2021, 26, 115–122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wenzl, T.G.; Schefels, J.; Hörnchen, H.; Skopnik, H. Pharmacokinetics of oral fluconazole in premature infants. Eur J Pediatr. 1998, 157, 661–662. [Google Scholar] [CrossRef] [PubMed]
- Piper, L.; Smith, P.B.; Hornik, C.P.; Cheifetz, I.M.; Barrett, J.S.; Moorthy, G.; Hope, W.W.; Wade, K.C.; Cohen-Wolkowiez, M.; Benjamin, D.K., Jr. Fluconazole loading dose pharmacokinetics and safety in infants. Pediatr Infect Dis J. 2011, 30, 375–378. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leroux, S.; Jacqz-Aigrain, E.; Elie, V.; Legrand, F.; Barin-Le Guellec, C.; Aurich, B.; Biran, V.; Dusang, B.; Goudjil, S.; Coopman, S.; et al. Pharmacokinetics and safety of fluconazole and micafungin in neonates with systemic candidiasis: A randomized, open-label clinical trial. Br J Clin Pharmacol. 2018, 84, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Autmizguine, J.; Guptill, J.T.; Cohen-Wolkowiez, M.; Benjamin, D.K., Jr.; Capparelli, E.V. Pharmacokinetics and pharmacodynamics of antifungals in children: Clinical implications. Drugs. 2014, 74, 891–909. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreras-Antolín, L.; Sharland, M.; Warris, A. Management of Invasive Fungal Disease in Neonates and Children. Pediatr Infect Dis J. 2019, 38, S2–S6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Driessen, M.; Ellis, J.B.; Cooper, P.A.; Wainer, S.; Muwazi, F.; Hahn, D.; Gous, H.; De Villiers, F.P. Fluconazole vs. amphotericin B for the treatment of neonatal fungal septicemia: A prospective randomized trial. Pediatr Infect Dis J. 1996, 15, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Ascher, S.B.; Smith, P.B.; Watt, K.; Benjamin, D.K.; Cohen-Wolkowiez, M.; Clark, R.H.; Benjamin, D.K., Jr.; Moran, C. Antifungal therapy and outcomes in infants with invasive Candida infections. Pediatr Infect Dis J. 2012, 31, 439–443. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mondal, R.K.; Singhi, S.C.; Chakrabarti, A.M.J. Randomized comparison between fluconazole and itraconazole for the treatment of candidemia in a pediatric intensive care unit: A preliminary study. Pediatr Crit Care Med. 2004, 5, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Sun, K.Y.; Feng, X.W.; Ran, X.; Lama, J.; Ran, Y.P. Efficacy and safety of itraconazole use in infants. World J Pediatr. 2016, 12, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Gamal, A.; Long, L.; Herrada, J.; Aram, J.; McCormick, T.S.; Ghannoum, M.A. Efficacy of Voriconazole, Isavuconazole, Fluconazole, and Anidulafungin in the Treatment of Emerging Candida auris Using an Immunocompromised Murine Model of Disseminated Candidiasis. Antimicrob Agents Chemother. 2021, 65, e0054921. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watt, K.; Manzoni, P.; Cohen-Wolkowiez, M.; Rizzollo, S.; Boano, E.; Jacqz-Aigrain, E.; Benjamin, D.K. Triazole use in the nursery: Fluconazole, voriconazole, posaconazole, and ravuconazole. Curr Drug Metab. 2013, 14, 193–202. [Google Scholar] [PubMed] [PubMed Central]
- Tsekoura, M.; Ioannidou, M.; Pana, Z.D.; Haidich, A.B.; Antachopoulos, C.; Iosifidis, E.; Kolios, G.; Roilides, E. Efficacy and Safety of Echinocandins for the Treatment of Invasive Candidiasis in Children: A Meta-analysis. Pediatr Infect Dis J. 2019, 38, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Petraitiene, R.; Petraitis, V.; Zaw, M.H.; Hussain, K.; Ricart Arbona, R.J.; Roilides, E.; Walsh, T.J. Combination of Systemic and Lock-Therapies with Micafungin Eradicate Catheter-Based Biofilms and Infections Caused by Candida albicans and Candida parapsilosis in Neutropenic Rabbit Models. J. Fungi 2024, 10, 293. [Google Scholar] [CrossRef]
- Benjamin, D.K.; Kaufman, D.A.; Hope, W.W.; Smith, P.B.; Arrieta, A.; Manzoni, P.; Kovanda, L.L.; Lademacher, C.; Isaacson, B.; Jednachowski, D.; et al. A Phase 3 Study of Micafungin Versus Amphotericin B Deoxycholate in Infants With Invasive Candidiasis. Pediatr Infect Dis J. 2018, 37, 992–998. [Google Scholar] [CrossRef]
- Queiroz-Telles, F.; Berezin, E.; Leverger, G.; Freire, A.; van der Vyver, A.; Chotpitayasunondh, T.; Konja, J.; Diekmann-Berndt, H.; Koblinger, S.; Groll, A.H.; et al. Micafungin Invasive Candidiasis Study Group. Micafungin versus liposomal amphotericin B for pediatric patients with invasive candidiasis: Substudy of a randomized double-blind trial. Pediatr Infect Dis J. 2008, 27, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Heresi, G.P.; Gerstmann, D.R.; Reed, M.D.; van den Anker, J.N.; Blumer, J.L.; Kovanda, L.; Keirns, J.J.; Buell, D.N.; Kearns, G.L. The pharmacokinetics and safety of micafungin, a novel echinocandin, in premature infants. Pediatr Infect Dis J. 2006, 25, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/documents/product-information/mycamine-epar-product-information_en.pdf (accessed on 5 August 2024).
- Auriti, C.; Falcone, M.; Ronchetti, M.P.; Goffredo, B.M.; Cairoli, S.; Crisafulli, R.; Piersigilli, F.; Corsetti, T.; Dotta, A.; Pai, M.P. High-Dose Micafungin for Preterm Neonates and Infants with Invasive and Central Nervous System Candidiasis. Antimicrob Agents Chemother. 2016, 60, 7333–7339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parramon-Teixido, C.J.; Garcia Esquerda, C.; Frick, M.A.; Tripodi, C.; Gomez-Ganda, L.; Ruiz-Campillo, C.W.; Cabañas-Poy, M.J. Case Report: Micafungin for treating Candida glabrata urinary infection: A clinical case in a premature neonate. Front Pediatr. 2024, 17, 1397456. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grau, S.; Luque, S.; Echeverría-Esnal, D.; Sorlí, L.; Campillo, N.; Montero, M.; Álvarez Lerma, F.; Plasencia, V.; Horcajada, J.P. Urinary micafungin levels are sufficient to treat urinary tract infections caused by Candida spp. Int J Antimicrob Agents. 2016, 48, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Zuo, X.S.; Liu, Y.; Cai, X.; Zhan, L.; Hu, K. Association of different Candida species with catheter-related candidemia, and the potential antifungal treatments against their adhesion properties and biofilm-forming capabilities. J Clin Lab Anal. 2021, 35, e23738. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seibel, N.L.; Schwartz, C.; Arrieta, A.; Flynn, P.; Shad, A.; Albano, E.; Keirns, J.; Lau, W.M.; Facklam, D.P.; Buell, D.N.; et al. Safety, tolerability, and pharmacokinetics of Micafungin (FK463) in febrile neutropenic pediatric patients. Antimicrob Agents Chemother. 2005, 49, 3317–3324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manzoni, P.; Wu, C.; Tweddle, L.; Roilides, E. Micafungin in premature and non-premature infants: A systematic review of 9 clinical trials. Pediatr Infect Dis J. 2014, 33, e291–e298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Natarajan, G.; Lulic-Botica, M.; Rongkavilit, C.; Pappas, A.; Bedard, M. Experience with caspofungin in the treatment of persistent fungemia in neonates. J Perinatol. 2005, 25, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Llorens, X.; Macias, M.; Maiya, P.; Pineros, J.; Jafri, H.S.; Chatterjee, A.; Ruiz, G.; Raghavan, J.; Bradshaw, S.K.; Kartsonis, N.A.; et al. Pharmacokinetics and safety of caspofungin in neonates and infants less than 3 months of age. Antimicrob Agents Chemother. 2009, 53, 869–875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, J.; Nakwa, F.L.; Araujo Motta, F.; Liu, H.; Dorr, M.B.; Anderson, L.J.; Kartsonis, N. A randomized, double-blind trial investigating the efficacy of caspofungin versus amphotericin B deoxycholate in the treatment of invasive candidiasis in neonates and infants younger than 3 months of age. J Antimicrob Chemother. 2020, 75, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Carmo, A.; Rocha, M.; Pereirinha, P.; Tomé, R.; Costa, E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics 2023, 12, 884. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.A.; Sobel, J.D. Anidulafungin: A novel echinocandin. Clin Infect Dis. 2006, 43, 215–222. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/documents/product-information/ecalta-epar-product-information_en.pdf (accessed on 8 August 2024).
- Roilides, E.; Carlesse, F.; Tawadrous, M.; Leister-Tebbe, H.; Conte, U.; Raber, S.; Swanson, R.; Yan, J.L.; Aram, J.A.; Queiroz-Telles, F.; et al. Safety, Efficacy and Pharmacokinetics of Anidulafungin in Patients 1 Month to <2 Years of Age With Invasive Candidiasis, Including Candidemia. Pediatr Infect Dis J. 2020, 39, 305–309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sigera, L.S.M.; Denning, D.W. Flucytosine and its clinical usage. Ther Adv Infect Dis. 2023, 10, 20499361231161387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bennett, J.E.; Dismukes, W.E.; Duma, R.J.; Medoff, G.; Sande, M.A.; Gallis, H.; Leonard, J.; Fields, B.T.; Bradshaw, M.; Haywood, H.; et al. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med. 1979, 301, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Malinovská, Z.; Čonková, E.; Váczi, P. Biofilm Formation in Medically Important Candida Species. J. Fungi. 2023, 9, 955. [Google Scholar] [CrossRef]
- Lohse, M.B.; Gulati, M.; Johnson, A.D.; Nobile, C.J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol. 2018, 16, 19–31. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kosmeri, C.; Giapros, V.; Serbis, A.; Balomenou, F.; Baltogianni, M. Antibiofilm Strategies in Neonatal and Pediatric Infections. Antibiotics 2024, 13, 509. [Google Scholar] [CrossRef]
- Wijaya, M.; Halleyantoro, R.; Kalumpiu, J.F. Biofilm: The invisible culprit in catheter-induced candidemia. AIMS Microbiol. 2023, 9, 467–485. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, Y.-N.; Hsu, J.-F.; Chu, S.-M.; Lai, M.-Y.; Lin, C.; Huang, H.-R.; Yang, P.-H.; Chiang, M.-C.; Tsai, M.-H. Clinical and Microbiological Characteristics of Neonates with Candidemia and Impacts of Therapeutic Strategies on the Outcomes. J. Fungi 2022, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, P.; Mostert, M.; Castagnola, E. Update on the management of Candida infections in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2015, 100, F454–F459. [Google Scholar] [CrossRef] [PubMed]
- Imbert, C.; Rammaert, B. What Could Be the Role of Antifungal Lock-Solutions? From Bench to Bedside. Pathogens. 2018, 7, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kovács, R.; Majoros, L. Antifungal lock therapy: An eternal promise or an effective alternative therapeutic approach? Lett Appl Microbiol. 2022, 74, 851–862. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
| Advantages | Disadvantages | |
| Blood culture [49,50,51] |
Antifungal susceptibility testing Sensitivity threshold up to <1cfu/ml, depending on the blood volume |
Sensitivity ~50% Difficult to obtain optimal blood volumes in neonates Slow turnaround time (1-3 days) |
| Mannan/anti-mannan antibody [52,53,54] |
Early positivity High sensitivity and positivity (94.4%, 94.2% respectively) High NPV |
Low sensitivity for C.parapsilosis, C.krusei infections Fast elimination and repeat testing may needed |
| 1,3-β-D glucan [55,56,57,58] |
Minimal amount of blood required (<100μl) High sensitivity (>80%) High NPV Useful in treatment monitoring |
The optimal positivity threshold in neonates is not yet determined Frequent false positive results |
| T2MR assay [59,60,61] |
High sensitivity and specificity Sensitivity threshold 1-3cfu/ml, depending on species Rapid turnaround time Useful in treatment monitoring |
Detection of five Candida species High blood volume required |
| PCR techniques [49,50,62,63] |
High sensitivity and specificity High NPV Minimal blood volume required |
Limited data on neonates Technique optimization needed |
| NGS [64,65] |
Detection of multiple microorganisms simultaneously | Inability to differentiate between colonization and infection Slow turnaround time High cost |
| IDSA (2016) [48] | ESCMID (2012) [103] | ||
| Candida bloodstream infection | Candida CNS infection | ||
|
Antifungal agent Agents of choice |
D-Amb 1mg/kg/day or fluconazole 12 mg/kg/day if not on fluconazole prophylaxis |
D-Amb 1mg/kg/day | D-Amb 1mg/kg/day or L-Amb 2.5-7 mg/kg/day or fluconazole 12 mg/kg/day if not on fluconazole prophylaxis (loading dose 25 mg/kg/day can be considered) |
| Alternatives | L-Amb 3-5mg/kg/day as an alternative (caution if urinary tract involvement) | L-Amb 5mg/kg/day as an alternative | ABLC 2.5–5 mg/ kg/day as an alternative |
| Echinocandins with caution, as salvage therapy or when D-Amb or fluconazole cannot be used due to toxicity or resistance. | Flucytosine, 25 mg/kg 4 times daily, may be added as salvage therapy in patients who have not had a clinical response to initial AmB therapy | Micafungin 4-10 mg/kg/day |
|
| After response to initial treatment, step down to fluconazole 12 mg/kg daily is recommended for susceptible isolates | Capsofungin 25 mg/m2/day (limited data available) |
||
| Implanted devices | CVC removal is strongly recommended | It is recommended CNS devices, including ventriculostomy drains and shunts, be removed if feasible. | Removal or replacement of intravenous catheters and/or other implanted prosthetic devices should be considered |
| Therapy duration | 2 weeks after blood culture sterilization and resolution of signs attributable to candidemia | Continue therapy until all signs, symptoms, and CSF and radiological abnormalities have resolved | 2 weeks after blood culture sterilization provided that no unresolved deep infection remains |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).