Submitted:
09 August 2024
Posted:
12 August 2024
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Theory
2.1. Optical Bloch Equations in the Density Matrix Formalism
2.2. Vibronic Coupling and Stochastic Nature due to Solvent Presence
2.3. Nonlinear Optical Susceptibilities: Stochastic and Intramolecular Considerations
3. Results and Discussion
3.1. Nonlinear Optical Properties
3.1.1. Nonlinear Refraction Index
3.1.2. Nonlinear Absorption Coefficient
3.2. Perturbative Influence on the Development of the Zero-Frequency Component
4. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sitkiewicz, S.P.; Rodríguez-Mayorga, M.; Luis, J. M.; and Matito, E. Partition of optical properties into orbital contributions. Phys. Chem. Chem. Phys 2019, 21, 15380–91. [Google Scholar] [CrossRef] [PubMed]
- Herrera, F.; Spano, F. C. Theory of Nanoscale Organic Cavities: The Essential Role of Vibration-Photon Dressed States. ACS Photon. 2018, 5, 65–79. [Google Scholar] [CrossRef]
- Yu, X.; Yuan, Y.; Xu, J.; Yong, K.; Qu, J.; Song, J. Strong Coupling in Microcavity Structures: Principle, Design, and Practical Application. Laser Photon Rev. 2019, 13, 1800219. [Google Scholar] [CrossRef]
- Moncada, F.; Paz, J. L.; Lascano, L.; Costa-Vera, C. Effects of spectral diffusion on the nonlinear optical properties in two- and three-state quantum systems in a four-wave mixing signal. J. Nonlinear Opt. Phys. Mater. 2019, 27, 1850038. [Google Scholar] [CrossRef]
- Hesabi, S.; Afshar, D.; Paris, M. G. A. Non-Markovian evolution of a two-level system interacting with a fluctuating classical field via dipole interaction. Opt. Commun. 2019, 437, 377–81. [Google Scholar] [CrossRef]
- Sakiroglu, S. Linear and nonlinear optical absorption coefficients and refractive index changes in Morse quantum wells under electric field. Int. J. Mod. Phys. B. 2016, 30, 1650209. [Google Scholar] [CrossRef]
- Mukamel, S.; Abramavicius, D. Many-Body Approaches for Simulating Coherent Nonlinear Spectroscopies of Electronic and Vibrational Excitons. Chem. Rev. 2004, 104, 2073–2098. [Google Scholar] [CrossRef] [PubMed]
- Pishchalnikov, R. Application of the differential evolution for simulation of the linear optical of photosynthetic pigments. J. Comput. Phys. 2018, 372, 603–615. [Google Scholar] [CrossRef]
- Paz, J. L.; Ruiz-Hinojosa, E.; Alvarado, Y.; Lascano, L.; Porras, L.; Fernández, L. Study of the nonlinear optical responses in the Four-wave mixing signal in saturation regimen of a two-level system with intramolecular coupling. J. Mod. Opt. 2020, 67, 1031–1039. [Google Scholar] [CrossRef]
- Paz, J. L.; Loroño, M.; Garrido-Schaeffer, A.; González-Paz, L.; Márquez, E.; Vera-Villalobos, J.; Mora, J.; Alvarado, Y. Absorptive and dispersive responses in a two-level molecule with vibronic coupling: Permanent dipole moments effects. Chem. Phys. Lett. 2021, 779, 138885. [Google Scholar] [CrossRef]
- Paz, J. L.; Loroño, M.; González-Paz, L.; Márquez, E.; Vera-Villalobos, J.; Mora, J. R.; Alvarado, Y. Nonlinear optical responses of molecular systems with vibronic in fluctuating environments. J. Nonlinear Opt. Phys. Mater. 2021, 31, 215001. [Google Scholar] [CrossRef]
- Paz, J. L.; Espinoza-Montero, P. ; Loroño. M.; González-Paz. L.; Márquez, E.; Vera-Villalobos, J.; Mora, J.R.; Alvarado, Y. Solvent randomness and intramolecular considerations of optical responses in four-wave mixing. J. Mod. Opt. 2021, 68, 1083–1093. [Google Scholar] [CrossRef]
- Paz, J. L.; Espinoza-Montero, P.; Loroño, M.; Torres, F. J.; González-Paz, L.; Márquez, E.; Vera-Villalobos, J.; Moncada, F.; Alvarado, Y. Propagation and Parametric Amplification in Four-Wave Mixing processes: Intramolecular Coupling and High-Order Effects. Symmetry 2022, 14, 301–321. [Google Scholar] [CrossRef]
- Paz, J. L.; Loroño, M.; Torres, F. J.; González-Paz, L.; Márquez, E.; Mora, J. R.; Alvarado, Y.; Mujica, V. A kinetic model for the equilibrium dynamics of absorption and scattering processes in four-wave mixing spectroscopy. AIP Adv. 2022, 12, 065322. [Google Scholar] [CrossRef]
- Mincigrucci, R.; Foglia, L.; Naumenko, D.; Pedersoli, E.; Simoncig, A.; Cucini, R.; Gessini, A.; Kiskinova, M.; Kurdi, G.; Mahne, N.; Manfredda, M.; Nikolov, I. P.; Principi, E.; Raimondi, L.; Zangrando, M.; Masciovecchio, C.; Capotondi, F.; Bencivenga, F. Advances in instrumentation for FEL-based four-wave-mixing experiments. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip 2018, 907, 132–48. [Google Scholar] [CrossRef]
- Zhang, G.; Lefkidi, G.; Murakami, M.; Hübner, W.; George, T. Introduction to Ultrafast Phenomena: From Femtosecond Magnetism to High-Harmonic Generation. 1st ed. Boca Raton: CRC Press. 2021. [Google Scholar]
- Agrawal, G. P. Four-wave mixing. Nonlinear Fiber Optics. 6a ed. Academic Press; 2019.
- Noudem, P.; Fouejio, D.; Mveme, C. D.; Nya, F.T.; Zekeng, S. S. Electronic, nonlinear optical, UV–vis and NBO analysis of methyl methacrylate for optoelectronic and optical applications: DFT study and impact of conformation Spectrochim Acta A Mol Biomol Spect. 2023, 303, 123267. [Google Scholar]
- Karuppasamy, P.; Kamalesh, T.; Anitha, K.; Senthil, M.; Ramasamy, P.; Verma, S. Design and growth of novel organic molecular Quinoline 4-nitrophenol (QNP) single crystals: For Nonlinear optical (NLO) applications. J. Mol. Struct. 2020, 1210, 128036. [Google Scholar] [CrossRef]
- Binish, B.; Mani, R. K. Synergic effects of Sn4+ doping on the nonlinear optical limiting properties of SnxCd1-xMoO4 nanostructures for optoelectronic applications. J Photochem. Photobiol. A: Chem 2023, 439, 114614. [Google Scholar] [CrossRef]
- Ebnali-Heidari, A.; Ebnali-Heidari, M.; Emami, H. Application of slow-light engineered chalcogenide and silicon photonic crystal waveguides for double-dimensional microwave frequency identification. Optik 2023, 290, 171331. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, J.; Wang, L.; Xiao, L.; Jia, S. Enhanced frequency up-conversion based on four-wave mixing assisted by a Bessel-Gaussian beam in 85Rb atoms. Opt Laser Technol. 2022, 149, 107874. [Google Scholar] [CrossRef]
- Hu, S.; Gai, B.; Li, J.; Chen, Y.; Cai, X.; Wang, P.; Liu, J.; Guo, J. W. Competition of collimated ultraviolet lights generated by four-wave mixing process in Cs vapor. Opt. Commun. 2023, 527, 128960. [Google Scholar] [CrossRef]
- Chen, J.; Yu, Z.; Wang, T.; Liu, Z.; Gao, S. High-speed modulating retro-reflectors with optical phase conjugation compensation. Opt. Commun. 2022, 507, 127629. [Google Scholar] [CrossRef]
- Andrekson, P. A. Applications of nonlinear four-wave mixing in optical communication. Optik 2023, 279, 170740. [Google Scholar] [CrossRef]
- Gao, S.; Bao, X. Chalcogenide Taper and Its Nonlinear Effects and Sensing Applications. iScience 2020, 23, 100802. [Google Scholar] [CrossRef] [PubMed]
- Al-Saidi, I.A.-D.H.A.; Abdulkareem, S.A.-D. Nonlinear optical properties and optical power limiting effect of Giemsa dye. Opt. Laser. Technol. 2016, 82, 150−156.
- Cheng, J. L.; Vermeulen, N.; Sipe, J. E. Third order optical nonlinearity of graphene. New J. Phys. 2014, 16, 053014. [Google Scholar] [CrossRef]
- Yao, C-B.; Zhang, Y-D.; Li, J.; Chen, D-T.; Yin, H-T.; Yu, C-Q.; Yuan, P. Study of the nonlinear optical properties and behavior in phenoxy-phthalocyanines liquid at nanosecond laser pulses. Opt. Mater 2014, 37, 80–86. [CrossRef]
- Siva, V.; Bahadur, S. A.; Shameem, A. ; Athimoolam. S.; Lakshmi, K. U.; Vinitha, G. Synthesis, structural, vibrational, thermal, dielectric and optical properties of third order nonlinear optical single crystal for optical power limiting applications. J. Mol. Struct 2019, 1191, 110–117. [Google Scholar] [CrossRef]
- Naik, V. S.; Patil, P. S.; Wong, Q. A.; Quah, C. K.; Gummagol, N. B.; Jayanna, H. S. Molecular structure, linear optical, second and third-order nonlinear optical properties of two non-centrosymmetric thiophene-chalcone derivatives. J. Mol. Struct. 2020, 1222, 128901. [Google Scholar] [CrossRef]
- Dai, H.; Fu, S.; Luo, S. Atomic nonclassicality in the Jaynes-Cummings model. Phys. Lett. A. 2020, 384, 126371. [Google Scholar] [CrossRef]
- Zhang, S.; Li, W.; Li, K.; Li, Y.; Mu, F.; Feng, Y.; Liu, Y.; Zhang, Y. Triphoton correlations in six-wave mixing. Ann. Phys 2020, 412, 168000. [Google Scholar] [CrossRef]
- Holtum, T.; Bloino, J.; Pappas, C.; Kumar, V.; Barone, V.; Schlücker, S. Ultraviolet resonance Raman spectroscopy of anthracene: Experiment and theory. J. of Raman Spect. 2021, 52, 2292–300. [Google Scholar] [CrossRef]
- Li, Z.; Hirst, J.D. Quantitative first principles calculations of protein circular dichroism in the near ultraviolet. Chem Sci 2017, 8, 4318–33. [Google Scholar] [CrossRef] [PubMed]
- Patoz, A.; Begušić, T.; Vaníček. J. 2018 On-the-Fly Ab Initio Semiclassical Evaluation of Absorption Spectra of Polyatomic Molecules beyond the Condon Approximation. J. Phys. Chem. Lett. 2018, 9, 2367–72. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D. M.; Jasim, S. B.; Dyer, N. T.; Auvray, F.; Réfrégiers, M.; Hirst, J. D. Electronic Circular Dichroism Spectroscopy of Proteins. Chem. 2019, 5, 2751–74. [Google Scholar] [CrossRef]
- Colmenares, P.J. Role of a Stochastic Friction Coefficient in Open Channel Noise. J. Theor. Biol. 1993, 161, 175–198. [Google Scholar] [CrossRef] [PubMed]
- Mukamel S. Principles of Nonlinear Optical Spectroscopy. 1a ed. New York: Oxford University Press, 1995.
- Paz, J. L.; Mastrodomenico, A.; Costa-Vera, C.; Cárdenas-García, J. F.; Rodríguez, L. G. Rotating wave approximation effects on the nonlinear optical responses of complex molecular systems using a four-wave mixing. J. Mod. Opt. 2015, 62, 403–11. [Google Scholar] [CrossRef]
- Sancho, J.M.; San Miguel, M.; Katz, S.L.; Gunton, J.D. Analytical and numerical studies of multiplicative noise. Phys. Rev. A 1982, 26, 1589–1609. [Google Scholar] [CrossRef]
- Paz, J.L.; Davila, C.; Loroño, A.M.; Gonzalez-Paz, L.; Marquez, E.; Mora, J.R.; Alvarado, Y. Analyzing coherent and incoherent optical susceptibilities in four-wave mixing: stochasticity, symmetry, and intramolecular coupling. Res. Phys. 2024, 61, 107765. [Google Scholar] [CrossRef]
- Marcano, O.; García-Golding, F. Power effects in polarization spectroscopy on a water solution of malachite green. J. Chem. Phys 1985, 82, 1242. [Google Scholar] [CrossRef]
- Yajima, T.; Souma, H. Study of ultra-fast relaxation processes by resonant Rayleigh-type optical mixing I. Theory. Phys. Rev. A 1978, 17, 309–323. [Google Scholar] [CrossRef]
- Yajima, T.; Souma, H.; Ishida, Y. Study of ultra-fast relaxation processes by resonant Rayleigh type optical mixing. II. Experiment on dye solutions. Phys. Rev. A 1978, 17, 324–334. [Google Scholar] [CrossRef]

































Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
