Submitted:
01 August 2024
Posted:
07 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. History
3. Structural Analysis
4. Mechanism of Action
5. In Vitro Studies
6. In Vivo Studies
6.1. Acute Toxicity of Palytoxin
6.2. Sublethal Effects of Palytoxin
7. Future Research
Funding
References
- Patocka, J., Gupta, R.C., Wu, Q.-h. & Kuca, K. Toxic potential of palytoxin. Journal of Huazhong University of Science and Technology [Medical Sciences] 35, 773-780 (2015). [CrossRef]
- Mahnir, V.M., Kozlovskaya, E.P. & Kalinovsky, A.I. Sea anemone Radianthus macrodactylus--a new source of palytoxin. Toxicon 30, 1449-1456 (1992). [CrossRef]
- Usami, M., et al. Palytoxin analogs from the dinoflagellate Ostreopsis siamensis. Journal of the American Chemical Society 117, 5389-5390 (1995). [CrossRef]
- Deeds, J.R., Handy, S.M., White, K.D. & Reimer, J.D. Palytoxin found in Palythoa sp. zoanthids (Anthozoa, Hexacorallia) sold in the home aquarium trade. PLoS One 6, e18235 (2011). [CrossRef]
- Lenoir, S., et al. First Evidence of Palytoxin Analogues from an Ostreopsis Mascarenensis (Dinophyceae) Benthic Bloom in Southwestern Indian Ocean. Journal of Phycology 40, 1042-1051 (2004). [CrossRef]
- Ciminiello, P., et al. The Genoa 2005 outbreak. Determination of putative palytoxin in Mediterranean Ostreopsis ovata by a new liquid chromatography tandem mass spectrometry method. Anal Chem 78, 6153-6159 (2006). [CrossRef]
- Ukena, T., et al. Structure elucidation of ostreocin D, a palytoxin analog isolated from the dinoflagellate Ostreopsis siamensis. Biosci Biotechnol Biochem 65, 2585-2588 (2001). [CrossRef]
- Kerbrat, A.S., et al. First evidence of palytoxin and 42-hydroxy-palytoxin in the marine cyanobacterium Trichodesmium. Mar Drugs 9, 543-560 (2011). [CrossRef]
- Ramos, V. & Vasconcelos, V. Palytoxin and Analogs: Biological and Ecological Effects. Marine Drugs 8, 2021-2037 (2010). [CrossRef]
- Aligizaki, K., Katikou, P., Milandri, A. & Diogène, J. Occurrence of palytoxin-group toxins in seafood and future strategies to complement the present state of the art. Toxicon 57, 390-399 (2011). [CrossRef]
- Yasumoto, T., et al. Palytoxin in Two Species of Xanthid Crab from the Philippines. Agricultural and Biological Chemistry 50, 163-167 (1986). [CrossRef]
- Fukui, M., Murata, M., Inoue, A., Gawel, M. & Yasumoto, T. Occurrence of palytoxin in the trigger fish Melichtys vidua. Toxicon 25, 1121-1124 (1987). [CrossRef]
- Gleibs, S. & Mebs, D. Distribution and sequestration of palytoxin in coral reef animals. Toxicon 37, 1521-1527 (1999). [CrossRef]
- Gémin, M.-P., et al. Toxin content of Ostreopsis cf. ovata depends on bloom phases, depth and macroalgal substrate in the NW Mediterranean Sea. Harmful Algae 92, 101727 (2020). [CrossRef]
- Murphy, L.T. & Charlton, N.P. Prevalence and characteristics of inhalational and dermal palytoxin exposures reported to the National Poison Data System in the U.S. Environmental Toxicology and Pharmacology 55, 107-109 (2017). [CrossRef]
- Moore, R.E. & Scheuer, P.J. Palytoxin: A New Marine Toxin from a Coelenterate. Science 172, 495 - 498 (1971). [CrossRef]
- Tubaro, A., et al. Case definitions for human poisonings postulated to palytoxins exposure. Toxicon 57, 478-495 (2011). [CrossRef]
- Gallitelli, M., et al. Respiratory Illness as a Reaction to Tropical Algal Blooms Occurring in a Temperate Climate. JAMA 293, 2595-2600 (2005). [CrossRef]
- Durando, P., et al. Ostreopsis ovata and human health: epidemiological and clinical features of respiratory syndrome outbreaks from a two-year syndromic surveillance, 2005-06, in north-west Italy. Weekly releases (1997–2007) 12, 3212 (2007). [CrossRef]
- Walsh, G.E. & Bowers, R.L. A review of Hawaiian zoanthids with descriptions of three new species. Zoological Journal of the Linnean Society 50, 161-180 (2008). [CrossRef]
- Attaway, D.H. Isolation and partial characterization of Caribbean palytoxin, (The University of Oklahoma, 1968).
- Hashimoto, Y., Fusetani, N. & Kimura, S. Aluterin: A Toxin of Filefish, Alutera scripta, Probably Originating from a Zoantharian, Palythoa tuberculosa∗. Nippon Suisan Gakkaishi 35, 1086-1093 (1969). [CrossRef]
- Deguchi, T., Aoshima, S. & Sakai, Y. Pharmacological actions of palythoatoxin isolated from the zoanthid, Palythoa tuberculosa. The Japanese Journal of Pharmacology 24, s:116 (1974). [CrossRef]
- Moore, R.E. & Bartolini, G. Structure of palytoxin. Journal of the American Chemical Society 103, 2491-2494 (1981). [CrossRef]
- Uemura, D., Ueda, K., Hirata, Y., Naoki, H. & Iwashita, T. Further studies on palytoxin. II. structure of palytoxin. Tetrahedron Letters 22, 2781-2784 (1981). [CrossRef]
- Wu, C.H. Palytoxin: Membrane mechanisms of action. Toxicon 54, 1183-1189 (2009). [CrossRef]
- Moore, R.E., et al. Absolute stereochemistry of palytoxin. Journal of the American Chemical Society 104, 3776-3779 (1982). [CrossRef]
- Cha, J.K., et al. Stereochemistry of palytoxin. Part 4. Complete structure. Journal of the American Chemical Society 104, 7369-7371 (1982). [CrossRef]
- Shimizu, Y. Complete structure of palytoxin elucidated. Nature 302, 212 (1983). [CrossRef]
- Mann, J. Scaling molecular Everests. Nature 342, 227-228 (1989). [CrossRef]
- Crawford, M.H. Briefings: Harvard Synthesizes Palytoxin Molecule. Science 246, 34-34 (1989).
- Suh, E.M. & Kishi, Y. Synthesis of Palytoxin from Palytoxin Carboxylic Acid. Journal of the American Chemical Society 116, 11205-11206 (1994). [CrossRef]
- Inuzuka, T., Fujisawa, T., Arimoto, H. & Uemura, D. Molecular shape of palytoxin in aqueous solution. Org Biomol Chem 5, 897-899 (2007). [CrossRef]
- Inuzuka, T., Uemura, D. & Arimoto, H. The conformational features of palytoxin in aqueous solution. Tetrahedron 64, 7718-7723 (2008). [CrossRef]
- Uemura, D., Ueda, K., Hirata, Y., Katayama, C. & Tanaka, J. Structures of two oxidation products obtained from palytoxin. Tetrahedron Letters 21, 4861-4864 (1980). [CrossRef]
- Moore, R.E., Dietrich, R.F., Hatton, B., Higa, T. & Scheuer, P.J. Nature of the .gamma.263 chromophore in the palytoxins. The Journal of Organic Chemistry 40, 540-542 (1975). [CrossRef]
- Ciminiello, P., et al. Stereoisomers of 42-hydroxy palytoxin from Hawaiian Palythoa toxica and P. tuberculosa: stereostructure elucidation, detection, and biological activities. J Nat Prod 77, 351-357 (2014). [CrossRef]
- Ciminiello, P., et al. Stereostructure and Biological Activity of 42-Hydroxy-palytoxin: A New Palytoxin Analogue from Hawaiian Palythoa Subspecies. Chemical Research in Toxicology 22, 1851-1859 (2009). [CrossRef]
- Uemura, D., Hirata, Y., Iwashita, T. & Naoki, H. Studies on palytoxins. Tetrahedron 41, 1007-1017 (1985). [CrossRef]
- Ciminiello, P., et al. Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the Ligurian coasts during the 2006 toxic outbreak. J Am Soc Mass Spectrom 19, 111-120 (2008). [CrossRef]
- Ciminiello, P., et al. Investigation of toxin profile of Mediterranean and Atlantic strains of Ostreopsis cf. siamensis (Dinophyceae) by liquid chromatography–high resolution mass spectrometry. Harmful Algae 23, 19-27 (2013). [CrossRef]
- Kimura, S., Hashimoto, Y. & Yamazato, K. Toxicity of the zoanthid Palythoa tuberculosa. Toxicon 10, 611-617 (1972). [CrossRef]
- Kimura, S. & Hashimoto, Y. Purification of the toxin in a zoanthid Palythoa tuberculosa. Publications of the Seto Marine Biological Laboratory 20, 713-718 (1973). [CrossRef]
- Poli, M., et al. Toxicity and pathophysiology of palytoxin congeners after intraperitoneal and aerosol administration in rats. Toxicon 150, 235-250 (2018). [CrossRef]
- Rossi, R., et al. New palytoxin-like molecules in Mediterranean Ostreopsis cf. ovata (dinoflagellates) and in Palythoa tuberculosa detected by liquid chromatography-electrospray ionization time-of-flight mass spectrometry. Toxicon 56, 1381-1387 (2010). [CrossRef]
- Corporation, F.W.P.C. Palytoxin Safety Data Sheet. (2023).
- Patocka, J., Nepovimova, E., Wu, Q. & Kuca, K. Palytoxin congeners. Archives of Toxicology 92, 143-156 (2018). [CrossRef]
- Tartaglione, L., et al. An aquarium hobbyist poisoning: Identification of new palytoxins in Palythoa cf. toxica and complete detoxification of the aquarium water by activated carbon. Toxicon 121, 41-50 (2016). [CrossRef]
- Ajani, P., Harwood, D.T. & Murray, S.A. Recent Trends in Marine Phycotoxins from Australian Coastal Waters. Mar Drugs 15(2017). [CrossRef]
- Tubaro, A., Sosa, S. & Hungerford, J. Chapter 69 - Toxicology and diversity of marine toxins. in Veterinary Toxicology (Second Edition) (ed. Gupta, R.C.) 896-934 (Academic Press, Boston, 2012).
- Arteaga-Sogamoso, E., Riobó, P., Rodríguez, F., Mancera-Pineda, J.E. & Franco-Angulo, J. First record of the dinoflagellate Prorocentrum borbonicum in the continental coast of Colombian Caribbean: A new 42 hydroxi-palytoxin producer. Frontiers in Marine Science 9(2022). [CrossRef]
- Ukena, T., et al. Structural confirmation of ostreocin-D by application of negative-ion fast-atom bombardment collision-induced dissociation tandem mass spectrometric methods. Rapid Commun Mass Spectrom 16, 2387-2393 (2002). [CrossRef]
- Ciminiello, P., et al. Stereochemical studies on ovatoxin-a. Chemistry 18, 16836-16843 (2012). [CrossRef]
- Lenoir, S., Ten-Hage, L., Turquet, J., Quod, J.P. & Hennion, M.C. Characterisation of new analogues of palytoxin isolated from an Ostreopsis mascarenensis bloom in the south-western Indian Ocean. African Journal of Marine Science 28, 389-391 (2006). [CrossRef]
- Medina-Pérez, N.I., Santos, F.J., Berdalet, E. & Moyano, E. Multiply charged ion profiles in the UHPLC-HRMS analysis of palytoxin analogues from Ostreopsis cf. ovata blooms. Analytical Methods 15, 1355-1364 (2023). [CrossRef]
- Gémin, M.P., et al. Toxicity of palytoxin, purified ovatoxin-a, ovatoxin-d and extracts of Ostreopsis cf. ovata on the Caco-2 intestinal barrier model. Environ Toxicol Pharmacol 94, 103909 (2022). [CrossRef]
- Pelin, M., et al. Pro-inflammatory effects of palytoxin: an in vitro study on human keratinocytes and inflammatory cells. Toxicol Res (Camb) 5, 1172-1181 (2016). [CrossRef]
- Del Favero, G., et al. Toxicity of palytoxin after repeated oral exposure in mice and in vitro effects on cardiomyocytes. Toxicon 75, 3-15 (2013). [CrossRef]
- Boente-Juncal, A., et al. Reevaluation of the acute toxicity of palytoxin in mice: Determination of lethal dose 50 (LD50) and No-observed-adverse-effect level (NOAEL). Toxicon 177, 16-24 (2020). [CrossRef]
- Tartaglione, L., et al. Determination of Palytoxins in Soft Coral and Seawater from a Home Aquarium. Comparison between Palythoa- and Ostreopsis-Related Inhalatory Poisonings. Environmental Science & Technology 50, 1023-1030 (2016). [CrossRef]
- Terajima, T., Uchida, H., Abe, N. & Yasumoto, T. Structure elucidation of ostreocin-A and ostreocin-E1, novel palytoxin analogs produced by the dinoflagellate Ostreopsis siamensis, using LC/Q-TOF MS. Biosci Biotechnol Biochem 83, 381-390 (2019). [CrossRef]
- Terajima, T., Uchida, H., Abe, N. & Yasumoto, T. Simple structural elucidation of ostreocin-B, a new palytoxin congener isolated from the marine dinoflagellate Ostreopsis siamensis, using complementary positive and negative ion liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 32, 1001-1007 (2018). [CrossRef]
- Wu, C.H. Pharmacological Actions of Palytoxin. in Toxins and Biologically Active Compounds from Microalgae, Vol. 2 (ed. Rossini, G.P.) 35-60 (CRC Press Taylor & Francis Group, Boca Raton, FL, 2014).
- Habermann, E., Ahnert-Hilger, G., Chhatwal, G.S. & Beress, L. Delayed haemolytic action of palytoxin. General characteristics. Biochim Biophys Acta 649, 481-486 (1981). [CrossRef]
- Habermann, E. & Chhatwal, G.S. Ouabain inhibits the increase due to palytoxin of cation permeability of erythrocytes. Naunyn Schmiedebergs Arch Pharmacol 319, 101-107 (1982). [CrossRef]
- Chhatwal, G.S., Hessler, H.J. & Habermann, E. The action of palytoxin on erythrocytes and resealed ghosts. Formation of small, nonselective pores linked with Na+, K+-ATPase. Naunyn Schmiedebergs Arch Pharmacol 323, 261-268 (1983). [CrossRef]
- Habermann, E. Palytoxin acts through Na+,K+-ATPase. Toxicon 27, 1171-1187 (1989). [CrossRef]
- Kim, S.Y., Marx, K.A. & Wu, C.H. Involvement of the Na,K-ATPase in the induction of ion channels by palytoxin. Naunyn Schmiedebergs Arch Pharmacol 351, 542-554 (1995). [CrossRef]
- Hirsh, J.K. & Wu, C.H. Palytoxin-induced single-channel currents from the sodium pump synthesized by in vitro expression. Toxicon 35, 169-176 (1997). [CrossRef]
- Guo, Y., et al. Cryo-EM structures of recombinant human sodium-potassium pump determined in three different states. in Nat Commun, Vol. 13 3957 (2022). [CrossRef]
- Clarke, R.J. Mechanism of allosteric effects of ATP on the kinetics of P-type ATPases. European Biophysics Journal 39, 3-17 (2009). [CrossRef]
- Pirahanchi Y, J.R., Aeddula NR. Physiology, Sodium Potassium Pump. (StatPearls Publishing).
- Clausen, M.V., Hilbers, F. & Poulsen, H. The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease. Frontiers in Physiology 8(2017). [CrossRef]
- Vilallonga, G.D., de Almeida, A.G., Ribeiro, K.T., Campos, S.V.A. & Rodrigues, A.M. Hypothesized diprotomeric enzyme complex supported by stochastic modelling of palytoxin-induced Na/K pump channels. R Soc Open Sci 5, 172155 (2018). [CrossRef]
- Vilallonga, G., Riesco, D., de Almeida, A.G., Rodrigues, A.M. & Campos, S.V.A. In Silico Laboratory Experiments Using Statistical Model Checking: A New Model of the Palytoxin-Induced Pump Channel as Case Study. IEEE/ACM Trans Comput Biol Bioinform 18, 2816-2822 (2021). [CrossRef]
- Hilgemann, D.W. From a pump to a pore: how palytoxin opens the gates. Proc Natl Acad Sci U S A 100, 386-388 (2003). [CrossRef]
- Rossini, G.P. & Bigiani, A. Palytoxin action on the Na+,K+-ATPase and the disruption of ion equilibria in biological systems. Toxicon 57, 429-439 (2011). [CrossRef]
- Rossini, G.P. Toxins and Biologically Active Compounds from Microalgae, Volume 2: Biological Effects and Risk Management, (CRC Press, 2014).
- Grell, E., Lewitzki, E. & Uemura, D. Interaction between palytoxin and purified Na, K-ATPase. Prog Clin Biol Res 268b, 393-400 (1988).
- Gillman, C., Patel, K., Unge, J. & Gonen, T. The structure of the neurotoxin palytoxin determined by MicroED. in bioRxiv 2023.2003.2031.535166 (2023). [CrossRef]
- Artigas, P. & Gadsby, D.C. Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels. Proc Natl Acad Sci U S A 100, 501-505 (2003). [CrossRef]
- Rodrigues, A.M., Almeida, A.-C.G. & Infantosi, A.F.C. Effect of palytoxin on the sodium–potassium pump: model and simulation. Physical Biology 5, 036005 (2008). [CrossRef]
- Rodrigues, A.M., Infantosi, A.F.C. & de Almeida, A.-C.G. Palytoxin and the sodium/potassium pump—phosphorylation and potassium interaction. Physical Biology 6, 036010 (2009). [CrossRef]
- Boente-Juncal, A., et al. In Vivo Evaluation of the Chronic Oral Toxicity of the Marine Toxin Palytoxin. Toxins (Basel) 12(2020). [CrossRef]
- Kaul, P.N., Farmer, M.R. & Ciereszko, L.S. Pharmacology of palytoxin: The most potent marine toxin known. Proceedings of the Western Pharmacology Society Vol. 17, 294-301 (1974).
- Pelin, M., Brovedani, V., Sosa, S. & Tubaro, A. Palytoxin-Containing Aquarium Soft Corals as an Emerging Sanitary Problem. Marine Drugs 14, 33 (2016). [CrossRef]
- Sud, P., Su, M.K., Greller, H.A., Majlesi, N. & Gupta, A. Case series: inhaled coral vapor--toxicity in a tank. J Med Toxicol 9, 282-286 (2013). [CrossRef]
- Lanceleur, R., et al. Toxic responses of metabolites produced by Ostreopsis cf. ovata on a panel of cell types. Toxicon 240, 107631 (2024). [CrossRef]
- Cheng, D., et al. Proteomic Studies of the Mechanism of Cytotoxicity, Induced by Palytoxin on HaCaT Cells. Toxins (Basel) 14(2022). [CrossRef]
- Cardoso, C.W., et al. Haff Disease in Salvador, Brazil, 2016-2021: Attack rate and detection of toxin in fish samples collected during outbreaks and disease surveillance. Lancet Reg Health Am 5, 100092 (2022). [CrossRef]
- Dutra Pierezan, M., Rafael Kleeman, C., Luiz Manique Barreto, P., Barcellos Hoff, R. & Verruck, S. Investigating the etiology of Haff disease: Optimization and validation of a sensitive LC-MS/MS method for palytoxins analysis in directly associated freshwater and marine food samples from Brazil. Food Res Int 190, 114585 (2024). [CrossRef]
- Kodama, A.M., et al. Clinical and laboratory findings implicating palytoxin as cause of ciguatera poisoning due to Decapterus macrosoma (mackerel). Toxicon 27, 1051-1053 (1989). [CrossRef]
- Onuma, Y., et al. Identification of putative palytoxin as the cause of clupeotoxism. Toxicon 37, 55-65 (1999). [CrossRef]
- Randall, J.E. Review of Clupeotoxism, an Often Fatal Illness from the Consumption of Clupeoid Fishes. Pacific Science 59, 73-77 (2005). [CrossRef]
- Pelin, M., et al. The cytotoxic effect of palytoxin on Caco-2 cells hinders their use for in vitro absorption studies. Food and Chemical Toxicology 50, 206-211 (2012). [CrossRef]
- Valverde, I., Lago, J., Vieites, J.M. & Cabado, A.G. In vitro approaches to evaluate palytoxin-induced toxicity and cell death in intestinal cells. J Appl Toxicol 28, 294-302 (2008). [CrossRef]
- Fernández, D.A., et al. The kinetic, mechanistic and cytomorphological effects of palytoxin in human intestinal cells (Caco-2) explain its lower-than-parenteral oral toxicity. Febs j 280, 3906-3919 (2013). [CrossRef]
- Nicolas, J., Bovee, T.F., Kamelia, L., Rietjens, I.M. & Hendriksen, P.J. Exploration of new functional endpoints in neuro-2a cells for the detection of the marine biotoxins saxitoxin, palytoxin and tetrodotoxin. Toxicol In Vitro 30, 341-347 (2015). [CrossRef]
- Ledreux, A., Krys, S. & Bernard, C. Suitability of the Neuro-2a cell line for the detection of palytoxin and analogues (neurotoxic phycotoxins). Toxicon 53, 300-308 (2009). [CrossRef]
- Bonnard, C., Lechner, J.F., Gerwin, B.I., Fujiki, H. & Harris, C.C. Effects of palytoxin or ouabain on growth and squamous differentiation of human bronchial epithelial cells in vitro. Carcinogenesis 9, 2245-2249 (1988). [CrossRef]
- Yokoyama, A., Murata, M., Oshima, Y., Iwashita, T. & Yasumoto, T. Some Chemical Properties of Maitotoxin, a Putative Calcium Channel Agonist Isolated from a Marine Dinoflagellate. The Journal of Biochemistry 104, 184-187 (1988). [CrossRef]
- Stonik, V.A. & Stonik, I.V. Toxins Produced by Marine Microorganisms: A Short Review. in Marine and Freshwater Toxins (eds. Gopalakrishnakone, P., Haddad Jr, V., Tubaro, A., Kim, E. & Kem, W.R.) 3-21 (Springer Netherlands, Dordrecht, 2016).
- Kaul, P.N. & Daftari, P. Marine pharmacology: bioactive molecules from the sea. Annu Rev Pharmacol Toxicol 26, 117-142 (1986). [CrossRef]
- Ito, E., Ohkusu, M. & Yasumoto, T. Intestinal injuries caused by experimental palytoxicosis in mice. Toxicon 34, 643-652 (1996). [CrossRef]
- Wiles, J.S., Vick, J.A. & Christensen, M.K. Toxicological evaluation of palytoxin in several animal species. Toxicon 12, 427-433 (1974). [CrossRef]
- Deeds, J.R. Toxicity of Palytoxins: From Cellular to Organism Level Responses. in Toxins and Biologically Active Compounds from Microalgae, Vol. 2 (ed. Rossini, G.P.) 351-378 (CRC Press Taylor & Francis Group, Boca Raton, FL, 2014).
- Vick, J.A. & Wiles, J.S. The mechanism of action and treatment of palytoxin poisoning. Toxicol Appl Pharmacol 34, 214-223 (1975). [CrossRef]
- Levine, L., Fujiki, H., Gjika, H.B. & Van Vunakis, H. Production of antibodies to palytoxin: neutralization of several biological properties of palytoxin. Toxicon 25, 1273-1282 (1987). [CrossRef]
- Munday, R. Toxicological requirements for risk assessment of shellfish contaminants: a review. African Journal of Marine Science 28, 447 - 449 (2006). [CrossRef]
- Riobó, P., et al. Mouse bioassay for palytoxin. Specific symptoms and dose-response against dose-death time relationships. Food Chem Toxicol 46, 2639-2647 (2008). [CrossRef]
- Rhodes, L., Towers, N., Briggs, L., Munday, R. & Adamson, J. Uptake of palytoxin-like compounds by shellfish fed Ostreopsis siamensis (Dinophyceae). New Zealand Journal of Marine and Freshwater Research 36, 631-636 (2002). [CrossRef]
- Ito, E. & Yasumoto, T. Toxicological studies on palytoxin and ostreocin-D administered to mice by three different routes. Toxicon 54, 244-251 (2009). [CrossRef]
- Sosa, S., et al. Palytoxin toxicity after acute oral administration in mice. Toxicol Lett 191, 253-259 (2009). [CrossRef]
- Munday, R. & Reeve, J. Risk assessment of shellfish toxins. Toxins (Basel) 5, 2109-2137 (2013). [CrossRef]
- Ito, K., Urakawa, N. & Koike, H. Cardiovascular toxicity of palytoxin in anesthetized dogs. Arch Int Pharmacodyn Ther 258, 146-154 (1982).
- Deeds, J.R. & Schwartz, M.D. Human risk associated with palytoxin exposure. Toxicon 56, 150-162 (2010). [CrossRef]
- Carlin, M., Pelin, M., Ponti, C., Sosa, S. & Tubaro, A. Functional and Structural Biological Methods for Palytoxin Detection. Journal of Marine Science and Engineering 10, 916 (2022). [CrossRef]
- Zhu, X., et al. Advances in Biosensors for the Rapid Detection of Marine Biotoxins: Current Status and Future Perspectives. Biosensors (Basel) 14(2024). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
